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Various systems of very different physical nature exhibit interesting singular
behavior in the vicinity of their critical points. Their correlation functions reveal
self-similar behavior with universal critical dimensions: they depend only on
few global characteristics of the system (like symmetry or space dimensionality).
Quantitative description of critical behavior is provided by the renormalization
group (RG). In the RG approach, possible types of critical regimes (universality
classes) are associated with infrared (IR) attractive ˇxed points of renormalizable
ˇeld theoretic models. Most typical phase transitions belong to the universality
class of the On-symmetric ψ4 model of an n-component scalar order parameter.
Universal characteristics of the critical behavior depend only on n and the space
dimensionality d and can be calculated in the form of the expansion in ε = 4− d
or within other systematic perturbation schemes; see the monograph [1] and the
literature cited therein.

It has long been realized that the behavior of a real system near its critical
point is extremely sensitive to external disturbances, geometry of the experimental
setup, gravity, presence of impurities and so on; see, e.g., the monograph [2] for
the general discussion and the references. What is more, some disturbances
(randomly distributed impurities or turbulent mixing) can produce completely
new types of critical behavior with rich and rather exotic properties, like, e.g.,
expansion in

√
ε rather than in ε; see, e.g., [3].

These issues become even more important for the nonequilibrium phase tran-
sitions, because the ideal conditions of a ®pure¯ stationary critical state can hardly
be achieved in real chemical or biological systems, and the effects of various dis-
turbances can never be completely excluded. In particular, intrinsic turbulence
effects can hardly be avoided in chemical catalytic reactions or forest ˇres. One
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can also speculate that atmospheric turbulence can play important role for the
spreading of an infectious disease by �ying insects or birds. Effects of different
kinds of turbulent and laminar motion on the critical behavior were studied, e.g.,
in [3Ä9].

In this paper we study effects of strongly anisotropic turbulent mixing on the
critical behavior of two paradigmatic models: the equilibrium model A, which
describes purely relaxational dynamics of a nonconserved scalar order parameter
(see, e.g., [1]), and the Gribov model, which describes the nonequilibrium phase
transition between the absorbing and �uctuating states in a reaction-diffusion
system [10]. The velocity is modelled by the d-dimensional generalization of
the random shear �ow introduced in [11] within the context of passive scalar
advection.

In the Langevin formulation, the models are deˇned by stochastic differential
equations for the order parameter ψ = ψ(t,x):

∂tψ = λ
{
(−τ + ∂2)ψ − V (ψ)

}
+ ζ = 0, (1)

where ∂t = ∂/∂t, ∂2 is the Laplace operator; λ > 0 is the kinematic (diffusion)
coefˇcient, and τ ∝ (T − Tc) is the deviation of the temperature (or its analog)
from the critical value. The nonlinearity has the form V (ψ) = uψ3/3! for the
model A and V (ψ) = gψ2/2 for the Gribov process; g and u > 0 being the
coupling constants. The Gaussian random noise ζ = ζ(t,x) with zero mean is
speciˇed by the pair correlation function:

〈ζ(t,x)ζ(t′,x′)〉 = 2λδ(t − t′)δ(d)(x − x′) (2)

for the model A and

〈ζ(t,x)ζ(t′,x′)〉 = gλψ(t,x) δ(t − t′)δ(d)(x − x′) (3)

for the Gribov process. The factor ψ in front of the correlator (1) guarantees that
in the absorbing state the �uctuations cease entirely, while the factor 2λ in (2)
ensures the correspondence to the static ψ4 model.

Coupling with the velocity ˇeld v = {vi(t,x)} is introduced by the replace-
ment ∂t → ∇t = ∂t + vi∂i, where ∇t is the Lagrangian (Galilean covariant)
derivative.

Let n be a unit constant vector that determines distinguished direction (®di-
rection of the �ow¯). Then any vector can be decomposed into the components
perpendicular and parallel to the �ow, for example, x = x⊥+nx‖ with x⊥ ·n = 0.
The velocity ˇeld will be taken in the form v = nv(t,x⊥), where v(t,x⊥)
is a scalar function independent of x‖. Then the incompressibility condition
∂ivi = ∂‖v(t,x⊥) = 0 is automatically satisˇed.
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For v(t,x⊥) we assume a Gaussian distribution with zero mean and the pair
correlation function of the form:

〈v(t,x⊥)v(t′,x′
⊥)〉 =

= D δ(t − t′)
∫

dk⊥
(2π)d−1

exp {ik⊥(x⊥ − x′
⊥)} 1

kd−1+ξ
⊥

. (4)

Here k⊥ = |k⊥|, D > 0 is a constant amplitude factor; and ξ, an arbitrary
exponent, which (along with the conventional ε = 4 − d) will play the part of a
formal RG expansion parameter. The IR regularization is provided by the cutoff
k⊥ > m in (4). The natural interval for the exponent is 0 < ξ < 2 with the most
realistic Kolmogorov value ξ = 4/3; the ®Batchelor limit¯ ξ → 2 corresponds to
smooth velocity.

According to the general theorem (see, e.g., [1]), stochastic problems de-
scribed above can be reformulated as ˇeld theoretic models of extended set of
ˇelds Φ = {ψ, ψ†,v}. The role of the coupling constants is played by the
parameters

u, g2 ∼ Λ4−d, w = D/λ ∼ Λξ, (5)

where Λ is some typical ultraviolet (UV) momentum scale. From (5) it follows
that both the models become logarithmic (all the coupling constants are simultane-
ously dimensionless) at d = 4 and ξ = 0. Thus the UV divergences in the Green
functions manifest themselves as poles in ε = 4−d, ξ and, in general, their linear
combinations. The divergences can be removed by the standard renormalization
procedure. In order to ensure multiplicative renormalizability of the model, it is
necessary to split the Laplacian in (1) into the parallel and perpendicular parts
∂2 → ∂2

⊥ + f∂2
‖ by introducing a new parameter f > 0 (in the anisotropic case,

these two terms are renormalized in a different way). Then the corresponding RG
equations are derived; their IR attractive ˇxed points determine the IR asymptotic
scaling regimes of the models. Detailed analysis of the model A can be found
in [8] and for the Gribov model it will be given elsewhere. Below we only
present the results of the explicit one-loop calculation (leading order in ξ and ε),
which appear similar for both the models. There are four ˇxed points:

1) Gaussian (free) ˇxed point: g∗ = u∗ = w∗ = 0, IR attractive for ε < 0,
ξ < 0.

2) g∗ = u∗ = 0 (exact result to all orders), w∗ ∼ ξ; IR attractive for ξ > 0
and ξ > 2ε. In this regime, the nonlinearity V (ψ) in the stochastic equation (1)
becomes irrelevant, and we arrive at the model of a linear convection-diffusion
equation for a passive scalar ˇeld ψ.

3) w∗ = 0 (exact), g2
∗ ∼ u∗ ∼ ε; IR attractive for ε > 0, ξ < 0 for the model

A and ε > 0, ξ < ε/12 for the Gribov model. In this regime, effects of the
turbulent mixing are irrelevant, the isotropy violated by the velocity ensemble is
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restored and the leading terms of the IR behavior coincide exactly with those of
the standard models (1)Ä(3).

4) The most interesting ˇxed point with nontrivial positive values of g∗,
u∗, and w∗. It is IR attractive for ε > 0, ξ > 0 for the model A and ε > 0,
ξ > ε/12 for the Gribov model. It corresponds to new nontrivial IR scaling
regimes, in which both nonlinearities in the stochastic equations and the turbulent
mixing are important; the corresponding critical dimensions depend essentially
on both the RG expansion parameters ε and ξ and are calculated as double series
in these parameters. This behavior reveals strong anisotropy and belongs to new,
completely nonequilibrium, universality classes. The realistic values ξ = 4/3 and
d = 2 or 3 belong to these classes.

The regions of IR stability for these ˇxed points are shown in the Figure.
For comparison, the boundaries for the isotropic stirring [9] are given. In the
one-loop approximation, all the boundaries are given by straight lines; there
are neither gaps nor overlaps between the different regions. The latter fact is
valid to all orders of the RG expansion, although the boundaries between the
regions 3 and 4 (determined by the nonlinearity V (ψ)) and 2 and 4 (determined
by the velocity statistics) will become curved.

Let us illustrate the consequences of the RG analysis for the spreading of a
cloud of the ®agent¯ in the turbulent environment. The mean-square displacement

Regions of stability of the ˇxed points in various models
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Ri(t) in the ith direction at time t > 0 of the agent's particle, which started from
the origin x′ = 0 at time t′ = 0, is given by the relation

R2
i (t) =

∫
dx x2

i G(t,x), G(t,x) = 〈ψ(t,x)ψ†(0,0)〉, x = |x|. (6)

The linear response function G(t,x) has the following asymptotic representation:

G(t,x) = x
−Δψ−Δ

ψ†
⊥ F

(
x⊥t−1/Δω , x‖t

−Δ‖/Δω , τxΔτ

⊥

)
, (7)

where x⊥ = |x⊥| and F is the scaling function. The set of critical dimensions
Δ∗ for the ˇelds and parameters is determined by the ˇxed point. In particular,
for the Gribov model at the ˇxed point 4 in the one-loop approximation one has
Δω = 2−(2ε−ξ)/23, Δ‖ = 1+(12ξ−ε)/23, Δψ = Δψ† = d/2+(14ξ−5ε)/46,
Δτ = 2 + 3(ξ − 2ε)/23. Substituting (7) into (6) at τ = 0 (that is, directly at
criticality) gives the power laws:

R2
⊥(t) ∝ tα⊥ , R2

‖(t) ∝ tα‖ , (8)

where the exponents α⊥, α‖ are simply related to the dimensions Δ∗. For
the ˇxed point 3 (linear passive advection) one obtains exact results α⊥ = 1,
α‖ = 1 + ξ/2. For the transverse direction this gives the ordinary diffusion law

R⊥(t) ∝ t1/2, while in the direction of the �ow the spreading is accelerated and

for ξ = 4/3 takes on the form R‖(t) ∝ t5/3, or equivalently dR2
‖/dt ∝ R

4/5
‖ . This

®4/5¯ law differs from the classical ®4/3¯ Richardson's law for the isotropic case.
For the regime 4 the exponents in (8) depend on both the parameters ξ and ε.
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