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In the present work a closed system of kinetic equations is obtained for the description of the
vacuum creation of an electronÄpositron plasma and secondary photons due to a strong laser ˇeld. An
estimate for the photon energy distribution is obtained. In the Markovian approximation the photon
distribution has a 1/k spectrum (�icker noise).
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INTRODUCTION

Up to now, the Schwinger effect [1] has resisted an experimental veriˇcation.
This is basically due to the huge critical ˇeld strength Ec which could not yet
be reached in the laboratory. Recently, main attention was devoted to theoretical
studies of pair creation by time-varying electric ˇelds [2Ä4] where sufˇciently
strong electric ˇelds can be achieved at modern high-intensity laser facilities. It
has been shown [2Ä5] that pair creation by a single laser pulse with E � Ec could
hardly be observed. More optimistic results have been obtained for X-ray free
electron lasers [6Ä8] and for counter-propagating beams of optical lasers [9Ä11].
It is obvious, that for subcritical ˇelds E � Ec, the electronÄpositron excitations
have quasiparticle character, and S-matrix methods cannot be applied [12], and
existing estimates [8] are not reliable. An adequate method is the kinetic theory.

We will construct here the system of kinetic equations for a self-consistent
description of the electronÄpositronÄphoton system generated from the vacuum

∗E-mail: smol@sgu.ru



1874 BLASCHKE D.B. ET AL.

by a time-dependent electric ˇeld. As a ˇrst step, we will consider the one-
photon annihilation process only, which in the presence of a strong ˇeld is not
forbidden [13].

Below we will assume an external electric ˇeld Aμ(t) = (0,Aext(t)) that
is spatially homogeneous. In the case of a strong external electric ˇeld Aext(t)
also some internal ˇeld Aint(t) will be generated. The total acting ˇeld will
be equal to A(t) = Aint(t) + Aext(t) and this ˇeld is quasi-classical. Some
�uctuations of the electromagnetic ˇeld can arise against this background. They
can be interpreted as photon excitations. These photons, in principle, can be
registered far from the active zone.

1. ELECTRONÄPOSITRON SECTOR

In general, the complete system of equations for a self-consistent description
of the electronÄpositronÄphoton plasma consists of: 1) the KEs for the electron
and positron quasiparticle components with distribution functions fe,p(p, t) in the
presence of a total electric ˇeld E = −Ȧ(t), 2) the KE for the photon component,
and 3) the Maxwell equation for the internal ˇeld Aint(t). We assume the
electroneutrality condition fe(p, t) = f c(−p, t) = f(p, t) to be fulˇlled.

We start from the standard QED Lagrangian L = L0 +L′ taking into account
in L0 the interaction with a quasi-classical (Aμ(t)) and in L′ with a quantized
(Âμ(t)) electromagnetic ˇeld,

L0 =
i

2
{ψγμDμΨ − (D∗

μψ)γμΨ} − mψψ, L′ = −eψγμÂμΨ, (1)

where Dμ = ∂μ + ieAμ(t). It is assumed that the intensity of the quantized ˇeld
is rather weak so that there is no backreaction in�uence on the state of the system.
In other words, the electronÄpositron system plays the role of a photon source
only. The in-vacuum |in〉 = |〉 is deˇned such that 〈Âμ(x)〉 = 0. Below we will
not consider the backreaction problem because for subcritical ˇelds E � Ec the
internal ˇeld is negligible.

The kinetics of electronÄpositron vacuum pair creation due to a linearly
polarized electric ˇeld was studied in a large number of works. See, e.g., [14,15]
and the works quoted therein. The corresponding generalization to the case of
an arbitrarily polarized time-dependent electric ˇeld was obtained in [16Ä18].
The oscillator representation in its different realizations [14, 15] leads to the
nonstationary orthonormalized spinor basis

u+
1 (p, t) = A(p)

[
ω+, 0, p3, p−

]
, u+

2 (p, t) = A(p)
[
0, ω+, p+,−p3

]
,
(2)

v+
1 (−p, t) = A(p)

[
−p3,−p−, ω+, 0

]
, v+

2 (−p, t) = A(p)
[
−p+, p3, 0, ω+

]
,
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where ω(p, t) =
√

m2 + P2 = ω, P = p− eA, p± = p1 ± ip2, ω+ = ω + m and
A(p) = [2ωω+]−1/2.

Finally, the Dirac equation in the presence of an external quasiparticle ˇeld
Aext(t) generates the Heisenberg-like equations of motion for the construction
operators

ȧ(p, t) = −U(1)(p, t)a(p, t) − U(2)(p, t)b+(−p, t) − iω(p, t)a(p, t),
(3)

ḃ(−p, t) = b(−p, t)U(1)(p, t) + a+(p, t)U(2)(p, t) − iω(p, t)b(−p, t),

where in the representation (2) the matrices are U(1)(p, t) = iωa[pE]σ = iUkσk

and U(2)(p, t) = a[P(PE) − Eωω+]σ with a = e/(2ω2ω+).
KEs for the electronÄpositron component of the plasma follow from the

equations of motion (3) and the deˇnitions of the electron and positron distribution
functions in the instantaneous representation

fαβ(p, t) = 〈a+
β (p, t)aα(p, t)〉, f c

αβ(p, t) = 〈bβ(−p, t)b+
α (−p, t)〉 (4)

and also the two additional functions

f
(+)
αβ (p, t) = 〈a+

β (p, t)b+
α (−p, t)〉, f

(−)
αβ (p, t) = 〈bβ(−p, t)aα(p, t)〉 (5)

describing vacuum polarization. The system of KEs is then [16Ä18]

ḟ = [f, U(1)] −
(
U(2)f

(+) + f (−)U(2)

)
,

ḟ c = [f c, U(1)] +
(
f (+)U(2) + U(2)f

(−)
)
,

(6)
ḟ (+) = [f (+), U(1)] +

(
U(2)f − f cU(2)

)
+ 2iωf (+),

ḟ (−) = [f (−), U(1)] +
(
fU(2) − U(2)f

c
)
− 2iωf (−).

If the standard decomposition in the basis of Pauli matrices is used f = f0+fkσk ,
where f0 = Tr {f}/2, and fk = Tr {fσk}/2, the system KEs (6) can be rewritten
in the spin representation. Some of the simplest applications of the corresponding
system of KEs can be found in [16Ä18].

2. PHOTON SECTOR

In order to construct the photon kinetics it is necessary to derive the corre-
sponding generalization of the quasiparticle formalism developed in Sec. 1, using
it as a nonperturbative basis. The interaction with the quantized electromagnetic
ˇeld Âμ(x) in the fermion sector of the theory is introduced by means of the
substitution H0 → H0 + H ′ in the Heisenberg-like equation of motion (3),

ȧ(p, t) + U(1)(p, t)a(p, t) + U(2)(p, t)b+(−p, t) = −i[a(p, t), H0 + H ′], (7)
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where H0 is the Hamiltonian of the fermion ˇeld in the quasiparticle representa-
tion and H ′ is the usual Hamiltonian of interaction with the quantized ˇeld. The
time dependence of H ′(t) makes manifest the nonstationarity of the system that
is also re�ected in the decomposition of the ˇeld operators Ψ, Ψ+ in the nonsta-
tionary basis (2). The same source (external ˇeld) induces the nonstationarity of
the quantized electromagnetic ˇeld. However, this does not alter the mass shell
of the photon ˇeld, k2 = 0 (in contrast to electronÄpositron ˇeld, ω(p, t)), so that
the standard decomposition is valid,

Âμ(x) = (2π)−3/2

∫
d3k√
2k

Aμ(k, t) e−ikx, (8)

where Aμ(k, t) = A
(+)
μ (k, t) + A

(−)
μ (−k, t).

The system of Heisenberg-like equations of motion taking into account the
photon subsystem can be written now in an explicit form. For example,

iA(±)
r (k, t) = ∓kA(±)

r (k, t) ∓ e(2π)−3/2 1√
2k

∫
d3p1d

3p2 δ(p1 − p2 ∓ k)×

×
{
a+(p1, t)[ūu]r(p1,p2, t)a(p2, t) + a+(p1, t)[ūv]r(p1,p2, t)b+(−p2, t)+

+ b(−p1, t)[v̄u]r(p1,p2, t)a(p2, t) + b(−p1, t)[v̄v]r(p1,p2, t)b+(−p2, t)
}
. (9)

Here and below the vectors p1,p2, . . . denote the canonical momenta of fermi-
ons and k1,k2, . . . correspond to the momenta of photons; [ξ̄η]rβα(p1,p2; t) =
ξ̄α(p1, t)γμηβ(p2, t)er

μ, and e1, e2 are the polarization unit vectors, e3 = k/k
and e0

μ = δ0
μ. The photon correlation function is deˇned as

Frr′(k,k′, t) = 〈A+
r (k, t)A−

r′(k′, t)〉. (10)

With the help of Eq. (9) we can then obtain the ˇrst equation of the BBGKY
hierarchy

Ḟrr′(k,k′, t) = ie(2π)−3/2
∑
αβ

∫
d3p1d

3p2

{
− 1√

2k
δ(p1 − p2 − k)×

×
[
[ūu]rβα(p1,p2, t)〈a+

α (p1, t)aβ(p2, t)A(−)
r (k, t)〉+

+[ūv]rβα(p1,p2, t)〈a+
α (p1, t)b+

β (−p2, t)A(−)
r (k, t)〉+

+[v̄u]rβα(p1,p2, t)〈bα(−p1, t)aβ(p2, t)A(−)
r (k, t)〉+

+[v̄v]rβα(p1,p2, t)〈bα(−p1, t)b+
β (−p2, t)A(−)

r (k, t)〉
]
+

+
1√
2k

δ(p1 − p2 + k′)
[
[ūu]r

′

βα(p1,p2, t)〈a+
α (p1, t)aβ(p2, t)A

(+)
r′ (k′, t)〉+
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+ [ūv]r
′

βα(p1,p2, t)〈a+
α (p1, t)b+

β (−p2, t)A
(+)
r′ (k′, t)〉+

+ [v̄u]r
′

βα(p1,p2, t)〈bα(−p1, t)aβ(p2, t)A
(+)
r′ (k′, t)〉+

+ [v̄v]r
′

βα(p1,p2, t)〈bα(−p1, t)b+
β (−p2, t)A

(+)
r′ (k′, t)〉

]}
. (11)

3. TRUNCATION PROCEDURE

The simplest decoupling of the hierarchy,

〈a+
α (p1, t)aβ(p2, t)A(±)

r (k, t)〉 � 〈a+
α (p1, t)aβ(p2, t)〉〈A(±)

r (k, t)〉 = 0, (12)

is not effective. Therefore, we will consider the equation at the second order
for the annihilation process (the next-to-last line in Eq. (11)) and the reverse one
(the fourth line). We will not write the equations of the second level for these
correlators completely in view of their awkwardness and will discuss only the
simplest truncation scheme resulting in correlators of the type:

〈a+(p1, t)a(p2, t)A(±)
r (k, t)A(±)

r′ (k′, t)〉 �
� 〈a+(p1, t)a(p2, t)〉〈A(±)

r (k, t)A(±)
r′ (k′, t)〉, (13)

which occur in the RPA approximation as well. We ignore other processes
as, e.g., the vacuum polarization effects contained in correlators of the type

〈a(p1, t)b(−p2, t)A
(±)
r (k, t)A(±)

r′ (k′, t)〉 leading to the polarization functions (5).
Ignoring spin effects (see Sec. 2), the approximation (13) in combination with the
diagonalization of the photon and fermion correlation functions

〈A(+)
r (k, t)A(−)

r′ (k′, t)〉 = δrr′δ(k − k′)Fr(k, t),

〈a(+)
α (p, t)aβ(p′, t)〉 = δαβδ(p − p′)f(p, t)

(14)

leads to the following photon KE for zero initial condition:

Ḟ (k, t) = − e2

2(2π)3k

∫
d3p

t∫
t0

dt′K(p,p− k; t, t′)
[
1 + F (k, t′)

]
×

×
[
f(p, t′) + f(p − k, t′) − 1

]
cos

⎧⎨
⎩

t∫
t′

dτ
[
ω(p, τ) + ω(p − k, τ) − k

]
⎫⎬
⎭ , (15)

where the nonlocal kernel is K(p,p′; t, t′) = [v̄u]rβα(p,p′; t)[ūv]rαβ(p′,p; t′).
The next step is based on the Markovian approximation that allows one to ignore
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the memory effect in the photon distribution, i.e., in the r.h.s. of Eq. (15) we
replace F (k, t′) → F (k, t). That brings us to the following quadrature formula

F (k, t) = exp [Φ(k, t)] − 1 � Φ(k, t), (16)

where the last approximation is valid for the subcritical ˇelds and

Φ(k, t) = − e2

2(2π)3k

t∫
t0

dt′
t′∫

t0

dt′′
∫

d3pK(p,p− k; t′, t′′)×

×
[
f(p, t′′) + f(p − k, t′′) − 1

]
cos

⎧⎨
⎩

t′∫
t′′

dτ
[
ω(p, τ) + ω(p− k, τ) − k

]
⎫⎬
⎭ .

The kernel K(p,p′; t, t′) is a slowly varying function of the momentum arguments
p,p′ at ˇxed t and t′. There are also some complicated fast temporal oscillations
on this background. For a rough estimate of the effect let us substitute the kernel
K by its average value K(p,p−k; t, t′) → K0 = −5. In addition, we neglect the
non-Markovian effect in the fermion distribution functions. Since the main part
of fermions is created from vacuum with small momenta, they can be neglected
due to the momentum and ˇeld (E � Ec) dependence in the high frequency
factor in the r.h.s. of Eq. (17). We obtain the result

F (k, t) =
5e2n(t)
2kδ2

, (17)

where δ = 2m− k is the frequency mismatch and n(t) = 2
∫

d3pf(p, t)/(2π)3 is
the pair density with the factor 2 from the spin degeneracy. Thus, in the optical
region k � m the distribution (17) gives F (k) ∼ 1/k, which is characteristic
of the �icker noise (see, e.g., [20]). In the high frequency region k ∼ m, the
Markovian approximation is not justiˇed. Here, a more detailed investigation is
necessary.

SUMMARY

Our main result in Eq. (17) deˇnes the frequency dependence of the photon
distribution by the factor 1/k. That this is a multiphoton process can be seen when
one identiˇes the frequency mismatch with the energy Nk of the photon system
which is necessary for the energy conservation in the one-photon annihilation
process: we obtain N ∼ 2m/k. For optical lasers this is a huge number and
therefore such kind of events is very rare. This conclusion about the role of multi-
photon processes is conformed with the analysis of the absorption coefˇcient of
the electronÄpositron plasma created from the vacuum in the infrared region [19].
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