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WAVE PROPAGATION
IN NONLINEAR DISORDERED MEDIA

S. Flach

Max-Planck-Institut f éur Physik komplexer Systeme, Dresden, Germany

We analyze mechanisms and regimes of wave packet spreading in nonlinear disordered media.
We discuss resonance probabilities, and predict a dynamical crossover from strong to weak chaos. The
crossover is controlled by the ratio of nonlinear frequency shifts and the average eigenvalue spacing
of eigenstates of the linear equations within one localization volume. We consider generalized models
in higher lattice dimensions and obtain critical values for the nonlinearity power, the dimension, and
norm density, which in�uence possible dynamical outcomes in a qualitative way.
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INTRODUCTION

Wave localization in linear disordered systems was obtained by P. W.Ander-
son [1] and recently experimentally observed for light [2] and ultracold atoms [3].
A number of studies was recently devoted to the case of interplay of nonlinearity
and disorder [4Ä12], showing that wave packets may spread way beyond the limits
set by the linear theory. In this paper we will discuss the mechanisms of wave
packet spreading in nonlinear disordered systems. More speciˇcally, we will
consider cases when i) the corresponding linear wave equations yield Anderson
localization, ii) the localization length is bounded from above by a ˇnite value,
iii) the nonlinearity is compact in real space and therefore does not induce long
range interactions between eigenstates of the linear equations. We will analyze
the chaotic dynamics which is at the heart of the observed destruction of Anderson
localization. We obtain an intermediate subdiffusive regime of strong chaos and
an even slower asymptotic regime of weak chaos.

We consider the disordered discrete nonlinear Schréodinger equation (DNLS)

iψ̇l = εlψl + β|ψl|2ψl − ψl+1 − ψl−1 (1)

with complex variables ψl, lattice site indices l, and nonlinearity strength
β � 0. The random on-site energies εl are chosen uniformly from the interval
[−W/2, W/2], with W denoting the disorder strength. Equation (1) conserves
the energy and the norm S =

∑
l

|ψl|2.
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For β = 0 with ψl = Al exp (−iλt) Eq. (1) is reduced to the linear eigen-
value problem λAl = εlAl − Al−1 − Al+1. The normalized eigenvectors Aν,l(∑

l

A2
ν,l = 1

)
are the NMs, and the eigenvalues λν are the frequencies of

the NMs. The width of the eigenfrequency spectrum λν is Δ = W + 4 with
λν ∈ [−2 − W/2, 2 + W/2].

The asymptotic spatial decay of an eigenvector is given by Aν,l ∼ e−l/ξ(λν ),
where ξ(λν) is the localization length and ξ(λν) ≈ 24(4 − λ2

ν)/W 2 for weak
disorder W � 4 [1, 13]. The localization volume (spatial extend) V of the NM
is on average of the order of 3ξ(0) for weak disorder, and tends to V = 1 in the
limit of strong disorder. The average spacing d of eigenvalues of NMs within
the range of a localization volume is therefore of the order of d ≈ Δ/V , which
becomes d ≈ ΔW 2/300 for weak disorder. The two scales d � Δ are expected
to determine the packet evolution details in the presence of nonlinearity.

1. ADDING NONLINEARITY

The equations of motion of (1) in normal mode space read

iφ̇ν = λνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1

φν2φν3 , (2)

with the overlap integral Iν,ν1,ν2,ν3 =
∑
l

Aν,lAν1,lAν2,lAν3,l. The variables φν

determine the complex time-dependent amplitudes of the NMs.
The frequency shift of a single site oscillator induced by the nonlinearity is

δl = β|ψl|2.
We order the NMs in space by increasing the value of the center-of-norm

coordinate Xν =
∑
l

lA2
ν,l. We analyze normalized distributions nν � 0 using the

second moment m2 =
∑
ν

(ν − ν̄)2nν , which quantiˇes the wave packet's degree

of spreading and the participation number P = 1/
∑
ν

n2
ν , which measures the

number of the strongest excited sites in nν . Here ν̄ =
∑
ν

νnν . We follow norm-

density distributions nν ≡ |φν |2/
∑
μ
|φμ|2. The second moment m2 is sensitive

to the distance of the tails of a distribution from the center, while the participation
number P is a measure of the inhomogeneity of the distribution, being insensitive
to any spatial correlations.

2. FROM STRONG TO WEAK CHAOS

Consider a wave packet at t = 0 which has norm density n and size L. If
βn � Δ, a substantial part of the wave packet will be self-trapped [7,9]. This is
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due to nonlinear frequency shifts, which will tune the excited sites immediately
out of resonance with the nonexcited neighborhood [14]. If now βn < Δ, self-
trapping is avoided, and the wave packet can start to spread. For L < V , the
packet will spread over the localization volume during the time τlin ≈ 2π/d (even
for β = 0). After that, the new norm density will drop down to n(τlin) ≈ nL/V .
For L > V the norm density will not change appreciably up to τlin, n(τlin) ≈ n.
The nonlinear frequency shift βn(τlin) can be now compared with the average
spacing d. If βn(τlin) > d, all NMs in the packet are resonantly interacting with
each other. This regime will be coined strong chaos. If instead βn(τlin) < d,
NMs are weakly interacting with each other. This regime will be coined weak
chaos.

A NM with index μ in a layer of width V in the cold exterior, which borders
the packet, is either incoherently heated by the packet, or resonantly excited by
some particular NM from a layer with width V inside the packet. Chaos is a
combined result of resonances and nonintegrability. Let us estimate the number of
resonant modes in the packet for the DNLS model. Excluding secular interactions,
the amplitude of a NM with |φν |2 = nν is modiˇed by a triplet of other modes
μ ≡ (μ1, μ2, μ3) in ˇrst order in β as

|φ(1)
ν | = β

√
nμ1nμ2nμ3R

−1
ν,μ, Rν,μ ∼

∣∣∣∣
dλ

Iν,μ1,μ2,μ3

∣∣∣∣ , (3)

where dλ = λν + λμ1 −λμ2 −λμ3 . The perturbation approach breaks down, and

resonances set in, when
√

nν < |φ(1)
ν |. Since all considered NMs belong to the

packet, we assume their norms to be equal to n.
Collecting Rν,μ0

= minμ Rν,μ for many ν and many disorder realizations,
we obtain the probability density distribution W(Rν,μ0

). The main result is that
W(Rν,μ0

→ 0) → C(W ) �= 0 [9]. For the cases studied, the constant C drops
with increasing disorder strength W . As a simple approximation, we may use
W(R) ≈ C e−CR.

The probability P for a mode, which is excited to a norm n (the average

norm density in the packet), to be resonant is then given by P =
βn∫
0

W(x) dx [9].

For βn → 0, it follows P ≈ Cβn. The heating of the exterior mode should
evolve according to iφ̇μ ≈ λμφμ + Pβn3/2f(t). It follows with m2 ∼ 1/n2:

m2 ∼ Dt, D ∼ β2n2(P(βn))2. (4)

With P = 1 − e−Cβn, it follows

1
n2

∼ β(1 − e−Cβn)t1/2. (5)
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The solution of this equation yields a crossover from subdiffusive spreading in
the regime of strong chaos to subdiffusive spreading in the regime of weak chaos:

m2 ∼ (β2t)1/2, strong chaos, Cβn > 1,

m2 ∼ (β4t)1/3, weak chaos, Cβn < 1.

In the Figure we show the resulting time dependence of m2 on t in a log-log plot,
where we used β = 1, C = 6.2, L = 20, and n(t = 102) = 1. With x = log10(t)
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and y = log10(m2) it is straight-
forward to calculate the zero of the
third derivative d3y/dx3 = 0 to ob-
tain the crossover position Cβnc ≈
1.86. The only characteristic fre-
quency scale here is 1/C. From
the above discussion of the differ-
ent spreading regimes it follows that
1/C ≈ d. In particular C ≈
100/W 2, W � 4 and C ≈ 1/W ,
W 	 4. Resonant growth can
be excluded using the same argu-
ments [8, 9]. Thus, a wave packet
is trapped at its edges and stays lo-
calized until the interior of the wave
packet decoheres (thermalizes). On

these (growing) time scales, the packet will be ˇnally able to incoherently excite
the exterior and to extend its size.

3. GENERALIZATIONS

Let us consider D-dimensional lattices with nonlinearity order σ > 0:

iψ̇l = εlψl − β|ψl|σψl −
∑

m∈D(l)

ψm. (6)

Here l denotes a D-dimensional lattice vector with integer components, and
m ∈ D(l) deˇnes its set of the nearest neighbour lattice sites. We assume
that all NMs are spatially localized (which can be obtained for strong enough
disorder W ). A wavepacket with average norm n per excited mode has a second
moment m2 ∼ 1/n2/D. The nonlinear frequency shift is proportional to βnσ/2.

A straightforward generalization of the expected regimes of spreading leads
to the following: self-trapping if βnσ/2 > Δ, strong chaos if β(n(τlin))σ/2 > d,
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and weak chaos if β(n(τlin))σ/2 < d. Similar to the above we obtain a diffusion
coefˇcient

D ∼ β2nσ(P(βnσ/2))2. (7)

In both regimes of strong and weak chaos the spreading is subdiffusive [8]:

m2 ∼ (β2t)2/(2+σD), strong chaos,

m2 ∼ (β4t)1/(1+σD), weak chaos.

The number of resonances on the wave packet surface NRS ∼ βn
D(σ−2)+2

2D . This
number will grow with time for

D > Dc =
1

1 − σ/2
, σ < 2. (8)

Therefore, for these cases, the wave packet surface will not stay compact. In-
stead, surface resonances will lead to a resonant leakage of excitations into the
exterior. This process will increase the surface area, and therefore lead to even
more surface resonances, which again increase the surface area, and so on. The
wave packet will fragmentize, perhaps get a fractal-like structure, and lower
its compactness index. The spreading of the wave packet will speed up, but
will not anymore be due to pure incoherent transfer, instead it will become a
complicated mixture of incoherent and coherent transfer processes. For such
cases, Anderson localization will be destroyed quickly even in the tails of wave
packets.
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