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Diagrammatic approach proposed many years ago for strong correlated Hubbard model is devel-
oped for analyzing of the thermodynamic potential properties. The new exact relation between such
renormalized quantities as thermodynamic potential, one-particle propagator, and correlation function
is established. This relation contains additional integration of the one-particle propagator by the aux-
iliary constant. The vacuum skeleton diagrams constructed from irreducible Green's functions and
tunneling propagator lines are determined, and special functional is introduced. The properties of
such functional are investigated and its relation to the thermodynamic potential is established. The
stationary properties of this functional with respect to ˇrst-order changing of the correlation function
is demonstrated, and as a consequence the stationary properties of the thermodynamic potential are
proved.

PACS: 71.27.+a; 71.10.Fd

The Hubbard model [1] is one of the most important models for the electron
of solids which describes quantum mechanical hopping of electron between lattice
sites and their short-ranged repulsive Coulomb interaction.

The Hamiltonian of Hubbard model is a sum of the two terms

H = H0 + H ′, (1)

where H0 is the atomic contribution, which contains the Coulomb interaction
term U and local electron energy ε on the atom

H0 =
∑
i

H0
i , H0

i =
∑

σ

εniσ + Uni↑ni↓, ε = ε − μ, niσ = C+
iσCiσ (2)

and hopping Hamiltonian

H ′ =
∑
ij

∑
σ

t(i − j)C+
iσCjσ , t(i − j) = t∗(j − i), t(0) = 0. (3)
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Here C+
iσ(Ciσ) are the creation (annihilation) electron operators with local site i

and spin σ. Because in the thermodynamic perturbation theory we shall use ther-
mal averages in a grand canonical ensemble, we have added to the Hamiltonian (1)
the term −μN̂e

N̂e =
∑
iσ

niσ, (4)

where μ is the chemical potential and N̂e is electron number operator. The
quantities U and N̂e are the fundamental parameters of the model and because of
large value of the Coulomb repulsion it is taken into account in zero approximation
of our theory. The operator H ′, which describes hopping of the electrons between
sites of the crystal lattice, is regarded as a perturbation.

For investigating this model, new physical and mathematical concepts and
techniques have been elaborated. A short and comprehensive reviews of the
methods can be found in papers and books [2Ä7].

The other diagrammatic approach around the atomic limit also has been pro-
posed for Hubbard model both in normal [8, 9] and in superconducting state [10].
This theory introduces the Generalized Wick Theorem (GWT) that uses cumulant
expansion of the statistical average values for the products of the Fermion oper-
ators. The GWT takes into account the fact that Hamiltonian H0 is nonquadratic
in fermion operators due to Coulomb interaction. This last circumstance is re-
sponsible for the appearance of the nonvanishing site cumulants called irreducible
Green's functions. These new Green's functions take into account all the spin,
charge and pairing �uctuations of the system.

In this paper, we shall develop the diagrammatic theory proposed before
for Hubbard model [8, 9] with the aim to demonstrate the existence of the rela-
tion between renormalized quantities of thermodynamic potential and one-particle
Green's function and also to prove the stationary properties of this potential.

Such a theorem was proved ˇrstly by Luttinger and Ward [11] for uncorre-
lated systems by using the diagrammatic technique of weak coupling ˇeld theory.

The strong coupling diagram theory used by us needs new conceptions and
new equations and they are used to prove stationary property of thermodynamic
potential for strongly correlated systems. Such a proof has been already achieved
for Anderson impurity model in paper [12].

We shall use the deˇnition of the one-particle Matsubara Green's functions
in interaction representation as in paper [8, 9]:

G(x|x′) = −
〈
TCxσ(τ)Cx′σ′(τ ′)U(β)

〉c

0
, (5)

where x stands for (x, σ, τ), and index c for 〈. . .〉c0 means the connected part
of the diagrams which appear in the right-hand part of (5). We use the series
expansion for the evolution operator U(β) with some generalization because we
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introduce the auxiliary constant λ and use λH ′ instead of H ′:

Uλ(β) = T exp

⎛
⎝−λ

β∫
0

H ′(τ)dτ

⎞
⎠ . (6)

In the presence of this constant we shall use index λ as label for all dynamical
quantities as Gλ(x|x′) and so on. At the last stage of the calculations this constant
will be put equal to one.

As has been proved in papers [8, 9], propagator (5) has the diagrammatic
representation depicted on Fig. 1. The irreducible Green's functions of order n
are depicted with rectangles with 2n vertices. The arrows which enter in the
vertex point depict annihilation electrons, and those which go out Å the created
electrons.

Fig. 1. First three orders of perturbation theory for one-particle propagator. The thin solid
line depicts zero order propagator, thin dashed line depicts the tunneling matrix element.

The rectangles depict irreducible two-particle Green's functions G
(0)ir
2 , and points are the

vertices of diagrams

In paper [8], we have introduced the notion of correlation function Zλ(x|x′)
which is the sum of strongly connected diagrams containing irreducible Green's
functions and related to a more convenient function Λλ(x|x′) = G0(x|x′) +
Zλ(x|x′).

In Fig. 1, the fourth and seventh diagrams of the right-hand site belong to
correlation function. Due to the fact that irreducible functions are local and
tunneling matrix elements have the property t(x − x) = 0, in Fig. 1 all the
diagrams which contain self-locked tunneling elements are omitted.

As is seen from Fig. 1, the process of propagator renormalization is accom-
panied by the analogous process for tunneling matrix elements renormalization,
and replacing of the instant quantity λt(x − x′) = λt(x − x′)δ(τ − τ ′ − 0+) by
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dynamical one T̃λ(x|x′) is equal to

T̃λ(x|x′) = λt(x − x′)δ(τ − τ ′ − 0+) +
∑
12

λt(x − 1)Gλ(1|2)λt(2 − x′), (7)

which in the Fourier representation

t(x) =
1
N

∑
k

ε(k) exp (−ikx), Gλ(x|x′) =

=
1
N

∑
k

1
β

∑
ωn

Gλ(k|iωn) exp [−ik(x− x′) − iωn(τ − τ ′)]

has the form:

T̃λ(k|iωn) ≡ λTλ(k|iωn) = λε(k)(1 + λε(k)Gλ(k|iωn)). (8)

The renormalized tunneling matrix element Tλ really is tunneling Green's
function and will be depicted as double dashed line. T̃λ is represented by such
double dashed line multiplied by λ.

Now we introduce the skeleton diagrams which contain only irreducible
Green's functions and simple dashed lines without any renormalization. In such
skeleton diagrams the thin dashed lines are replaced by double dashed lines with
realizing the complete renormalization of dynamical quantities.

The skeleton diagrams for correlation Λλ function are depicted on Fig. 2.

Fig. 2. The skeleton diagrams for correlation function Λλ. Double-dashed lines depict the
tunneling Green's functions Tλ and the rectangles depict the irreducible Green's functions

As was proved in papers [8, 9], the knowledge of function Λλ permits one to
formulate the following Dyson-type equation for one-particle Green's function:

Gλ(k) =
Λλ(k)

1 − λε(k)Λλ(k)
. (9)
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Here k stands for (k, iωn) with odd Matsubara frequencies. Equations (8) and (9)
give us the results

T̃λ(k) = λTλ(k), Tλ(k) =
ε(k)

1 − λε(k)Λλ(k)
. (10)

Equation (10) has the form of Dyson equation for tunneling Green's function,
and the role of mass operator Σλ is carried out by correlation function multiplied
by auxiliary constant λ:

Σλ(k) = λΛλ(k). (11)

The thermodynamic potential of the system is determined by the connected
part of the mean value of the evolution operator [8, 9]

F = F0 −
1
β
〈U(β)〉c0 . (12)

Let us consider from the beginning a more general quantity

F (λ) = F0 −
1
β
〈Uλ(β)〉c0 , (13)

and put at the ˇnal stage λ = 1.
By using the perturbation theory we have obtained the ˇrst orders of diagrams

for 〈Uλ(β)〉c0, depicted in Fig. 3.

Fig. 3. The ˇrst four orders of perturbation theory for 〈Uλ(β)〉c0

In order to obtain the better understanding of these diagrammatic contribu-
tions we examine the expression∑

xx′

Gλ(x|x′)λt(x′ − x)δ(τ − τ ′ − 0+)δσσ′ , (14)
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where double repeated indices suppose summation and integration. Conse-
quently (14) is equal to

− β
∑
xx′

∑
σ

Gλσ(x − x′| − 0+)λt(x′ − x) =

= −λ
∑
kσ

∑
ωn

ε(k)Gλσ(k|iωn) exp (iωn0+). (15)

Here we have carried out the integration by time.
In expression (15), the coefˇcients 1/n before each diagram are absent, where

n is the order of perturbation theory. These coefˇcients are present in Fig. 3. In
order to restore these 1/n coefˇcients in (15) and obtain the coincidence with
〈Uλ(β)〉c0 series it is enough to integrate by λ in this expression and obtain:

−
∑
xx′

∑
σ

β

∫
dλ t(x′ − x)Gλσ(x − x′| − 0+). (16)

The expression (16) displayed in a diagrammatic representation coincides exactly
with the mean value of the evolution operator:

〈Uλ(β)〉c0 = −
∑
xx′

βt(x′ − x)

λ∫
0

dλ′ Gλ′σ(x − x′| − 0+). (17)

In Fourier representation we have

〈Uλ(β)〉c0 = −
λ∫

0

dλ′
∑
kσωn

ε(k)Gλ′σ(k|iωn) exp (iωn0+). (18)

From (13) and (18) we obtain

F (λ) = F0 +

λ∫
0

dλ′
∑
kσ

1
β

∑
ωn

ε(k)Gλ′σ(k|iωn) exp (iωn0+). (19)

Using the deˇnition (12), the equation (19) can be written in the form:

F (λ) = F0 +

λ∫
0

dλ′

λ′

∑
kσ

1
β

∑
ωn

Tλ′(k)Σλ′(k) exp (iωn0+). (20)

From (20) we have

λ
F (λ)
dλ

=
∑
kσ

1
β

∑
ωn

Tλ(k)Σλ(k) exp (iωn0+) =
1
β

Tr(TλΣλ). (21)
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In order to have a full system of equations we add to (20) the deˇnition of the
chemical potential of the system

Ne =
∑
kσ

1
β

∑
ωn

Gσ(k|iωn) exp (iωn0+), (22)

where Ne is the electron number.
Equation (19) establishes the relation between thermodynamic potential and

renormalized one-particle propagator. This last quantity depends on the auxiliary
parameter λ, and (19) contains an additional integration over it and is awkward
because of that.

We shall obtain a more convenient equation for thermodynamic potential
without such integration by λ. To do this, we shall introduce a special functional

Y (λ) = Y1(λ) + Y ′(λ), (23)

where

Y1(λ) = − 1
β

∑
k,σ,ωn

[ln(ε(k))λΛλ(k) − 1) + Tλ(k)λΛλ(k)] exp (iωn0+), (24)

and Y ′(λ) is constructed from skeleton diagrams without external lines and is
depicted on Fig. 4.

Fig. 4. The simplest skeleton diagrams for functional Y ′(λ). Double-dashed lines are
tunneling functions Tλ(k)

We can prove the equations

δβY1(λ)
δTλ(k)

= −λΛλ(k) = −Σλ(k),
δβY ′(λ)
δTλ(k)

= λΛλ(k) = Σλ(k), (25)
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and, as a result, we obtain the stationary properties:

δβY (λ)
δTλ(k)

= 0,
δ Y (λ)
δΣλ(k)

= 0. (26)

We have established the equation

λ
dF (λ)

dλ
= λ

dY (λ)
dλ

, (27)

and, as a consequence, we obtain

F (λ) = Y (λ) + const. (28)

Because for λ = 0 perturbation is absent and F (0) = F0, Y (0) = 0, we have

F (λ) = Y (λ) + F0. (29)

Now we can put λ = 1 and obtain

F (1) = Y (1) + F0 (30)

with the stationary property
δF

δΣ
= 0. (31)
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