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The Heisenberg spin lattices have been extensively studied throughout many
years as the simplest models for magnetic phenomena. Motivated by the fa-
mous Bethe solution in 1D [1], a number of theoretical and experimental inves-
tigations of quantum spin chains with the nearest-neighbor interaction has been
performed in the last thirty years by using exact Bethe ansatz [2, 3], high- and
low-temperature expansions [4], and renormalization group calculations [5, 6]. In
the meantime, attention has been paid also to the classical version of the model in
which spins are represented by unit vectors located on the sites of 1D lattice for
both cases of periodic [7, 8] and open boundary conditions [9]. In comparison to
the overcomplicated form of the solution to the quantum systems, the classical re-
sults look rather simple and allow one to read the expressions for thermodynamic
quantities explicitly in the absence of a magnetic ˇeld [7Ä9].

In various situations which now can be realized in magnetic substances,
the arrangement of spins might be quite different either from classical or pure
quantum situation. The lattice structure of chemical compounds can comprise
magnetic ions with spins of different magnitudes arranged periodically [10] in a
family of quasi-one-dimensional chains. In the limit of weak interchain coupling,
one can approximate the system by noninteracting 1D chains with the nearest-
neighbor interaction of different spins (say, spins 1/2 on even sites and spin 5/2 on
odd ones). These two interacting sublattices are very different, and the resulting
quantum chain is not integrable. However, one could introduce classical spins
instead of the spins of higher magnitude which makes the chain more tractable.
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In this case, taking the trace with respect to quantum and classical degrees of
freedom can be performed separately, which leads to analytic result in the absence
of magnetic ˇeld.

The aim of this note is to ˇnd explicit expression for the thermodynamic
quantities of these mixed classical-quantum chains in 1D, and to calculate its
linear susceptibility.

The starting point is the Hamiltonian of the ˇnite lattice of the form

HN =
J

2

N∑
j=1

(n2j−1σ2j + σ2jn2j+1), (1)

where n2j−1 (n2
2j−1 = 1) are the vectors of classical spins located on odd sites of

the lattice and σ2j are Pauli matrices representing quantum s = 1/2 spins located
on even sites. We will consider the lattices of 2N + 1 sites under open boundary
conditions. In the thermodynamic limit, the results become independent of the
type of boundaries, and one expects that the correct behavior of the speciˇc heat,
spin correlations in the bulk and linear susceptibility will be achieved starting
from this simplest choice of the boundaries.

The calculation of the trace in the partition function of the chain

ZN = Tr
[
exp

(
−HN

T

)]

becomes more easy if one notices that the quantum spins are not coupled to
each other but only to their neighboring classical spins. Then one can apply the
formula

exp
(a

2
σ2j

)
= cosh a/2 + sinh a/2

aσ2j

a
, a = |a|.

The partition function can be written as

ZN = tr{σ2j}tr{n2j−1}

N∏
j=1

(
cosh

J

2T
Nj + sinh

J

2T
Nj

Njσ2j

Nj

)
, (2)

where

Nj = n2j−1 + n2j+1.

The summation over quantum spins is now performed easily and one ˇnds:

ZN = 2N
N+1∏
j=1

∫
Ωj

dΩj

4π

N∏
j=1

cosh
J

T

√
1 + njnj+1

2
.
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The integration over elements of solid angles can now be done as follows [9].
Let us start from integration over dΩ1 and ˇx n2 in the positive direction of z
axis. One ˇnds ∫

dΩ1

4π
f(n1n2) =

1
2

1∫
−1

f(x) dx.

Continuing this procedure with n2,n3, . . ., one arrives at

ZN =

⎡
⎣ 1∫
−1

dx cosh
J

T

√
1 + x

2

⎤
⎦

N

=

=
[
4

(
T sinh J/T

J
− T 2(cosh J/T − 1)

J2

)]N

. (3)

In the thermodynamic limit, the free energy per site reads

f = −2T

(
T sinh J/T

J
− T 2(cosh J/T − 1)

J2

)
. (4)

The speciˇc heat of the chain is now calculated as

CH=0 = 2 sinh
J

T

(
6T

J
+

J

T

)
− 6 cosh

J

T

(
1 +

2T 2

J2

)
+

12T 2

J2
. (5)

Next, let us calculate the correlation function 〈sjsk〉 of the mixed system. Con-
sider at ˇrst the case in which both j and k are odd, i.e., the spins sj and sk are
classical. Then one can write

〈s2j−1s2k−1〉 = Z−1
N tr{n2l−1}

N∏
l=1

cosh
J

2T
Nln2j−1n2k−1.

Notice that the integrations over n2l−1, l = 1, . . . , j −1 and l = k +1, . . . , N +1
give the same result as in the integrations in the calculation of the partition
function. Thus, the integral can be recast as

〈s2j−1s2k−1〉 = u

(
J

T

)−|k−j| k∏
l=j

∫
Ωl

dΩl

4π
cosh

J

2T
Nlnjnk,

where

u(x) = 2
(

sinh x

x
− cosh x − 1

x2

)
. (6)
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To simplify this expression further, consider the integral

Im,nj+1 =
∫
Ωj

dΩj

4π
(njm)f(njnj+1).

Taking the direction of nj+1 as a polar axis and denoting the polar angles of m
as (λ, ν), one can write

Im,nj+1 =
1
4π

2π∫
0

dφ

π∫
0

sin θ dθ m(cos θ cosλ+sin θ sin λ cos (φ−ν))f(cos θ) =

=
1
2
m

1∫
−1

xdx cosλf(x) =
1
2
mnj+1

1∫
−1

xdx f(x).

Calculation of the last integral yields

〈s2j−1s2k−1〉 = u

(
J

T

)−|k−j|
v

(
J

T

)|k−j|
, (7)

where

v(x) = 2
((

1 +
12
x2

)
sinh x

x
+

cosh x − 1
x2

(
1 − 12

x2

)
− 6

x2
cosh x

)
. (8)

Consider now the situation in which one spin is classical, i.e., it is located
on an odd site, and another one is quantum and located on an even site. One can
write

〈s2j−1s2k〉 =
1
2
Z−1

N tr{n2l−1}tr{σ2l}×

×
N∏

l=1

[
cosh

J

2T
Nl + sinh

J

2T
Nl

Nlσ2l

Nl

]
n2j−1σ2k =

= 2N−1Z−1
N tr{n2l−1}

⎛
⎝ N∏

j �=k

cosh
J

2T
Nj

⎞
⎠ sinh

J

2T
Nk

Nk
n2j−1Nk.

As in the calculation of the partition function, the integration over n1, . . . ,n2j−3,
n2k+1, . . . ,n2N+1 results in factors u(J/T ) which cancel the corresponding fac-
tors in ZN . The integrations over n2j−1, . . . ,n2k−3 are similar to those of the
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calculations of 〈s2j−1s2k−1〉. Each of them produces factor v(J/T ). The last
integral can be written as

Ik =
∫

dΩ2k−1

4π

sinh
J

2T
Nk

Nk
(n2k−1 + n2k+1)n2k−1.

By choosing the direction of the vector n2k+1 as a polar axis, the integrand can
be transformed and the result can be presented in the form

Ik =
1
4

1∫
−1

dx

√
1 + x

2
sinh

J

T

√
1 + x

2
= w

(
J

T

)
,

where

w(x) = x−1

(
cosh x − 2 sinh x

x
+

2(cosh x − 1)
x2

)
. (9)

Taking (9) into account, one can write the correlation function of one classical
and one quantum spin as

〈s2j−1s2k〉 =

[
v

(
J
T

)
u

(
J
T

)
]|j−k|

w
(

J
T

)
u

(
J
T

) , j � k,

〈s2j−1s2k〉 =

[
v

(
J
T

)
u

(
J
T

)
]|j−k|−1

w
(

J
T

)
u

(
J
T

) , j > k.

(10)

The next step consists in the calculation of the correlation function of two quantum
spins,

〈s2js2k〉 =
1
4
Z−1

N tr{n2l−1}tr{σ2l}

N∏
l=1

[
cosh

J

2T
Nl + sinh

J

2T
Nl

Nlσ2l

Nl

]
σ2jσ2k.

(11)
Taking the trace over quantum spins now yields

〈s2js2k〉 = Z−1
N 2N−2tr{n2l−1} sinh

J

2T
Nj sinh

J

2T
Nk

NjNk

NjNk

∏
l �=j,k

cosh
J

2T
Nl.

(12)
The calculation of the last trace can be done now as follows. Note at ˇrst
that the integrations over n1, . . . ,n2j−3 give the factors u(J/T ) which cancel
corresponding factors in the partition function. The ˇrst nontrivial integration is
over n2j−1 and the integral reads∫

dΩ2j−1

4π
sinh

J

T

√
1 + n2j−1n2j+1

2
(n2j−1 + n2j+1)Nk

2(1 + n2j−1n2j+1)Nk
.
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Let us now choose n2j+1 as a polar axis and take reference plane as a plane
of the vectors n2j+1,Nk, so the last vector would have the polar angles (λ, 0).
Then the integral can be written as

1
4π

2π∫
0

dφ

π∫
0

sin θ dθ sinh
J

T

√
(1 + cos θ)

2
×

× cosλ + cos θ cosλ + sin θ sin λ cosφ

2(1 + cos θ)
=

1
4

1∫
−1

dx sinh
J

T

√
1 + x

2
n2j+1Nk

Nk
=

=
n2j+1Nk

Nk

1∫
0

xdx sinh
J

T
x =

n2j+1Nk

Nk
t

(
J

T

)
,

where

t(x) = x−1

(
cosh x − sinh x

x

)
. (13)

Now, continuing with the integrations over n2j+1, . . . ,n2k−3, one is left with the
factors v(J/T )/u(J/T ). The integration over n2k−1 is of the type considered
before in the calculations of the correlation between one classical and one quantum
spin, and results in the factor w(J/T )/u(J/T ). Putting all the parts together, one
ˇnds

〈s2js2k〉 =
t(J/T )w(J/T )

u(J/T )2
v(J/T )
u(J/T )

|j−k|−1

if |j − k| � 1. (14)

We have obtained all possible correlations between spins which are given by the
formulas (7), (10), (14). To get the linear susceptibility of the chain χ1(T, N),
one needs to calculate three sums,

3χ1(T, N) =
1

T (2N + 1)
(S1 + S2 + S3), (15)

S1 =
N+1∑
j,k

〈s2j−1s2k−1〉, (16)

S2 =
N+1∑
j=1

N∑
k=1

〈s2j−1s2k〉, (17)

S3 =
N∑

j,k=1

〈s2js2k〉. (18)
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It follows from (7) that the ˇrst sum (16) can be cast into the form

S1 = N + 1 + 2
N+1∑
k=2

k−1∑
s=1

(v/u)s = N + 1 + 2
N+1∑
k=2

v/u − (v/u)k

1 − v/u
=

= N + 1 +
2Nv/u

1 − v/u
− 2

(
v/u

1 − v/u

)2

(1 − (v/u)N ). (19)

The equations (10) and (17) give

S2 =
2w

u

N∑
k=1

k∑
j=1

(v/u)k−j =
2w

u

N∑
k=1

1 − (v/u)k

1 − v/u
=

=
2w

u

(
N

1 − v/u
− v/u − (v/u)N+1

(1 − v/u)2

)
. (20)

Finally, the third sum can be rewritten as

S1 = N +
2tw

u2

N∑
k=2

k−1∑
s=1

(v/u)s−1 = N +
2tw

u2

N∑
k=2

1 − (v/u)k−1

1 − v/u
=

= N +
2(N − 1)tw/u2

1 − v/u
− 2tw

u2

v/u

(1 − v/u)2
(1 − (v/u)N−1). (21)

Summing up the terms (19)Ä(21), one ˇnds

3Tχ1(T, N) = 1 +
2

(2N + 1)(1 − v/u)
[N(v + w)/u + (N − 1)tw/u2]−

− 2v/u

(1 − v/u)2
[v/u + w/u + tw/u2 − (v/u)N−1(v2 + vw + tw)/u2)], (22)

where u
(

J
T

)
, v(J/T ), w(J/T ), and t(J/T ) are given by the formulas (6), (8)Ä

(9), (13). In the thermodynamic limit N → ∞, one can use the fact that
v(J/T )/u(J/T ) < 1. Explicit calculation of the limit yields

3Tχ1(T ) = 1 +
v(J/T ) + w(J/T )(1 + t(J/T )/u(J/T ))

u(J/T )− v(J/T )
. (23)

To conclude, we have calculated thermodynamic quantities at zero magnetic
ˇeld and linear susceptibility of the mixed classical-quantum chain. At low tem-
peratures, one ˇnds χ1(T ) ∝ T−2 as in the homogeneous classical and quantum
systems. As in pure classical case, we did not succeed in the calculation of the
equation of state for H �= 0 since it needs knowledge of correlations of arbitrary
number of spins. The estimation of linear susceptibilty shows, however, that the
difference between pure and mixed chains might be only quantitative.
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