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In terms of group theory Å the language of symmetries, the concept of spontaneous symmetry
breaking is represented in terms of chains of groupÄsubgroup structures that deˇne the dynamical
symmetry of the system under consideration. This framework enables exact analytic solutions of the
associated eigenvalue problems.

We review two types of applications of dynamical symmetries in contemporary theoretical
nuclear structure physics: ˇrst for a classiˇcation of the many-body systems under consideration,
with respect to an important characteristic of their behavior; and second for the creation of exactly
solvable algebraic models that describe speciˇc aspects of this behavior. This is illustrated with the
boson and fermion realizations of symplectic structures; in the ˇrst case with an application of the
sp(4, R) classiˇcation scheme of evenÄeven nuclei within the major nuclear shells and next with an
application of the sp(4) microscopic model for the description of isovector pairing correlations.

PACS: 21.60.-n

INTRODUCTION

The nucleus is a complex many-body structure that exhibits various single-
particle and collective modes of behavior of its constituents, the protons and
neutrons. An important and successful approach in its investigation is the study
of the symmetries of the system, in particular in their manifestation in its collec-
tive behavior. A major brake through in this respect is the notion of spontaneous
breaking of symmetries, introduced by N.N. Bogolyubov in the statistical physics.
On the mathematical language of symmetries, which is the group theory, the no-
tion of spontaneous breaking of symmetries [1] is introduced by chains of groupÄ
subgroup structures. These chains are also named dynamical symmetries [2]. The
dynamical symmetries represent speciˇc cases, in which:

• First of all, one can classify the basis states of the system under considera-
tion by means of the eigenvalues of the reduction operators. This approach is used
and illustrated below for the creation of the Sp(4, R) classiˇcation scheme [3] of
the evenÄeven nuclei within major nuclear shells. We present one of its successful
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applications, for a uniˇed description of the yrast energies of almost all evenÄ
even nuclei [4], that demonstrate regular behavior when empirically investigated
within their classiˇcation.

• Next, employing dynamical symmetries, we obtain exact analytic solutions
of the eigenvalue problems for the physical observables under consideration. One
such an example is the microscopic model [5] based on the Sp(4) symmetry,
which was used to describe isovector pairing correlations in nuclei.

1. THE Sp(4, R) CLASSIFICATION SCHEME AND ITS APPLICATIONS

We outline brie�y the algebraic approach, which is the basis for the classiˇ-
cation scheme used in [4]. It is rather similar to the methods of classifying the
elementary particles. The classiˇcation procedure can be understood by introduc-
ing a classiˇcation group contained in a bigger dynamical group, which spans the
considered nuclear characteristics of all the classiˇed nuclei. The reduction of the
boson representation of the classiˇcation group Sp(4, R) to its compact u(2) and
noncompact u(1, 1) subalgebras [6]

Nt ↗ u(2) ↘ F0

sp(4, R) uπ(1) ⊕ uν(1)
F0 ↘ u(1, 1) ↗ Nt

(1)

is the mathematical basis behind this scheme. As illustrated in (1) the reduction
is realized by means of the operator of the total number of valence particles Å
Nt = (Nπ + Nν), which is the ˇrst-order invariant of u(2), and the operator
of the third projection of the F -spin Å F0 = (1/2)(Nπ − Nν), which does
not differ essentially from the ˇrst-order Casimir for u(1, 1). Nt reduces the
space H , in which acts the boson representation of sp(4, R), into a direct sum
of a totally symmetric irreducible unitary representations (IUR) of su(2), labeled
by Nt = 0, 2, 4, . . . (even H+) or Nt = 1, 2, 3, . . . (odd H−). The operator
F0 reduces the space H to the ladder series of u(1, 1), deˇned by its ˇxed
eigenvalues. The same operator F0 reduces each u(2) representation (ˇxed value
of Nt) to the representations of uπ(1)⊕uν(1) labeled by Nπ and Nν , respectively.
The same is obtained by reducing the u(1, 1) ladders with the operator Nt.

The relation of the algebraic operators used in the classiˇcation scheme to
the nuclear characteristics in the valence shell, is rather natural, when Nπ =
(1/2)(Np − Z(1)) and Nν = (1/2)(Nn − N (1)) are interpreted as the number of
proton and neutron valence pairs of the nucleus from a given shell, in which Z(1)

and N (1) are the numbers of protons and neutrons of the double magic nucleus at
the beginning of the shell. Then Nt and F0 are exactly the operators reducing the
sp(4, R) spaces, and their interpretation corresponds to the one of the IBM II [7],
as the total number of valence bosons and the third projection of the F -spin.
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In [4] we were able to show that the low-lying yrast energies exhibit a smooth
and periodic behavior in each F0 multiplet, which allows their uniˇed descrip-
tion in terms of the classiˇcation quantum numbers Nt and F0 of the Sp(4, R)
classiˇcation scheme. On this basis the following generalized phenomenological
formula for the energies of the ground-state band was obtained [4]:

Eyrast(hk, I, ω) = α{hk}L(L + w). (2)

The inertial parameter α{hk} is a second-order polynomial of hk ≡ {Nt, F0} for
each of the nuclei (k) in a ˇxed nuclear shell. The phenomenological parameters
of the polynomial α{hk} are determined in a ˇtting procedure overall for all
nuclear shells [4].

The second term of Eq. (2) represents the generalized collective interaction
characterized by the geometrical parameter w. The latter has the physical meaning
of a measure for the interplay between the vibrational and the rotational collective
modes (2) and so re�ects the respective changes in nuclear shape. The starting
values of w have been determined [4] for each of the classiˇed nuclei by using

the experimental yrast energy ratios R4 =
E(4+

1 )
E(2+

1 )
and their theoretical relation

to the w parameter R4(w) =
E(4+

1 )
E(2+

1 )
= 2 +

4
2 + w

. Hence, the values of the

parameter w, like R4(w), re�ect the changes of the shapes in heavy nuclei from
almost spherical at the beginning of the shell to axially deformed in the midshell
region and back towards spherical at its closure. In general, its speciˇc value
for each of the classiˇed nuclei is shown to provide a reliable criteria for the
development of the nuclear collectivity.

In summary, the successful systematic [3] of the yrast energies in [4] is
based on the introduction of F -spin multiplets, acting in the spaces of the boson
representations of the noncompact Sp(4, R).

2. THE APPLICATION OF THE sp(4) DYNAMICAL SYMMETRY
TO PAIRING CORRELATIONS IN NUCLEI

Based on a fermion realization of sp(4) (isomorphic to so(5)) [8] our aim is to
investigate the properties of the pairing interaction by considering the symplectic
algebra to be a dynamical symmetry algebra. This yields an isospin breaking
phenomenological Hamiltonian written in terms of the group generators. The
limiting cases of sp(4) correspond to different reductions to u(2) and reveal
the properties of different coupling modes of the isovector pairing interaction.
A generalization to multiple shells provides a classiˇcation scheme for nuclear
ground states when the valence nucleons occupy more than a single orbit. This
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introduces shell structure into the theory and allows for an investigation of the
dependence of pairing correlations on the dimensionality of the model space.

The sp(4) algebra is realized in terms of creation and annihilation fermion
operators with the anticommutation relations {cj,m,σ, c†j′,m′,σ′} = δj,j′δm,m′δσ,σ′ ,

{c†j,m,σ, c†j′,m′,σ′} = 0, {cj,m,σ, cj′,m′,σ′} = 0, where these operators create (an-
nihilate) a particle of type σ = ±1/2 (proton/neutron) in a state of total angular
momentum j (half-integer) with projection m. For p orbits the dimension of the
shell is 2Ω = Σj(2j + 1). In addition to the number operator N = N1 + N−1

and the isospin projection T0 = (N1 − N−1)/2, the generators of Spq(4) are

T± =
1√
2Ω

∑
jm

c†jm,±1/2cjm,∓1/2,

A†
μ =

1√
2Ω(1 + δσσ′ )

∑
jm

(−1)j−mc†jm,σc†j,−m,σ′ , Aμ = (A†
μ)†.

The ˇrst two are related to the valence isospin, and the rest, A†
0,±1 (A0,±1), create

(annihilate) a pair of total angular momentum Jπ = 0+ and isospin T = 1.
The basis states are constructed as (T = 1)-paired fermions

|n1, n0, n−1) =
(
A†

1

)n1 (
A†

0

)n0
(
A†

−1

)n−1

|0〉 , (3)

where n1, n0, n−1 are the total number of pairs of each kind, pp, pn, nn, respec-
tively.

The model provides for a classiˇcation scheme of nuclei and their isovector-
paired 0+ states (Table). The total number of the valence particles, N , enumerates
the rows and the valence isospin projection, T0, enumerates the columns. Isotopes
(isotones) of an element are situated along the right (left) diagonals, and the rows
consist of isobars for a given mass number.

Classiˇcation scheme of nuclei in the 1f7/2 level with a 40Ca core (Ω = 4). The shape
of the table is symmetric with respect to the sign of T0 and N − 2Ω

N /T0 0 Ä1 Ä2 Ä3 Ä4

0 40
20Ca20

2 42
21Sc21

42
20Ca22

4 44
22Ti22

44
21Sc23

44
20Ca24

6 46
23V23

46
22Ti24

46
21Sc25

46
20Ca26

8 48
24Cr24

48
23V25

48
22Ti26

48
21Sc27

48
20Ca28
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The isospin breaking model Hamiltonian [5]

H = −εN − GA†
0A0 − F (A†

+1A+1 + A†
−1A−1) −

E

2Ω

(
T 2 − 3N

4

)
−

− C
N(N − 1)

2
−

(
D − E

2Ω

) (
T 2

0 − N

4

)
(4)

includes isovector (T = 1) pairing interaction, diagonal isoscalar (T = 0) force
and a symmetry term. A ˇt to the experimental energies of the lowest isovector-
paired 0+ state (the ground state for evenÄeven and some [N ≈ Z] oddÄodd
nuclei and the isobaric analog excited state for the rest oddÄodd nuclei) leads to a
good theoretical prediction of the relevant energies [5]. The interaction strength
parameters are estimated in a ˇt with a small uncertainty for three groups of
nuclei (1d3/2, 1f7/2, 1f5/2 2p 1g9/2) [5]. The values for the pairing strengths are
found to lie on a curve that decreases with mass number, G/Ω = (25.7± 0.5)/A
(R2 = 0.99, goodness-of-ˇt measure), F/Ω = (23.9 ± 1.1)/A (R2 = 0.96). This
allows for their further prediction for the region of 1g7/2 2d 3s 1h11/2, where the
energy spectrum of Z ≈ N and proton-rich nuclei is not yet measured.

Among all the interactions in the model, only the pn isovector correlations
show a prominent peak in energy around Z = N . The pn pairing also plays
a signiˇcant role in reproducing the experimental data for the S2p two-proton
separation energy around Z = N [9]. The zero point of S2p determines the
two-proton-drip line, which according to the Sp(4) model lies near the following
nuclei: Ge28, Ga29, Se30, As31, Kr32, Br33, Sr34, Rb35, Zr36, Y37, Zr38, Y39,
Mo40, Nb41, Ru42, Tc43, Pd44, Rh45, Cd46, Ag47. Different types of discrete
derivatives of the energy function [9] reveal additional features of the nuclear
interaction and provide for a good test of the model.

CONCLUSIONS

In the presented investigations, based on the boson and fermion realizations
of the symplectic Sp(4, R) and Sp(4) algebras and their reductions, we use the
notion of dynamical symmetries in order to interpret and predict properties of the
nuclear collective structure in comparison with experimental data.

We show that an application of the Sp(4, R) classiˇcation scheme to evenÄ
even nuclei within major nuclear shells, focused on a systematic empirical investi-
gation of their collective features, leads to a uniˇed phenomenological description
and explanation of the observed regularities in their collective behavior. The out-
comes further suggest that the analysis could be used to make predictions about
heretofore unknown results.

We develop a microscopic model with Sp(4) dynamical symmetry for a
description of the global behavior as well as ˇne effects in the energies of the
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completely paired 0+ states, generated by the isovector pairing correlations in
even 32 � A � 100 nuclei, for which the protons and neutrons occupy the same
major shell.

The above investigations of the symplectic dynamical symmetries in nuclear
structure illustrate the importance and in�uence of the concepts of spontaneous
symmetry breaking, that was suggested by N.N. Bogolyubov, as applying gener-
ally in quantum mechanics, and in particular in the nuclear structure theory.
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