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THERMAL BOGOLIUBOV TRANSFORMATION
IN NUCLEAR STRUCTURE THEORY

A. I. Vdovin, A. A. Dzhioev

Joint Institute for Nuclear Research, Dubna

Thermal Bogoliubov transformation is an essential ingredient of the thermo ˇeld dynamics Å
the real-time formalism in quantum ˇeld and many-body theories at ˇnite temperatures developed by
H.Umezawa and co-workers. The approach to study properties of hot nuclei which is based on the
extension of the well-known QuasiparticleÄPhonon Model to ˇnite temperatures employing the TFD
formalism is presented. A distinctive feature of the QPMÄTFD combination is a possibility to go
beyond the standard approximations like the thermal HartreeÄFock or the thermal RPA ones.

PACS: 21.60.-n

Among numerous outstanding achievements by N.N. Bogoliubov there is the
well-known Bogoliubov transformation for bosons [1] and fermions [2]. This
unitary transformation played a crucial role in constructing microscopical theories
of super�uidity and superconductivity and till now has been an extremely useful
and powerful tool in many branches of theoretical physics. Quite unexpectedly,
a new version of the Bogoliubov transformation appeared in the middle of the
1970s when H.Umezawa and co-workers formulated the basic ideas of thermo
ˇeld dynamics (TFD) [3,4] Å a new formalism extending the quantum ˇeld and
many-body theories to ˇnite temperatures.

Within TFD [3, 4], the thermal average of a given operator A is calculated
as the expectation value in a specially constructed, temperature-dependent state
|0(T )〉 which is termed the thermal vacuum. This expectation value is equal
to the usual grand canonical average of A. In this sense, the thermal vacuum
describes the thermal equilibrium of the system. To construct the state |0(T )〉, a
formal doubling of the system degrees of freedom is introduced∗. In TFD, a tilde
conjugate operator Ã Å acting in the independent Hilbert space Å is associated
with A, in accordance with properly formulated tilde conjugation rules [3Ä5].
For a heated system governed by the Hamiltonian H the whole Hilbert space
is spanned by the direct product of the eigenstates of H and those of the tilde

∗It is worth mentioning the general statement [6] that the effect of ˇnite temperature can be
included in a free ˇeld theory if one doubles the ˇeld degrees of freedom.
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Hamiltonian H̃, both corresponding to the same eigenvalues, i.e., H |n〉 = En|n〉
and H̃ |ñ〉 = En|ñ〉. In the doubled Hilbert space, the thermal vacuum is deˇned
as the zero-energy eigenstate of the so-called thermal Hamiltonian H = H − H̃ .
Moreover, the thermal vacuum satisˇes the thermal state condition [3Ä5]

A|0(T )〉 = σ eH/2T Ã†|0(T )〉, (1)

where σ = 1 for bosonic A and σ = −i for fermionic A. It is seen from (1) that,
in TFD, there always exists a certain combination of A and Ã† which annihilates
the thermal vacuum. That mixing is promoted by a speciˇc transformation called
the thermal Bogoliubov transformation [4]. This transformation must be canoni-
cal in the sense that the algebra of the original system remains the same, keeping
its dynamics. The temperature dependence comes from the transformation para-
meters.

The important point is that in the doubled Hilbert space the time-translation
operator is the thermal Hamiltonian H. This means that the excitations of the
thermal system are obtained by the diagonalization of H. The existence of the
thermal vacuum annihilation operators provides us with a powerful method to
analyze physical systems at ˇnite temperatures and allows for straightforward
extensions of different zero-temperature approximations.

In the present note, we exemplify advantages of TFD while treating the
behavior of atomic nuclei at ˇnite temperatures. In particular, we will show a
way of going beyond the thermal RPA and allowing one to treat a coupling of
the basic nuclear modes, quasiparticles and phonons [7], at ˇnite temperatures.
This problem was already studied in [8Ä10]. However, the new aspects have been
revealed recently [11].

To avoid unnecessary complications in the formulae, we consider a nuclear
Hamiltonian which is a simpliˇed version of the Hamiltonian of the QuasiparticleÄ
Phonon Model [7]. It consists of a mean ˇeld Hsp, the BCS pairing interaction
Hpair, and a separable multipoleÄmultipole particle-hole interaction Hph. More-
over, protons and neutrons are not distinguished. The Hamiltonian reads

H = Hsp + Hpair + Hph =
∑
jm

(Ej − λ)a†
jmajm−

− 1
4
G

∑
j1m1 j2m2

a†
j1m1

a†
j1m1

aj2m2
aj2m2

− 1
2

∑
λμ

κ
(λ)
0 M †

λμMλμ, (2)

where a†
jm and ajm are the nucleon creation and annihilation operators; ajm =

(−1)j−maj−m, and M †
λμ is the multipole single-particle operator of the electric

type with multipolarity λ.
At ˇrst, we apply TFD to treat pairing correlations at ˇnite temperature (see

also [12,13]). To this aim, we make the standard Bogoliubov u, v-transformation
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from nucleon operators to quasiparticle operators α†, α

α†
jm = uja

†
jm − vjajm,

αjm = ujajm − vja
†
jm (u2

j + v2
j = 1).

(3)

The same transformation with the same u, v coefˇcients is applied to nucleonic
tilde operators ã†

jm, ãjm, thus producing the tilde quasiparticle operators α̃†
jm

and α̃jm.
Thermal effects appear after the thermal Bogoliubov transformation which

mixes ordinary and tilde quasiparticle operators and produces the operators of so-
called thermal quasiparticles β†

jm, βjm and their tilde counterparts. Following the

Ojima's formulation of the double tilde conjugation rule for fermions (˜̃a = a) [5],
we use here the complex form of the thermal Bogoliubov transformation:

β†
jm = xjα

†
jm − iyjα̃jm,

β̃†
jm = xjα̃

†
jm + iyjαjm (x2

j + y2
j = 1).

(4)

The reasons for this are given in [11].
Then we express the thermal Hamiltonian in terms of thermal quasiparticle

operators (4) and require that the one-body part of the thermal BCS Hamiltonian
HBCS = Hsp + Hpair − H̃sp − H̃pair becomes diagonal in terms of thermal
quasiparticles. This yields the following expressions for uj, vj :

u2
j =

1
2

(
1 +

Ej − λ

εj

)
, v2

j =
1
2

(
1 − Ej − λ

εj

)
, (5)

where εj =
√

(Ej − λ)2 + Δ2. The gap parameter Δ and the chemical potential
λ are the solutions of the equations

Δ =
G

2

∑
j

(2j + 1)(x2
j − y2

j )ujvj , N =
∑

j

(2j + 1)(v2
j x2

j + u2
jy

2
j ), (6)

where N is the number of nucleons in a nucleus.
With uj , vj from (5) the one-body part of the thermal BCS Hamiltonian reads

HBCS �
∑
jm

εj(β
†
jmβjm − β̃†

jmβ̃jm). (7)

One can see that the Hamiltonian HBCS describes a system of noninteracting ther-
mal quasiparticles and tilde-quasiparticles with energies εj and −εj , respectively.

To determine the thermal vacuum corresponding to HBCS, we need to ˇx
appropriately the coefˇcients xj , yj . In [12, 13], the coefˇcients were found
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by minimizing the thermodynamic potential of the system of noninteracting Bo-
goliubov quasiparticles. Here we demand that the vacuum |0(T ); qp〉 of thermal
quasiparticles obeys the thermal state condition (1)

ajm|0(T ); qp〉 = −i eHBCS/2T ã†
jm|0(T ); qp〉. (8)

Combining (8) and (3), one gets

yj =
[
1 + exp

(εj

T

)]−1/2

, xj =
(
1 − y2

j

)1/2
. (9)

We see that the coefˇcients y2
j are the thermal FermiÄDirac occupation factors

which determine the average number of thermally excited Bogoliubov quasiparti-
cles in the BCS thermal vacuum. Equations (5), (6), and (9) are the well-known
ˇnite-temperature BCS equations [14].

At the next stage we partially take into account the particle-hole residual
interaction Hph. Now the thermal Hamiltonian reads

H =
∑
jm

εj(β
†
jmβjm − β̃†

jmβ̃jm) − 1
2

∑
λμ

κ
(λ)
0

{
M †

λμMλμ − M̃ †
λμM̃λμ

}
(10)

and it can be divided into two parts Å HTQRPA and Hqph. The part HTQRPA

that contains HBCS and the terms with even numbers of creation and annihi-
lation operators of thermal quasiparticles is approximately diagonalized within
the Thermal Quasiparticle Random Phase Approximation, whereas the part Hqph

containing odd numbers of creation and annihilation operators is responsible for
the coupling of TQRPA eigenvectors (thermal phonons).

To diagonalize HTQRPA, the following operator of thermal phonon is intro-
duced:

Q†
λμi =

1
2

∑
j1j2

(
ψλi

j1j2 [β
†
j1

β†
j2

]λμ + ψ̃λi
j1j2 [β̃

†
j1

β̃†
j2

]λμ + 2iηλi
j1j2 [β

†
j1

β̃†
j2

]λμ
)
+

+ (−1)λ−μ
(
φλi

j1j2 [βj1βj2 ]
λ
−μ + φ̃λi

j1j2 [β̃j1 β̃j2 ]
λ
−μ − 2iξλi

j1j2 [βj1 β̃j2 ]
λ
−μ

)
,

where the notation [ ]λμ means the coupling of single-particle momenta j1, j2 to
the angular momentum λ with the projection μ. Now the thermal equilibrium
state is treated as a vacuum |0(T ); ph〉 for thermal phonons. In addition, the
thermal phonon operators are assumed to obey bosonic commutation rules. This
imposes some constraints on the phonon amplitudes ψ, φ̃, η, etc., (see [11] for
more details).

To ˇnd eigenvalues of HTQRPA, the variational principle is applied, i.e., we
ˇnd the minimum of the expectation value of HTQRPA with respect to one-phonon
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states Q†
λμi|0(T ); ph〉 or Q̃†

λμi
|0(T ); ph〉 under afore-mentioned constraints on the

phonon amplitudes. As a result, we arrive at the following equation for thermal
phonon energies ωλi:

2λ + 1

κ
(λ)
0

=
∑
j1j2

(f (λ)
j1j2

)2
[

(u(+)
j1j2

)2ε(+)
j1j2

(1− y2
j1− y2

j2)

(ε(+)
j1j2

)2 − ω2
−

(v(−)
j1j2

)2ε(−)
j1j2

(y2
j1− y2

j2)

(ε(−)
j1j2

)2 − ω2

]
,

(11)

where f
(λ)

j1j2
is the reduced single-particle matrix element of the multipole operator

Mλμ; ε
(±)
j1j2

= εj1 ± εj2 , u
(+)
j1j2

= uj1vj2 + vj1uj2 , v
(−)
j1j2

= uj1uj2 − vj1vj2 .
Although at the present stage phonon amplitudes cannot be determined un-

ambiguously, the TQRPA Hamiltonian is diagonal in terms of thermal phonon
operators

HTQRPA =
∑
λμi

ωλi(Q
†
λμiQλμi − Q̃†

λμiQ̃λμi). (12)

One can see that HTQRPA is invariant under the following thermal Bogoliubov
transformation:

Q†
λμi → XλiQ

†
λμi − YλiQ̃λμi, Q̃†

λμi → XλiQ̃
†
λμi − YλiQλμi (13)

with X2
λi − Y 2

λi = 1. To ˇx the coefˇcients Xλi, Yλi and ˇnally determine

the phonon amplitudes ψ, ψ̃, φ, φ̃, η, ξ, we again demand that the thermal phonon
vacuum obeys the thermal state condition∗. For A in (1), it is convenient to take
the multipole operator Mλμ. Then the thermal state condition takes the form

Mλμ|0(T ); ph〉 = eHTQRPA/2T M̃ †
λμ|0(T ); ph〉. (14)

Expressing Mλμ through phonon operators we ˇnd the coefˇcients Xλi, Yλi:

Yλi =
[
exp

(ωλi

T

)
− 1

]−1/2

, Xλi =
[
1 + Y 2

λi

]1/2
.

The coefˇcients Y 2
λi appear to be the thermal occupation factors of the BoseÄ

Einstein statistics. Thus, the phonon amplitudes are dependent on both types
of thermal occupation numbers: quasiparticle ones (the FermiÄDirac type) and
phonon ones (the BoseÄEinstein type). The expressions for all the phonon am-
plitudes ψ, ψ̃, φ, φ̃, η, ξ can be found in [11].

∗Earlier, in [11] we have used the other procedure to this aim. That procedure seems to be
much less evident and more lengthy.
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Once the structure of thermal phonons is determined, one can ˇnd the Eλ-
transition strengths from the TQRPA thermal vacuum to one-phonon states. The
transition strengths to non-tilde and tilde one-phonon states are related by

Φ̃2
λi = exp

(
−ωλi

T

)
Φ2

λi. (15)

This relation is equivalent to the principle of detailed balancing connecting the
probabilities for a probe to transfer energy ω to a heated system and to absorb
energy ω from a heated system.

Now we are ready to go beyond TQRPA and consider the effects of the term
Hqph which is a thermal analogue of the quasiparticleÄphonon interaction [7]. It
reads

Hqph = −1
2

∑
λμi

∑
j1j2

f
(λ)
j1j2√
N λi

{(
Q†

λμi
+Qλμi

)
Bλμi(j1j2)+(h.c.)−(t.c.)

}
, (16)

where the notation ®(h.c.)¯ and ®(t.c.)¯ stands for the items which are Hermitian-
and tilde-conjugate to the displayed ones; N λi is the normalization factor in the
phonon amplitudes. The operator Bλμi(j1j2) reads

Bλμi(j1j2) = iu
(+)
j1j2

(
Zλi

j1j2

[
β†

j1
β̃j2

]λ

μ
+ Zλi

j2j1

[
β̃†

j1
βj2

]λ

μ

)
−

− v
(−)
j1j2

(
Xλi

j1j2

[
β†

j1
βj2

]λ

μ
+ Yλi

j1j2

[
β̃†

j1
β̃j2

]λ

μ

)
,

where the coefˇcients Xλi
j1j2

, Yλi
j1j2

and Zλi
j1j2

are the following:(
X
Y

)λi

j1j2

= xj1xj2

(
X

Y

)
λi

+ yj1yj2

(
Y

X

)
λi

, Zλi
j1j2 = xj1yj2Xλi + yj1xj2Yλi.

The term Hqph couples states with a different number of thermal phonons.
To take into account the phonon coupling, we consider a trial wave function of
the following form:

|Ψν(JM)〉 =

[∑
i

{
Ri(Jν)Q†

JMi + R̃i(Jν) Q̃†
JMi

}
+

+
∑
λ1i1
λ2i2

{
Pλ1i1

λ2i2
(Jν)

[
Q†

λ1i1
Q†

λ2i2

]J

M
+

∑
λ1i1
λ2i2

Sλ1i1
λ2i2

(Jν)
[
Q†

λ1i1
Q̃†

λ2i2

]J

M
+

+
∑
λ1i1
λ2i2

P̃λ1i1
λ2i2

(Jν)
[
Q̃†

λ1i1
Q̃†

λ2i2

]J

M

}]
|0(T ); ph〉. (17)
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It should be stressed that in (17) we keep the thermal vacuum of TQRPA. It
means that we do not consider the in�uence of phonon coupling on thermal
occupation numbers. Note also that the function (17) contains not only nontilde
one-phonon components but the tilde ones as well. This is a new point in
comparison with [11].

The function (17) has to be normalized. This demand imposes the following
constraint on the amplitudes R, R̃, P, S, P̃ :∑

i

{[
Ri(Jν)

]2
+

[
R̃i(Jν)

]2
}

+

+
∑
λ1i1
λ2i2

{
2
[
Pλ1i1

λ2i2
(Jν)

]2 +
[
Sλ1i1

λ2i2
(Jν)

]2 + 2
[
P̃λ1i1

λ2i2
(Jν)

]2
}

= 1. (18)

Since the trial function contains three different types of two-phonon compo-
nents, there are three types of interaction matrix elements which couple a thermal
one-phonon state with two-phonon ones

Uλ1i1
λ2i2

(Ji) = 〈0(T ); ph|QJMiHqph

[
Q†

λ1i1
Q†

λ2i2

]J

M
|0(T ); ph〉,

V λ1i1
λ2i2

(Ji) = 〈0(T ); ph|QJMiHqph

[
Q†

λ1i1
Q̃†

λ2i2

]J

M
|0(T ); ph〉, (19)

Wλ1i1
λ2i2

(Ji) = 〈0(T ); ph|QJMiHqph

[
Q̃†

λ1i1
Q̃†

λ2i2

]J

M
|0(T ); ph〉.

The expressions for the matrix elements Uλ1i1
λ2i2

(Ji), V λ1i1
λ2i2

(Ji), and Wλ1i1
λ2i2

(Ji)
via the phonon amplitudes ψ, ψ̃, φ, etc., can be found in [11].

Applying the variational principle to the average value of the thermal Hamil-
tonian HTQRPA + Hqph with respect to |Ψν(JM)〉 under the normalization con-

straint (18), one gets a system of linear equations for the amplitudes R, R̃, P, S, P̃ .
The system has a nontrivial solution if the energy ην of the state |Ψν(JM)〉 obeys
the following secular equation:

det
∣∣∣∣ A(ην) B(ην)

B(−ην) A(−ην)

∣∣∣∣ = 0, (20)

where

Aii′ (ην) =
(
ωJi − ην

)
δii′ −

1
2

∑
λ1i1
λ2i2

{
Uλ1i1

λ2i2
(Ji)Uλ1i1

λ2i2
(Ji′)

ωλ1i1 + ωλ2i2 − ην
+

+ 2
V λ1i1

λ2i2
(Ji)V λ1i1

λ2i2
(Ji′)

ωλ1i1 − ωλ2i2 − ην
−

Wλ1i1
λ2i2

(Ji)Wλ1i1
λ2i2

(Ji′)
ωλ1i1 + ωλ2i2 + ην

}
(21)
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and

Bii′ (ην) =
1
2

∑
λ1i1
λ2i2

{
Uλ1i1

λ2i2
(Ji)Wλ1i1

λ2i2
(Ji′)

ωλ1i1 + ωλ2i2 − ην
+

+ 2(−1)λ1+λ2+J
V λ1i1

λ2i2
(Ji)V λ2i2

λ1i1
(Ji′)

ωλ1i1 − ωλ2i2 − ην
−

Wλ1i1
λ2i2

(Ji)Uλ1i1
λ2i2

(Ji′)
ωλ1i1 + ωλ2i2 + ην

}
. (22)

Physical effects which can be treated with the function |Ψν(JM)〉 and
Eq. (20) relate to fragmentation of basic nuclear excitations like quasiparticles
and phonons, their spreading widths and/or more consistent description of transi-
tion strength distributions over a nuclear spectrum in hot nuclei.

The authors are grateful to Dr. V. Ponomarev for valuable discussions and
comments.
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