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This review is devoted to exact calculations of cross sections of QED processes in relativistic
approach. We consider the case when the velocity of ˇnal heavy particles is not particularly close
to the speed of light. Especially, the cases of muon radiative pair creation are considered. In the
framework of QED with pion form factor, we estimate the pion radiative pair creation. All leading
terms are included in the framework of structure function approach. The annihilation of electronÄ
positron to the hadronic ˇnal state with one additional tagged photon is considered. The radiative
corrections are calculated, and the numerical estimation is made. Target spin asymmetry and charge
asymmetry are investigated for eμ-scattering processes. Initial-state radiation (returning to resonance)
mechanism is investigated including radiative corrections to initial and ˇnal states. Possible method
of experimental extraction of the ratio of electric and magnetic form factors of a proton is suggested
for different processes in leptonÄproton scattering. Some useful algebraic relations and integrals
are presented.
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INTRODUCTION

In this paper we obtain the differential cross sections in relativistic approach.
We consider the case when the velocity of ˇnal particles is not particularly close
to the speed of light. It gives us the possibility of applying our formulas to the
process near the particle-creation threshold.
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Annihilation channels with production of muon and pion pairs with additional
photon are explicitly considered in Sec. 1. We investigate separately the effects
of initial- and ˇnal-state emission. We calculate the explicit form of the third
structure function, beyond Pauli and Dirac form factors, in the amplitude of
the process of elastic electronÄmuon scattering, in the presence of two-photon
exchange. We also consider the method of extracting the ratio of electric and
magnetic proton form factors in elastic electron-polarized proton scattering as
well as inelastic electronÄproton and photonÄproton scattering processes.

The heavy photon Compton tensor in the case of longitudinally polarized
initial fermion and the double logarithmic corrections to the beam asymmetry in
the process of elastic polarized electronÄproton scattering are considered at the
end of Sec. 1.

Processes of initial-state hard-photon emission in annihilation channel of
electronÄpositron collisions are considered in Sec. 2. Particularly, we investigate
in detail the processes of creation of muon and pion pairs with a point-like model
of pion. The main attention is paid to the so-called mechanism of return to
resonance in the channel of hadron production. The lowest order RC are taken
into account. The results are generalized to higher orders of PT using the LSF
approach.

Detailed consideration of Compton and double Compton scattering processes
with taking into account RC is given. In Sec. 2 we demonstrate analytically the
cancellation of the dependence on the auxiliary angular parameter separating the
regions of collinear and noncollinear additional photon emission.

In Sec. 3 we give the tables for one-loop Feynman integrals of scalar, vector,
and tensor types, with two, three, four, and ˇve denominators. All formulae
are presented with the accuracy up to the terms of the order of the ratio of the
electron to the muon masses squared, and the kinematic invariants are assumed
to be large compared to the electron mass squared.

Also we present some integral which could be used for phase volume calcu-
lation with ˇnite mass of particles and put some tricks for trace conversion.

Throughout our paper we use the next designations: DIS Å deep inelastic
scattering; FD Å Feynman diagram; LLA Å leading logarithmic approximation;
LSF Å lepton structure functions; NL Å next-to-leading; PD Å photon detector;
QCD Å quantum chromodynamics; QED Å quantum electrodynamics; RC Å
radiative corrections; SM Å Standard Model.

1. EXACT RESULTS FOR 2 → 3 TYPE PROCESSES

1.1. The Cross Sections of the Charged Muon- and Pion-Pairs Production
at ElectronÄPositron Annihilation near the Threshold. Exact evaluation of the
hadron's contribution to the anomalous magnetic moment of muon implies the
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knowledge of the cross sections of muon- (tau) and pion-pairs production at the
region where the total c.m.s. energy of pair does not exceed threshold value
signiˇcantly. The lowest order RC and effects due to the Coulomb interaction in
the ˇnal state become essential [25].

For the purpose of comparison with experimental data, the cases with hard
additional photon must be calculated in the framework of PT. It is a weak point
of approaches based on dimensional regularization methods where the separation
of soft- and hard-photon emission cannot be arranged. Here we calculate these
contributions in the framework of traditional QED approach with assigning to
photon small mass and calculate the virtual-, soft-, and hard-photon contributions
separately. In papers [26,27], the spectra and total cross sections were obtained,
but the calculation method of distribution on invariant mass of muon (tau) pair
and the contribution to the total cross section were too complicated. The radiative
corrections to the pion-pair production including intital- and ˇnal-state radiation
was also considered in [99, 100]. The leptonic and hadronic cross sections with
O(α) corrections are required to improve the calculation precision of the vacuum
polarization effects in photon propagator at low energies.

Below, using the invariant integration method, we obtain the hard-photon
emission contribution to the spectral distribution on the muon pair effective mass
and the corresponding contribution to the total cross section due to photon radi-
ation by initial or ˇnal particles. We do not consider the interference of these
amplitudes assuming the experimental setup to be charge-blind. In this case, the
interference contribution to the total cross section is zero. Similar calculations of
the charged pion-pair production (assuming pion to be point-like object) are done.
Adding the known results for contribution of virtual and real soft-photon emission
we obtain the corresponding total cross sections. These results are in agreement
with ones obtained in previously published papers (see references below), but
have the form more convenient for different applications. Whenever possible, the
analytical results are used as a cross-check with ultrarelativistic limit.

1.1.1. Final-State Radiation (FSR) in Muon-Pair Production. As well as we
are interested in muon effective mass spectrum let us put the cross section in the
form:

dσ =
1
8s

∫ ∑
spins

|M |2 dΓ.

The summed over spin states matrix element squared can be put in the form:

∑
|M |2 = −(4πα)2

1
s2

LμνT μν , s = (p+ + p−)2,
(1.1)

Lμν = Tr [p̂−γμp̂+γν ], Tμν = Tr
[
(q̂− + M)Oμη(q̂+ − M)Õνη

]
,
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with

Oμν = γν
q̂− + k̂ + M

χ−
γμ + γμ

−q̂+ − k̂ + M

χ+
γν , χ± = 2kq±,

(1.2)
p− + p+ = q = q− + q+ + k, q2

± = M2, p2
± = m2, k2 = 0.

Introducing the energy fractions of ˇnal particles we have:

ν± =
2qq±

s
, ν =

2qk

s
, ν + ν+ + ν− = 2,

∫
dΓ=
∫

1
(2π)5

d3q−
2E−

d3q+

2E+

d3k

2ω
δ4(p+ + p−q+ − q−k) =

s

27π3

β2∫
Δ

dν

ν2∫
ν1

dν+,

ν1,2 =
1
2
(2 − ν) ± ν

2
R(ν), (1 − ν)(1 − ν−)(1 − ν+) > σν2,

R(ν) =

√
1 − 4σ

1 − ν
=

√
β2 − ν

1 − ν
, β2 = 1 − 4σ, σ =

M2

s
.

Due to gauge invariance of tensor T μν , we can write down the following:∫
dΓTμν =

1
3

(
gμν − qμqν

q2

)∫
dΓT η

η .

Further simpliˇcation follows from gauge invariance of initial lepton tensor
Lμνqμ = 0. Simple calculation gives

∑
T η

η = 4
[

A

(1 − ν+)2
+

B

1 − ν+
+ C + (ν+ → ν−)

]
,

A = −1
2
(3 − β2)(1 − β2), C = −2,

B =
1
ν

(3 − β2)(1 + β2) − 2(3 − β2) + 2ν.

Integration on the muon-energy fraction can be performed using the expressions:

ν2∫
ν1

dν+

[
1

(1 − ν+)2
;

1
1 − ν+

; 1
]

=
[
1 − ν

νσ
R(ν); ln

1 + R(ν)
1 − R(ν)

; νR(ν)
]

. (1.3)

Distribution on the invariant mass square of muons q2 = (q+ + q−)2 =
s(1 − ν) for the case when the energy of hard photon exceeds some value
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ω >
√

sΔ/2, Δ � 1 has the form

dσh
FSR

dν
=

2α3

3s

[[
(1 + β2)(3 − β2)

ν
− 2(3 − β2) + 2ν

]
ln

1 + R(ν)
1 − R(ν)

−

−2
[
3 − β2

ν
(1 − ν) + ν

]
R(ν)
]

. (1.4)

Contribution to the total cross section can be obtained performing the integration
on invariant muon mass. We use the set of integrals:

β2∫
Δ

R(ν)
[

1
ν

; 1; ν

]
dν =
[
−Lβ + β ln

4β2

(1 − β2)Δ
; β − 1 − β2

2
Lβ ;

β
3 − β2

4
− (3 + β2)(1 − β2)

8
Lβ

]
+ O(Δ),

(1.5)
β2∫

Δ

ln
1 + R(ν)
1 − R(ν)

[
1
ν

; 1; ν

]
dν =
[
Lβ ln

1
Δ

+ 2Φ(β); − β +
1
2
(1 + β2)Lβ ;

1
16

(3 + 2β2 + 3β4)Lβ − 3
8
β(1 + β2)

]
+ O(Δ),

with

Lβ = ln
1 + β

1 − β
,

(1.6)

Φ(β) = Li2(1 − β) − Li2(1 + β) − Li2

(
1 − β

2

)
+ Li2

(
1 + β

2

)
.

The result is

σe+e−→μ+μ−γ
h =

2α

π
σB(s)

[(
1 + β2

2β
Lβ − 1

)
ln

1
Δ

+
7
4
− ln

4β2

1 − β2
−

−3(1 + β2)
8(3 − β2)

+
9 − 2β2 + β4

16β(3 − β2)
Lβ +

1 + β2

β
Φ(β)
]

, (1.7)

where σB(s) = 2πα2β(3−β2)/(3s) is the cross section of muon-pair production
in Born approximation. In the ultrarelativistic limit we have

σe+e−→μ+μ−γ
h

∣∣∣
β→1

=
4πα2

3s

2α

π

[
(lμ − 1) ln

1
Δ

− 3
4
lμ +

11
8

− ξ2

]
, (1.8)
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where lμ = ln (s/M2), ξ2 = π2/6. The contribution from emission of soft real
photons ω =

√
k2 + λ2 <

√
sΔ/2 by muons (λ is ®photon mass¯) is:

σs
FSR = σB(s)

(
− α

4π2

)∫ d3k

ω

(
q−
q−k

− q+

q+k

)2

,

performing the standard calculations it can be written in the form:

σs
FSR =

2α

π
σB(s)

[(
1 + β2

2β
Lβ − 1

)(
ln

M

λ
+ ln Δ

)
+

+
1 + β2

2β

[
1
4
L2

β − Li2(β) + Li2(−β) − Li2

(
1 − β

2

)
−

− ln
(

1 + β

2

)
ln (1 − β) +

1
2

ln2(1 + β) + Li2

(
1
2

)
+ Lβ ln

2
1 + β

]
+

+ ln
(

1 + β

2

)
+

1 − β

2β
Lβ

]
. (1.9)

Virtual photon emission correction includes the Dirac and Pauli form factors of
muon [2,3]. It has the form:

σv
FSR =

2α

π
σB(s)
[(

1 − 1 + β2

2β
Lβ

)
ln

M

λ
− 1 +

(
1 + β2

2β
− 1

4β

)
Lβ +

+
1 + β2

2β

[
2ξ2 −

1
4
L2

β − Lβ ln
2β

1 + β
+ Li2

(
1 − β

1 + β

)]
− 3(1 − β2)

4β(3 − β2)
Lβ

]
.

(1.10)

The sum of the contributions from virtual and soft real photons reads to be:

σv+s
FSR =

2α

π
σB(s)

[(
1 + β2

2β
Lβ − 1

)
ln Δ − 1 + ln

1 + β

2
+

+
(

3 − 2β + 2β2

4β
− 3(1 − β2)

4β(3 − β2)

)
Lβ+

+
1 + β2

2β

(
−2Li2(β) + 2Li2(−β) + Li2

(
1 + β

2

)
− Li2

(
1 − β

2

)
+ 3ξ2

)]
.

(1.11)

In ultrarelativistic limit we have:

σv+s
FSR

∣∣
β→1

=
2α

π
σB(s)

[
(lμ − 1) ln Δ − 1 +

3
4
lμ + ξ2

]
. (1.12)
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The total sum of contributions from virtual, soft, and hard real photons does not
contain photon mass λ and the separation parameter Δ:

σe+e−→μ+μ−γ
FSR =

2α

π
σB(s)Δμ+μ−

FSR (β), (1.13)

where

Δμ+μ−

FSR (β) =
3(5 − 3β2)
8(3 − β2)

+
(1 − β)(33 − 39β − 17β2 + 7β3)

16β(3 − β2)
Lβ+

+ 3 ln
(

1 + β

2

)
− 2 lnβ +

1 + β2

2β
F (β),

(1.14)
F (β) = −2Li2(β) + 2Li2(−β) − 2Li2(1 + β) + 2Li2(1 − β)+

+ 3Li2

(
1 + β

2

)
− 3Li2

(
1 − β

2

)
+ 3ξ2.

The quantity Δμ+μ−

FSR (β) agrees with the result obtained in [30]. One can check
this result, describing photon emission in ˇnal state, due to that in the ultrarela-
tivistic limit it arrives to the value 3/8:

σe+e−→μ+μ−γ
FSR |β→1 =

4πα2

3s

2α

π

3
8

=
α3

s
.

Cancellation of ®large¯ logarithms lμ = ln (s/M2) is the consequence of Kino-
shitaÄLeeÄNauenberg theorem [18].

1.1.2. Initial-State Radiation (ISR) in Muon-Pair Production. Matrix element
of the process of muon-pair production with hard photon radiated from initial
state has the form:

MISR =
(4πα)3/2

s(1 − ν)
v̄(p+)

[
Q̂

p̂− − k̂ + m

−2kp−
ê(k) + ê(k)

−p̂+ + k̂ + m

−2kp+
Q̂

]
u(p−),

with Qη = ū(q−)γηv(q+) being the muon current.
Using the gauge condition for muon current qηQη = 0, q = q+ + q− =

p+ + p− − k we have

∑∫
Qμ(Qν)∗

d3q+

2E+

d3q−
2E−

δ4(q − q+ − q−) = D

(
gμν − qμqν

q2

)
,

D = −2πs

3

[
3 − β2

2
− ν

]
R(ν), q2 = s(1 − ν),
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with notations given above. Using this relation, the calculation of the summed
upon spin states of matrix element squared is straightforward. Performing the
angular integrations by means of

1∫
−1

dc

[
1

1 − βec
;

4m2

s(1 − βec)2
; 1
]

= [le; 2; 2],

(1.15)

le = ln
s

m2
, βe =

√
1 − 4m2

s
,

with m being the electron mass, we obtain the distribution on the muons invariant
mass:

dσh
ISR

dν
=

4α3

3sν(1 − ν)2
[1 + (1 − ν)2](le − 1)

(
3 − β2

2
− ν

)
R(ν). (1.16)

Further integration on the photon-energy fraction ν can be performed using the
set of integrals given above and two additional ones:

β2∫
0

R(ν)
[

1
(1 − ν)2

;
1

1 − ν

]
dν =
[

2β3

3(1 − β2)
;−2β + Lβ

]
.

As a result, we obtain for contribution of hard photon ISR to the total cross
section:

σh
ISR =

2α

π
σB(s)(le − 1)

[
ln

1
Δ

− 1 − 3β + β3

β(3 − β2)
Lβ − 4

3
+ 2 ln

2β

1 + β

]
. (1.17)

Taking into account the virtual and soft real photons to the initial state gives:

σs+v
ISR =

2α

π
σB(s)

[
(le − 1) ln Δ +

3
4
le − 1 + ξ2

]
. (1.18)

The total sum is

σs+v+h
ISR =

2α

π
σB(s)Δμ+μ−

ISR (β),
(1.19)

Δμ+μ−

ISR (β) = (le − 1)
[
−1 − 3β + β3

β(3 − β2)
Lβ − 4

3
+ 2 ln

2β

1 + β

]
+

3
4
le − 1 + ξ2.

The total sum in ultrarelativistic limit has the form:

σs+v+h
ISR+FSR|β→1 =

8α3

3s

[
1
2
lelμ − 1

2
lμ − 7

12
le + ξ2 +

17
24

]
, (1.20)

which is in agreement with [26, 27]. Leading term ∼ lelμ is in agreement with
the result of [29].
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1.1.3. Two Charged Pion Production in ElectronÄPositron Annihilation. It is
worth to remind that the total cross section σ(e+e− → π+π−) with O(α) correc-
tions is required in many subjects of particle physics. Particularly, it is required
to determine, with a better accuracy, the precision of the evaluation of vacuum
polarization effects in photon propagator. Another well-known application is the
calculation of the hadronic contribution to the anomalous magnetic moment of
muon ahadr

μ :

ahadr
μ =

1
3

(α
π

)2 ∞∫
4M2

π

ds
R(s)K(s)

s
, R(s) =

σe+e−→hadr(s)

σe+e−→μ+μ−(s)
(1.21)

with

K(s) =

1∫
0

dx(1 − x)x2

x2 + (1 − x)ρ
, ρ =

s

M2
π

.

A contribution to this integral coming from high-energy region can be calculated
within QCD framework, while for the low-energy range the experimental values
R(s) have to be taken as an input. A numerical evaluation of this integral in
relative unities gives the value of ∼ 70 ppm.

The goal of the new experiment at BNL (E969) is to measure the anomalous
magnetic moment of muon with the relative accuracy of about ∼ 0.25 ppm and
to improve the previous result [24] by a factor of two. It follows that the value
ahadr

μ should be calculated as precisely as possible. In this context, the required
theoretical precision of the cross sections with RC as well as the calculation
accuracy of the vacuum polarization effects should be not worse than ∼ 0.2%
as it follows from the estimation: 70 ppm×0.2% ∼ 0.14 ppm. This short
observation shows why high precision calculations of the hadronic cross sections
are extremely important.

1.1.4. Final-State Radiation in Pion-Pair Production. As well as it was done
for the muons, the contributions with one-photon radiation in the ˇnal state can
be divided into three separate parts: virtual, soft, and hard. The expression for
the virtual photon emission from ˇnal state is given by

σv =
α

π
σπ+π−

B (s)
[
2 ln

M

λ

(
1 − 1 + β2

2β
Lβ

)
− 2 +

1 + β2

β
Lβ+

+
1 + β2

β

(
−1

4
L2

β + Lβ ln
1 + β

2β
+ 2ξ2 + Li2

(
1 − β

1 + β

))]
. (1.22)

Here Lβ , λ, β were deˇned above, β is the pion velocity in c.m. frame; Fπ(s) Å

pion strong interaction form factor; σπ+π−

B (s) = (πα2β3)/(3s)|Fπ(s)|2 is the
cross section of the charged pion-pair production in the Born approximation.
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Additional real soft-photon emission contribution when photon energy does
not exceed Δε in c.m. frame reads:

σs
FSR =

α

π
σπ+π−

B (s)
[
2 ln
(

2Δε

λ

)(
1 + β2

2β
Lβ − 1

)
+

1
β

Lβ+

+
1 + β2

β

(
−1

4
L2

β + Lβ ln
1 + β

2β
− ξ2 + Li2

(
1 − β

1 + β

))]
, Δε � ε =

√
s

2
.

(1.23)

The sum of the contributions from virtual and real soft-photon emission can be
presented in convenient way as

σv+s
FSR =

2α

π
σπ+π−

B (s)
[(

1 + β2

2β
Lβ − 1

)
ln Δ + b(s)

]
, (1.24)

where

b(s) = −1 +
1 − β

2β
ρ +

2 + β2

β
ln

1 + β

2
+

+
1 + β2

2β

[
ρ + ξ2 + Lβ ln

1 + β

2β2
+ 2Li2

(
1 − β

1 + β

)]
,

ρ = ln
4

1 − β2
, Δ =

Δε

ε
.

Calculations similar to ones given above for FSR muon-pair production lead
to pion invariant mass distribution m2

ππ = s(1 − ν):

σh
FSR

dν
=

2α3β2

3s

[(
ν

β2
− 1 − ν

ν

)
R(ν) +

(
1 + β2

2ν
− 1
)

ln
1 + R(ν)
1 − R(ν)

]
|Fπ(s)|2,

(1.25)

R(ν) =

√
β2 − ν

1 − ν
.

Contribution to the total cross section can be obtained performing the integration
on invariant pion mass. It is in agreement with the results of papers [19,28]. The
relevant contribution has the form:

σh
FSR =

2α

π
σπ+π−

B (s)
[
ln

1
Δ

(
1 + β2

2β
Lβ − 1

)
+

+ 2 +
3 − β2

4β2
− (3 + β2)(1 − β2)

8β3
Lβ − ln

4β2

1 − β2
+

1 + β2

β
Φ(β)
]
, (1.26)

with Φ(β) deˇned above (1.6).
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Now we can collect all the discussed terms and write down the complete
expression for the total cross section including all corrections of order α and the
parametric enhanced Coulomb factor. This expression is given by

σe+e−→π+π−γ
FSR =

2α

π
σπ+π−

B (s)Δπ+π−

FSR (β), (1.27)

and

Δπ+π−

FSR (β) =
3(1 + β2)

4β2
− 2 lnβ + 3 ln

1 + β

2
+

+
(1 − β)(−3 − 3β + 7β2 − 5β3)

8β3
Lβ +

1 + β2

2β
F (β), (1.28)

with the same expression for F (β) as in muon case (1.14). The factor Δπ+π−

FSR

represents the correction to the Born cross section caused by ˇnal-state radiation
and the Coulomb interaction. In ultrarelativistic limit we have Δπ+π−

FSR (β → 1) =
3/2. One can see again, that all ®large¯ logarithms cancel out in accordance with

KinoshitaÄLeeÄNauenberg theorem. In a low β limit Δπ+π−

FSR = π2/(4β), which
is the manifestation of the Coulomb interaction of pions.

Expression for Δπ+π−

FSR (β) coincides with one obtained in [19,28,31]. It can

be noticed that in these papers the quantity Δπ+π−

FSR (β) was presented without
separator Δ between soft and hard photons. But for some applications it can be
useful to have these two parts of the cross sections separated. For instance, the
differential cross section (1.25) as a function of the invariant pion's mass is a
valuable tool to verify assumption that pions can be considered as the point-like
objects and scalar QED can be applied.

To verify the validity of this assumption it is necessary to extract events
with FSR from experimental data whereas events with ISR should be suppressed
as much as possible. Numerically the cross section with ISR exceeds the cross
section with FSR by a factor of ten. There are two ways how to isolate this type
of events. It is necessary to select events in the energy range below the ρ-meson
peak. ISR shifts the effective energy in c.m.s. and as a result the cross section
falls down the more rapidly, the more hard photon is radiated.

It is clear, the second instrument which can help to push down the events
with ISR is the acollinearity cut. The photons radiated from initial state mostly
	y along the beam direction. It results in that space angle between tracks of
pions differs from 180 ◦ as bigger as harder photon was emitted. The FSR also
breaks the space angle between tracks, but not so strongly. When the threshold
on photon energy is about 150 MeV, more the ratio arrives the value about 5. It
means, that the relative admixture of events due to ISR makes up ∼ 20% only.
It is worth to remind that the spectrum form at high-photon energies is just the
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subject of interest. So, the fraction of admixture events at the end of spectrum
falls down whereas the relative weight of the events with FSR increases. The
comparison of the simulated spectrum with experimental one can elucidate this
problem.

1.1.5. Initial-State Radiation in Pion-Pair Production. Let us consider now
the ISR effects in pion-pair production. Performing the calculations similar to the
case of muon-pair production we have:

dσe+e−→π+π−γ
ISR

dν
=

=
α3

3s

1 + (1 − ν)2

(1 − ν)2ν
(le − 1)(β2 − ν)

√
β2 − ν

1 − ν
|Fπ(s(1 − ν))|2, (1.29)

where q2 = (q+ + q−)2 = s(1 − ν). Using integrals presented above we can
obtain the following contribution to the total cross section:

σh
ISR =

2α3β3

3s
(le − 1)

{
ln

1
Δ

+ 2 ln
(

2β

1 + β

)
−

− 4
3
− 1

2β2
+

1 − 3β2 + 4β3

4β3
Lβ

}
, (1.30)

where le = ln (s/m2). Here we had assumed the pions to be point-like, i.e.,
Fπ = 1. Contributions of virtual- and soft-photon emission have the form:

σv+s
ISR =

2α

π
σπ+π−

B (s)
{

(le − 1) ln Δ +
3
4
le − 1 + ξ2

}
. (1.31)

The total cross section accounted for initial-state radiation can be presented as

σe+e−→π+π−γ
ISR =

2α3β3

3s
Δπ+π−

ISR (β), (1.32)

Δπ+π−

ISR (β) = (le − 1)
[
2 ln

2β

1 + β
− 4

3
− 1

2β2
+

1 − 3β2 + 4β3

4β3
Lβ

]
+

+
3
4
le − 1 + ξ2. (1.33)

In ultrarelativistic limit in point-like approximation for pions we have:

σe+e−→π+π−γ
ISR+FSR

∣∣∣
β→1

=
2α3

3s

{
1
2
lelπ − 1

2
lπ +

3
2
le +

1
6

+ ξ2

}
, (1.34)

where lπ = ln (s/M2
π).
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1.1.6. Estimation of Accuracy. The theoretical precision of the cross sections
with O(α) corrections given above is deˇned by the unaccounted higher order
corrections and is estimated to be at 0.2% level. It is worth to notice that vacuum
polarization effects in photon propagator are not considered in this paper and can
be found, for instance, in [78]. Let us list the corrections which were omitted in
the current formulae.

Weak interactions not considered here arise from replacement of virtual pho-
ton Green function by Z-boson one. It results in

dσ → dσ

[
1 + O

((
s

M2
Z

)2

,
M2

μ

M2
Z

)]
(1.35)

which for
√

s � 10 GeV is of the order of or smaller than 0.1% in charge-blind
experimental setup, when we can omit the γ − Z interference contribution.

Here we systematically omit the terms of order (m/Mμ)2 compared to 1

O
(

m2

M2
μ

)
� 0.1%. (1.36)

The higher-order contributions (not considered here) can be separated by two
classes. One, leading by large logarithm le = ln (s/m2), is connected with ISR:

dσ
[
1 + O

(α
π

le

)
+ O
(α

π

)]
, O

(α
π

)
∼ 0.5%. (1.37)

This corrections are dominant and can reach 5%. This kind of contributions can,
in principle, be taken into account by structure function approach (see [97]).

The higher-order contributions connected with FSR give

dσ
[
1 + O

(α
π

lβ

)]
, O

(α
π

lβ

)
∼ 2%, (1.38)

in ultrarelativistic limit they lβ → ln (s/M2
μ) as well can be taken into account

by structure function method.
We do not consider C-odd interference in real- and virtual-photons emis-

sion Å it gives zero contribution to the total cross section.
One can see that corrections to Born cross sections (2α/π)Δ can reach

several percent near threshold.
In regions where β ∼ α, formulae must be modiˇed [30]. Taking into

account that Δ(i)(β) ∼ π2/4β, β → 0, we must replace

1 +
2α

π
Δ(i)(β) →

(
1 +

2α

π

(
Δ(i)(β) − π2

4β

))
f(z),

where f(z) = z/(1 − e−z) is the SommerfeldÄSakharov factor, z = (πα/β).
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1.2. Radiative Muon-Pair Production in High-Energy ElectronÄPositron
Annihilation and Crossed Channel Processes. Process of muon-pair produc-
tion as well as radiative muon-pair production [15] at high energy in electronÄ
positron collisions is commonly used for calibration purposes. This process was
investigated in detail in Born approximation in series of papers of Baier and
Khoze [40,41], where the mechanism of returning to resonant region was found.

One of the motivations of our investigation is the high theoretical accuracy
required for description of differential cross section. An additional interest ap-
pears in the case of small invariant mass of the muon pair. For this case, the
radiative muon-pair production is provided by the initial-state hard-photon emis-
sion kinematics. It can be used as a calibration process in studying the hadronic
systems of small invariant masses created by virtual photon. The lowest order
RC in that kinematics to Born cross section [101] as well as the LL and NL
contributions in all orders of PT were considered in paper [42].

Besides the practical applications [43,44], we pursue another aim [15]. The
problem is to check the validity RG predictions concerning hard processes of type
2 → 3.

Basing on exact (with power accuracy of O(M2
μ/s)) calculations, we conˇrm

the DrellÄYan form of the cross section of radiative muon-pair production in LLA.
Estimation of nonleading contributions for several kinematical points is given in
Table 1.

1.2.1. Born Cross Section and RC. For the process

e+(p+) + e−(p−) → μ+(q+) + μ−(q−) + γ(k1) (1.39)

we use the following kinematics:

χ± = 2k1p±, χ′
± = 2k1q±, s = (p− + p+)2,

s1 = (q− + q+)2, t = (p− − q−)2, t1 = (p+ − q+)2,
(1.40)

u = (p− − q+)2, u1 = (p+ − q−)2,

p2
± = m2, q± = M2, k2 = 0,

where M(m) is the muon (electron) mass. Here all kinematical invariants are
much larger than muon (electron) mass, but we take into account terms of order
ln (M/m):

s1 ∼ s ∼ −t ∼ −t1 ∼ −u ∼ −u1 ∼ χ± � M2 � m2,
(1.41)

s + s1 + t + t1 + u + u1 = 0.
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The differential cross section of the process with the lowest order RC has the
form:

dσ0

dΓ
=

α3

2π2s
T0

[
1 +

α

π
(Δvac + Δff + Δvert + Δbox + Δsoft)

]
,

(1.42)

dΓ =
d3q+d3q−d3k1

ε+ε−ω1
δ4(p+ + p− − q+ − q− − k1).

It is convenient to separate, starting from Born level deˇnite contributions from
hard-photon emission by electron, muon block and their interference:

T0 = T e
0 + T μ

0 + T int
0 , (1.43)

where

T e
0 = A

s

χ−χ+
, T μ

0 = A
s1

χ′
−χ′

+

, A =
t2 + t21 + u2 + u2

1

ss1
,

(1.44)

T int
0 = A

[
− t

χ−χ′
−

− t1
χ+χ′

+

+
u1

χ+χ′
−

+
u

χ−χ′
+

]
.

The standard evaluation of additional soft-photon emission contribution gives:

dσsoft

dσ0
= − α

4π2

∫
d3k2

ω2

(
− p−

p−k2
+

p+

p+k2
+

q−
q−k2

− q+

q+k2

)2∣∣∣∣
ω2<Δε�ε

=

=
α

π
(Δe

s + Δμ
s + Δint

s ) =
α

π
Δsoft. (1.45)

Here we denote:

Δe
s = 2(ρs + L − 1) ln

mΔε

λε
+

1
2
(ρs + L)2 − π2

3
,

Δμ
s = 2(ρs1 − L − 1) ln

MΔε

λ
√

ε+ε−
+

1
2
(ρs1 − L)2−

− 1
2

ln2 ε+

ε−
− π2

3
+ Li2

(
1 + c

2

)
,

Δint
s =

1
2
(ρt1 + ρu) ln

t1
u

+
1
2
(ρt + ρu1) ln

t

u1
+

+ 2 ln
t1
u

ln
√

mMΔε

λ
√

εε+
+ 2 ln

t

u1
ln

√
mMΔε

λ
√

εε−
+

+ Li2

(
1 + c−

2

)
+ Li2

(
1 − c+

2

)
− Li2

(
1 + c+

2

)
− Li2

(
1 − c−

2

)
,
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where

L = ln
M

m
, ρλ = ln

mM

λ2
, ρs = ln

s

mM
,

ρs1 = ln
s1

mM
, ρt = ln

−t

mM
, ρt1 = ln

−t1
mM

, (1.46)

ρu = ln
−u

mM
, ρu1 = ln

−u1

mM
, c± = cos (p−q±), c = cos (q+q−),

and ε, ε± are the energies (in c.m.s.) of electron, muon, and λ is the ®photon
mass¯.

Let us now consider RC arising from the Dirac form factor of leptons and
vacuum polarization (the Pauli form-factor contribution is suppressed by a factor
m2/s in our kinematics). They are:

Δff + Δvac =
2T e

0 + T int
0

T0

(
Re Γ
( s1

M2

)
+ Re Π(s1)

)
+

+
2T μ

0 + T int
0

T0

(
Re Γ
( s

m2

)
+ Re Π(s)

)
(1.47)

with

Re Γ
( s

m2

)
=
(
ln

m

λ
− 1
)

(1 − ρs − L) − 1
4
(ρs + L)2 − 1

4
(ρs + L) +

π2

3
,

ReΓ
( s1

M2

)
=
(

ln
M

λ
− 1
)

(1 − ρs1 + L) − 1
4
(ρs1 − L)2 − 1

4
(ρs1 − L) +

π2

3
,

Re Π(si) = Re Πe(sj) + ReΠμ(sj) + Re Πτ (sj) + Re Πh(sj),

Re Πe(sj) =
1
3
(ρsj + L) − 5

9
, Re Πμ(sj) =

1
3
(ρsj − L) − 5

9
.

Here sj is the kinematical invariant s or s1. The contributions from the vacuum
polarization from the heavy lepton τ and hadrons Πτ , Πh are given in [78].

1.2.2. Calculations of Box-Type RC. Consider now amplitudes arising from
box-type FD. There are twelve FD of such a kind, or 48 squared matrix elements.
In calculation we restrict ourselves by consideration of only three of box-type FD.
Really the total contribution of interference of box-type and Born amplitudes can
be expressed in the form:

Re ΣMboxM
�
0 = (1 + P1)[(1 − P2)Be(M e

0 )∗ + (1 + P2)Be(Mμ
0 )∗], (1.48)

with M e
0 + Mμ

0 = M0, M e
0 (Mμ

0 ) being electron (muon) block emission part of
the Born matrix element; Be is the electron emission part of contribution to the
box-type amplitude with uncrossed photon legs. Note that calculating the Be we
must consider the pentagon-type FD and two remaining ones.
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The substitution operators P1,2 work as

P1f(p+, p−; q+, q−, k1) = f(q+, q−; p+, p−;−k1),
(1.49)

P2f(p+, p−; q+, q−, k1) = f(p+, p−; q−, q+, k1).

The operator P1 ®changes¯ the photon emission from electron line to muon
line. The application of operator P2 permits one to obtain the contribution from
FD with crossed virtual photon lines. As a result, we obtain:

Δbox = −(ρs + ρλ) ln
tt1
uu1

+ ΔNL
B . (1.50)

The expression for ΔNL
B is rather cumbersome.

1.2.3. Vertex-Type FD. Let as now consider the contribution arising from FD
with vertex-type insertions V e. The other vertex contributions appear from these
ones by using substitutions

Re ΣMvertM
�
0 = (1 + P1)(1 + P3)V e(M e

0 )∗, (1.51)

with operator P3 deˇned as

P3f(p+, p−; q+, q−, k1) = f(p−, p+, q+, q−; k1). (1.52)

The total answer for vertex-type contribution reads:

Δvert = −1
2

Te + (1/2)Ti

m0
[(ρs+L)2+2(ρs+L)(ρλ+L)−3(ρs+L)+ΔNL

v (s)]−

− 1
2

Tμ + (1/2)Ti

T0
[(ρs1 −L)2 + 2(ρs1 −L)(ρλ −L)− 3(ρs1 −L) + ΔNL

v (s1)].

1.2.4. Master Formula. Extracting the explicate dependence on vacuum

polarization in the form
1

|1 − Π|2 and collecting the leading and nonleading terms

arising from soft-photon emission, vertex and box-type FD contributions, as well
as lepton form factors, we arrive to the formula:

Δsoft + Δbox + Δvert + Δff = Δlead + ΔNL. (1.53)

This expression is free from the infrared singularities as well as from squares
of large logarithms. The form of Δlead is consistent with renormalization group
prescriptions:

1 +
α

π
Δlead =

(
1 +

α

2π
ln

s

m2
e

PΔ(ε)
)2

×

×
(
1 +

α

2π
ln

s1

M2
PΔ(ε+)

)(
1 +

α

2π
ln

s1

M2
PΔ(ε−)

)
+ O(α2), (1.54)
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with PΔ being the δ part of the kernel of evolution equation:

PΔ(ε) = 2 ln
Δε

ε
+

3
2
,

PΔ(ε±) = 2 ln
Δε

ε±
+

3
2
.

(1.55)

An additional hard-photon emission contribution in leading logarithmical order
can be taken into account using the quasi-real electron's method [5]. It results in
the replacement PΔ by the whole kernel of evolution equation of twist-2 operators

P (z) = P (1)(z) = lim
Δ→0

[PΔδ(1 − z) + PΘ(z)],
(1.56)

PΔ = 2 lnΔ +
3
2
, PΘ(z) = Θ(1 − Δ − z)

1 + z2

1 − z
.

As a result, we arrive to compact form of the cross section:

dσe+e−→μ+μ−γ(p−, p+, q−, q+, k1)
dΓ

=

1∫
xm

dx1

1∫
xm

dx2×

×
1∫

y−

dz−
z−

1∫
y+

dz+

z+
De(x1, β)De(x2, sβ)Dμ

(
y−
z−

, β1

)
Dμ

(
y+

z+
, β1

)
×

×
(1 + α

π K)
|1 − Π(sx1x2)|2

dσe+e−→μ+μ−γ(x1p−, x2p+, Q−, Q+, k1)
dΓ1

,

Q± =
z±
y±

q±, y± =
ε±
ε

, β =
α

2π

(
ln

s

m2
− 1
)

, β1 =
α

2π

(
ln

s1

M2
− 1
)

(1.57)

and the structure functions D(x, s) having the standard form:

De(x, β) = δ(1 − x) + P (1)(x)β + . . . ,

Dμ(y, β1) = δ(1 − y) + P (1)(y)β1 + . . .
(1.58)

The phase volumes entering the left and right parts of master equation are
different:

dΓ =
d3q−
ε−

d3q+

ε+

d3k1

ω1
δ(p+ + p− − q+ − q− − k1),

dΓ1 =
d3Q−
E−

d3Q+

E+

d3k1

ω1
δ(x2p+ + x1p− − Q+ − Q− − k1), (1.59)

E± =
z±
y±

ε±.
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The lower limits of the energy fractions integrations xm, ym are determined by
the experiment setup conditions. The quantity K (the so-called K factor) collects
all the nonleading contributions. It has contributions from virtual-, soft-, and
hard-photon emission terms. In Table 1 we give its value for typical experimental
points of the considered process keeping all contributions except ones arising
from additional hard-photon emission.

Table 1. Numerical estimation of K factor

N y− y+ c− c+ ΔNL

1 0.59 0.66 0.29 Ä0.06 6.77
2 0.67 0.67 0.50 0.30 3.24
3 0.68 0.65 0.69 Ä0.50 8.68
4 0.59 0.56 Ä0.30 Ä0.30 8.35

Without additional calculations we can obtain, by the analogy with the result
given above, the cross section of crossing process Å radiative electronÄmuon
scattering:

e−(p1) + μ−(q1) → e−(p2) + μ−(q2) + γ(k1) + (γ). (1.60)

It can be constructed in complete analogy with the DrellÄYan form of cross
section of above considered process e+e− → μ+μ−γ, using in the right-hand
side as a hard subprocess the Born cross section:

dσeμγ
B (p1, q1; p2, q2, k1)

dΓeμγ
=

=
α3

16π2(p1q1)
(p1q2)2 + (p1q1)2 + (p2q1)2 + (p2q2)2

(p1p2)(q1q2)
W, (1.61)

with

dΓeμγ =
d3q2

q20

d3p2

p20

d3k1

ω1
δ4(p1 + q1 − p2 − q2 − k1),

(1.62)

W = −
(

p1

p1k1
+

q1

q1k1
− p2

p2k1
− q2

q2k1

)2

.

It is worth to note that the value of K factor for the last process is not known.
All the used 1-loop integrals of scalar, vector, and tensor types are presented

in Subsec. 3.1.
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1.3. Target Normal Spin Asymmetry and Charge Asymmetry for eμ Elastic
Scattering and the Crossed Processes. We give here an accurate description of
the process eμ̄ → eμ̄(γ); eē → μμ̄(γ) in the framework of QED, in order to
provide a basis for the comparison with experimental data [14]. High precision
experiments on the processes eē → τ τ̄ and eē → pp̄ are planned in future c − τ
facilities. Moreover, the possibility of colliding eμ beam facilities has been
discussed in the framework of programs on veriˇcation of SM prediction.

The obtained results can also be applied, as a realistic model, to electron
(positron) scattering on a point-like hadron (proton).

It is known that in Born approximation the differential cross section of elastic
protonÄelectron scattering

e(p1) + p(p) → e(p′1) + p(p′) (1.63)

can be expressed in terms of two-proton form factors, F1,2(q2), which are func-
tions of a single argument, the momentum transfer squared, q2 = t.

Taking into account two (and more) photon exchanges leads to a general-
ization of the Born picture, namely the amplitude of ep scattering depends on
two Mandelstam variables, the total energy s and t. The virtual photon Compton
scattering amplitude is a rather complex object, which can be expressed in terms
of 12 chiral amplitudes. Nevertheless, taking into account parity conservation and
omitting the terms of order me/mμ (which are responsible for chirality violation),
we can reduce the number of relevant amplitudes to three [33]:

M (2) =
iα2

t
ū(p′1)γμu(p1)×

× ū(p′)
[
F1(s, t)γμ − F2(s, t)

2M
γμq̂ +

1
t
F3(s, t)(p̂1 + p̂′1)(p + p′)μ

]
u(p), (1.64)

with q = p1 − p′1, s = 2p1p.
The explicit calculation, given in this Subsection, permits one to extract the

individual contributions F1, F2, and F3, in the framework of QED. The infrared
divergency is cancelled when the relevant soft-photon emission is correctly taken
into account.

Charge-odd and backwardÄforward asymmetries appear naturally from the
interference of one- and two-photon exchange amplitudes in the framework of
QED and SM due to Z0-boson exchange in the Born approximation. But at the
energy range reachable at c − τ factories, the relevant contribution of SM type
is [32]:

dσodd
Z

dσQED
≈ s

M2
Z

avaa ≈ 5 · 10−5, 3 <
√

s < 5 GeV, (1.65)

which is quite small compared to QED effects.
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The accuracy of results given below is determined by

O
(

m2
e

m2
μ

,
m2

e

m2
τ

,
m2

e

m2
p

)
∼ 0.1% (1.66)

and the contribution of higher orders of QED α/π ≈ 0.5%. Moreover, we assume
that all the velocities of the ˇnal heavy particles are ˇnite in the annihilation as
well as in the scattering channels. This is the reason why Coulomb factors are
neglected.

1.3.1. Process e+ + e− → μ+ + μ−(γ) TPE Amplitude. At ˇrst, we consider
the process of creation of μ+μ− pairs in electronÄpositron annihilation:

e+(p+) + e−(p−) → μ+(q+) + μ−(q−). (1.67)

The cross section in the Born approximation can be written as

dσB

dOμ−

=
α2

4s
β(2 − β2 + β2c2), (1.68)

with s = (p+ + p−)2 = 4E2, β2 = 1− 4m2/s, E is the electron beam energy in
the center-of-mass reference frame (implied for this process below); m, me are
the masses of muon and electron; c = cos θ, and θ is the angle of μ−-meson
emission to the electron beam direction.

The interference of the Born amplitude

MB =
i4πα

s
v̄(p+)γμu(p−)ū(q−)γμv(q+),

with the TPE amplitude Mbox results in parity violating contributions to the
differential cross section, i.e., the ones, changing the sign at θ → π − θ. As a
consequence of charge-odd correlations we can construct:

A(θ, ΔE) =
dσ(θ) − dσ(π − θ)

dσB(θ)
. (1.69)

Here we take into account as well the emission of an additional soft real photon
with energy not exceeding some small value ΔE, so that A(θ, ΔE) is free from
the infrared singularities.

There are two TPE Feynman amplitudes (Fig. 1). We calculate only one of
them, the uncrossed diagram with matrix element

Ma = iα2

∫
d4k

iπ2

ū(q−)Tv(q+) × v̄(p+)Zu(p−)
(Δ)(Q)(P+)(P−)

,

(1.70)

(Δ) = (k − Δ)2 − m2
e, (Q) = (k − Q)2 − m2, (P±) = (k ∓ P )2 − λ2,
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Fig. 1. Feynman diagrams for two-photon exchange in eē → μμ̄ process: box diagram (a)
and crossed box diagram (b)

with λ-®photon¯ mass and

T = γα(k̂ − Q̂ + m)γβ , Z = γβ(k̂ − Δ̂)γα,
(1.71)

Δ =
1
2
(p+ − p−), Q =

1
2
(q+ − q−), P =

1
2
(p+ + p−).

We will assume
m2 =

s

4
(1 − β2) ∼ s ∼ −t ∼ −u. (1.72)

The explicit form of kinematical variables used below is:

Δ2 = −P 2 = −s

4
, Q2 = −1

4
sβ2, σ = ΔQ =

1
4
(u − t),

(1.73)
u = (p− − q+)2 = −s

4
(1 + β2 + 2βc), t = (p− − q−)2 = −s

4
(1 + β2− 2βc).

The contribution to the cross section of the amplitude arising from the crossed
Feynman diagram (Fig. 1, b), Mb, can be obtained from Ma by the crossing
relation

dσa(s, t)
dΩμ

= −dσb(s, u)
dΩμ

, (1.74)

which has the form
dσa(s, t)

dΩμ
=

βα3

2πs2
Re [R(s, t)], (1.75)

with

R(s, t) =
∫

d4k

iπ2

1
(Δ)(Q)(P+)(P−)

1
4

Tr [(q̂− + m)T (q̂+ − m) γμ]×

× 1
4

Tr (p̂+Zp̂−γμ) . (1.76)

The scalar, vector, and tensor loop momentum integrals are deˇned as

J ; Jμ; Jμν =
∫

d4k

iπ2

1; kμ; kμkν

(Δ)(Q)(P+)(P−)
. (1.77)
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Using symmetry properties, the vector and tensor integrals can be written as

Jμ = JΔ · Δμ + JQ · Qμ, (1.78)

Jμν = K0gμν+KP PμPν +KQQμQν+KΔΔμΔν+Kx(QμΔν +QνΔμ). (1.79)

The quantity R(s, t) can be expressed as a function of polynomials Pi as

R = P1J + P2JΔ + P3JQ + P4K0 + P5KΔ + P6KQ + P7KP + P8Kx, (1.80)

where the explicit form of polynomials is given in [29]. Using the explicit
expression for the coefˇcients JΔ, . . . , Kx (see Subsec. 3.1) we obtain

R(s, t) = 4(σ − Δ2)(2σ − m2)F + 16(σ − Δ2)(σ2 + (Δ2)2 − m2Δ2)J+

+ 4[(Δ2)2 − 3Δ2σ + 2σ2 − m2σ]FQ + 4[2(Δ2)2 − 2Δ2σ + 2σ2 − m2Δ2]FΔ+

+ 4[(Δ2)2 + Δ2σ + m2Δ2]GQ + 4[−(Δ2)2 + σ2 − 2m2Δ2]HQ, (1.81)

with the quantities F − HQ given in Subsec. 3.1. Finally the charge-odd part of
differential cross section has the form(

dσeē
virt(s, t)
dΩμ

)
odd

= −α3β

2πs
Dann,

(1.82)

Dann =
1
s
[R(s, t) − R(s, u)] = (2 − β2 + β2c2) ln

(
1 + βc

1 − βc

)
ln

s

λ2
+ Dann

V

and

Dann
V =

(
1 − 2β2 + β2c2

) [ 1
1 + β2 + 2βc

(
ln

1 + βc

2
+ ln

s

m2

)
−

− 1
1 + β2 − 2βc

(
ln

1 − βc

2
+ ln

s

m2

)]
+

+ βc

[
ϕ(β)
(

1
2β2

− 1 − β2

2

)
− 1

β2
ln

s

m2
− π2

6
+

1
2

ln2 s

m2
−

− 1
2

ln2 1 − βc

2
− 1

2
ln2 1 + βc

2
+ Li2

(
1 + β2 + 2βc

2(1 + βc)

)
+

+Li2

(
1 + β2 − 2βc

2(1 − βc)

)]
− m2

s

[
ln2 1 − βc

2
− ln2 1 + βc

2
+

+2Li2

(
1 + β2 + 2βc

2(1 + βc)

)
− 2Li2

(
1 + β2 − 2βc

2(1 − βc)

)]
, (1.83)

where ϕ(β) = sFQ, FQ is given in Subsec. 3.1. The quantity Dann − Dann
V

suffers from infrared divergences, which will be compensated taking into account
the soft-photon contribution (see below).
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1.3.2. Scattering Channel. Let us consider now the elastic electron muon
scattering

e(p1) + μ(p) → e(p′1) + μ(p′)

which is the crossed process of (1.67). The Born cross section is the same for the
scattering of electrons and positrons on the same target. Taking the experimental
data from the scattering of electron and positron on the same target (muon or
proton), one can measure the difference of the corresponding cross sections which
is sensitive to the interference of the one- and two-photon exchange amplitudes.
For the case of proton target, in the Laboratory (Lab) frame, the differential cross
section as a function of the energy of the initial electron, E, and of the electron
scattering angle, θe, was derived in [23]:

dσep

dΩ
=

α2

4E2

cos2 θe/2
sin4 θe/2

1
ρ

[
F 2

E + τF 2
M

1 + τ
+ 2τF 2

M tan2 θe

2

]
,

(1.84)

ρ = 1 +
2E

m
sin2 θe

2
, τ =

−t

4m2
=

E2

m2ρ
sin2 θe

2
,

and it is known as the Rosenbluth formula. The Sachs electric and magnetic
proton form factors, FE and FM , are related to the Pauli and Dirac form factors
by FE = F1 − τF2, FM = F1 + F2. For the scattering on muon, one replaces
F1 = 1, F2 = 0 and Eq. (1.84) becomes

dσeμ
B

dΩ
=

α2(s2 + u2 + 2tm2)
2m2ρ2t2

,

(1.85)

s = 2p1p = 2mE, t = −2p1p
′
1, u = −2pp′1 = − s

ρ
.

The charge-odd contribution to the cross section of eμ-elastic scattering is:(
dσeμ

virt

dΩe

)
odd

= − α3

2πm2ρ2
ReDsc,

(1.86)

Dsc =
1
t
[D(s, t) −D(u, t)] =

2
t2

[s2 + u2 + 2tm2] ln
−u

s
ln

−t

λ2
+ Dsc

virt,

with

Dsc
virt =

s − u

t

[
1
2

ln2

(
−t

m2

)
− τ

1 + τ
ln
(
−t

m2

)
+ Z
(

6τ + 2 − 2τ2

1 + τ

)]
+

+
s

t

[
− ln2 s

−t
+ π2 + 2Li2

(
1 +

m2

s

)]
− u

t

[
− ln2 u

t
+ 2Li2

(
1 +

m2

u

)]
+
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+
(1 − 2τ)
(−4τ)

[
2 ln
(

s

−u

)
ln
(
−t

m2

)
+ ln2

(
−u

m2

)
− ln2
( s

m2

)
+ π2 +

+2Li2

(
1 +

m2

s

)
− 2Li2

(
1 +

m2

u

)]
+
(
2m2 − su

t

)
×

×
[
ln s/m2

m2 + s
− ln −u/m2

m2 + u

]
(1.87)

and

Z = − 1
4
√

τ(1 + τ)

[
π2 + ln (4τ) ln x + Li2−2

√
τx − Li2

2
√

τ√
x

]
,

(1.88)

x =
√

1 + τ +
√

τ√
1 + τ −

√
τ
.

1.3.3. Soft-Photon Emission in the Scattering Channel. Charge Asymmetry.
In this Subsection the emission of soft real photons in the Lab reference frame for
eμ scattering is calculated. Following the recept of 't Hooft and Weltman, [21],
see also [34], we obtain for the odd part of the cross section

dσsoft
eμ

dΩ
= −α3

π

(s2 + u2 + 2tm2)
2m2ρ2t2

{
2 ln ρ ln

[
(2ρΔE)2

λ2x

]
+ Dsc

soft

}
,

(1.89)

Dsc
soft = −2Li2

(
1 − 1

ρx

)
+ 2Li2

(
1 − ρ

x

)
, ρ =

s

−u
.

The sum (dσvirt
eμ + dσsoft

eμ )odd has the form(
dσvirt

eμ

dΩe
+

dσsoft
eμ

dΩe

)
odd

=
α3

2πm2ρ2

(s2+u2+2tm2)
t2

[
−2 lnρ ln

(2ρΔE)2

−tx
+ Ξ
]

,

(1.90)

Ξ = Re
[
− t2Dsc

virt

s2 + u2 + 2tm2
−Dsc

soft

]
and it is independent of the photon mass λ.

The function Ξ is shown in Fig. 2 as a function of cos θe for given E/m.
The ratio between the difference and the sum (corresponding to the Born

cross section) of the cross sections for e±μ scattering is:

dσe−μ→e−μ(γ) − dσe+μ→e+μ(γ)

dσe+μ→e+μ(γ) + dσe−μ→e−μ(γ)
=

α

π

[
Ξ − 2 ln ρ ln

(2ρΔE)2

−tx

]
. (1.91)
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Fig. 2. Ξ(s, cos θ) for E = 5m (dashed line) and E = 10m (solid line), m is muon mass

1.3.4. Soft-Photon Emission in Annihilation Channel. Charge Asymmetry.
The odd contributions to the differential cross section for the process e+ + e− →
μ+ + μ−, due to soft-photon emission, has the form:

(dσ
e+e−→μ+μ−(γ)
soft )odd =

= dσ0

(
− α

2π2

)∫ d3k

ω

(
− p−

p−k
+

p+

p+k

)(
q+

q+k
− q−

q−k

)
S0,ω<Δε

. (1.92)

Again, the integration must be performed in the special frame S0, where p̄+ +
p̄− − q̄+ = q̄− + k̄ = 0. In this frame we have

(q− + k)2 − m2 = 2(E− + ω)ω ≈ 2mω =

= (p+ + p− − q+)2 − m2 = 4E(E − ε+), (1.93)

E − ε+ =
m

2E
Δε.

In the elastic case E − εel
+ = 0, and the photon energy in the Lab system is

ΔE = εel
+ − ε+ =

m

2E
Δε. (1.94)

The 't HooftÄVeltman procedure for soft-photon emission contribution leads to

dσsoft
ann

dΩ
=

dσ0

dΩ
2α

π

[
ln
(

4EΔE

mλ

)2

ln
1 + βc

1 − βc
+ Dann

S

]
(1.95)
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with

Dann
s =

1
2
Li2

(
−2β(1 + c)

(1 − β)(1 − βc)

)
+

1
2
Li2

(
2β(1 − c)

(1 + β)(1 − βc)

)
−

− 1
2
Li2

(
−2β(1 − c)

(1 − β)(1 + βc)

)
− 1

2
Li2

(
2β(1 + c)

(1 + β)(1 + βc)

)
. (1.96)

The total contribution (virtual and soft) is free from infrared singularities and has
the form

dσann

dΩ
=

α3β

2πs
(2 − β2 + β2c2)Υ, Υ = 2 ln

1 + βc

1 − βc
ln
(2ΔE

m

)
+ Φ(s, cos θ),

(1.97)

Φ(s, cos θ) = Dann
S − Dann

V

2 − β2 + β2c2
,

with Dann
V given in 1.83. The quantity Φ(s, cos θ) is presented in Fig. 3.

Fig. 3. Φ(s, cos θ), for s = 10m2 (dashed line) and s = 20m2 (solid line), m is muon
mass

The relevant asymmetry can be constructed from (1.69)

A =
4α

π
Υ. (1.98)

1.3.5. Crossing Symmetry. In this Subsection we formally consider the rela-
tions between the kinematical variables in the scattering and in the annihilation
channel, e+ + e− → p + p̄. The reduced form of the differential elastic ep-
scattering cross section, commonly used, is deˇned as σred = τF 2

M + εF 2
E , and

it is related to the differential cross section by

dσ

dΩ
= σMσred, σM =

α2 cos2 θe/2
4E2 sin4 θe/2

1
ρε(1 + τ)

,

(1.99)

ε =
1

1 + 2(1 + τ) tan2 θe/2
,
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where ε is the transverse (linear) polarization of a virtual photon and varies from
ε = 0, for θe = π, to ε = 1, for θe = 0.

The crossing relation between the scattering channel e + p → e + p and the
annihilation channel e+ + e− → p + p̄ consists in replacing the variables of the
scattering channel s = 2p1p = 2Em and Q2 = −t according to

m2 + s → t = −2E2(1 − βc), Q2 → −s = −4E2, c = cos θ, (1.100)

where θ is the angle of the antiproton with respect to the incident electron, in
the c.m.s.

The following relation holds for the annihilation channel:

cos2 θ =
(t − u)2

s(s − 4M2)
, s + t + u = 2M2. (1.101)

On the other hand, in the scattering channel, one has:

1 + ε

1 − ε
=

cot2 θe/2
1 + τ

+ 1 =
(s − u)2

Q2(Q2 + 4M2)
, Q2 = s + u. (1.102)

Therefore one proves the validity of the crossing relation:

cos θ =

√
1 + ε

1 − ε
≡ y, (1.103)

based on the analytical continuation from the annihilation channel to the scat-
tering one. This relation was derived in [36]. Using this relation and the

property of the 2γ contribution to the annihilation cross section

(
dσ

dΩ
(θ)
)

2γ

=

−
(

dσ

dΩ
(π − θ)

)
2γ

, i.e.,

(
dσ

dΩ
(θ)
)

2γ

= cos θf(cos2 θ, s), we have for 2γ con-

tribution to ep-elastic scattering

dΔσ

dΩe
(e−p → e−p) = yf(y2, Q2),

(1.104)
f(y2, Q2) = c0(Q2) + y2c1(Q2) + y4c2(Q2) + . . .

This property follows from the change of the sign of the contribution for vir-
tual and real photon emission when the (s ↔ u) transformation is applied (see
Eqs. (1.87), (1.89), (1.90) and relation (1.102)).

This form of the contribution of the interference of Born and TPE amplitudes
to the differential cross section derives explicitly from C invariance and crossing
symmetry of electromagnetic interactions and excludes any linear function of ε
for a possible parameterization of such contribution.
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Let us note that not only the elastic channel must be taken into account:
the interference of the amplitudes corresponding to the emission of a photon by
electron and by proton must be considered, too.

Evidently, the relations derived above are valid for the considered processes
with electrons and heavy lepton setting, respectively, FE = FM = 1.

1.3.6. Derivation of the Additional Structure: Annihilation Channel. Let us
start from the following form of the matrix element for the process e+(p+) +
e−(p−) → μ+(q+) + μ−(q−) in the presence of 2γ exchange (see (1.64) [33]):

M2 =
iα2

s
v̄(p+)γμu(p−)×

× ū(q−)
(

G1γμ − G2

m
γμP̂ + 4

1
s
G3Δ̂Qμ

)
v(q+), (1.105)

where the amplitudes Gi are complex functions of the two kinematical variables
s and t.

To calculate the structure G3 from the 2γ amplitude (see Eq. (1.70)), dia-
grams (Figs. 1, a and b) must be taken into account. Only one of them can be
calculated explicitly (the uncrossed one), whereas the other, b, can be obtained
from uncrossed one by appropriate replacements.

To extract the structure G3 we multiply Eq. (1.105) subsequently by

ū(p−)γλv(p+) × v̄(q+)γλu(q−),
ū(p−)Q̂v(p+) × v̄(q+)u(q−), (1.106)

ū(p−)Q̂v(p+) × v̄(q+)Δ̂u(q−),

and perform the summation on fermions spin states.

Solving the algebraical set of equations we ˇnd

Ga
1 =

1
β4 sin4 θ

{
(8Ba + Aaβ2 sin2 θ)(1 − β2 cos2 θ)−

−4Caβ cos θ
[
2 − β2(1 + cos2 θ)

]}
,

Ga
2 =

1
β4 sin4 θ

{
β(1 − β2)(Aaβ sin2 θ − 8Ca cos θ)+ (1.107)

+4Ba
[
2 − β2(1 + cos2 θ)

]}
,

Ga
3 =

1
β3 sin4 θ

[
−Aaβ2 sin2 θ cos θ − 8Ba cos θ + 4βCa(1 + cos2 θ)

]
,
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with

Aa =
∫

d4k

iπ2

1
(Δ)(Q)(P+)(P−)

1
s

Tr (p̂+Zp̂−γλ)
1
4

Tr [(q− + m)T (q̂+ − m)γλ],

Ba =
∫

d4k

iπ2

1
(Δ)(Q)(P+)(P−)

m

s2
Tr (p̂+Zp̂−Q̂)

1
4

Tr [(q̂− + m)T (q̂+ − m)],

(1.108)

Ca =
∫

d4k

iπ2

1
(Δ)(Q)(P+)(P−)

1
s2

Tr (p̂+Zp̂−Q̂)
1
4

Tr [(q̂− + m)T (q̂+ − m)Δ̂].

The explicit value for Ga
3 is:

Ga
3 =

2s

β3(1 − c2)2

{
1
2
GQ(1 − c2)β3(1 − βc)+

+
1
2
HQβ2(1 − c2)[c(−3 + 5β2) − β − βc2]+

+ FΔc[1 − 4β2 + 2β4 + c2β2(3 − 4β2) − 2βc(1 − 2β2)]+

+ FQβ

[
−c2 + βc

(
−1

2
− 4β2c2 +

5
2
c2

)
+ β2

(
−1

2
+ 2β2c2 +

3
2
c2

)]
−

− 2Jsβ2c(1 − c2)(1 − β2)(1 − βc)+

+ Fc
[
1 + β2c2 − 2β4 − 4β4c2 + βc(−3 + 4β2 + 2β4 + β2c2)

]}
. (1.109)

The contributions from the crossed Feynman diagram can be obtained from
Eq. (1.109) by

(Ab, Bb, Cb)cros = −[Aa, Ba, Ca(cos θ → − cos θ)]uncros. (1.110)

The parameterization (1.105) for the contribution to the matrix element arising
from box-type diagrams in terms of three additional functions Gi(s, t), i = 1, 2, 3,
suffers from infrared divergencies, which can be eliminated by taking into account
soft-photon emission expressed in terms of structures G1, G2, G3. This procedure
results in replacing ln (m/λ) with ln Δ.

1.3.7. One-Spin Asymmetry Caused by Proton Polarization. Let us consider
now the process of electron interaction with a heavy lepton (point-like proton).
For clearness, the expressions are written for the proton case. For the interaction
of electrons with heavy leptons, μ or τ , one should take GE = GM = 1 and use
the relevant mass replacement.
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The target spin asymmetry for heavy-fermion production process e+(p+) +
e−(p−) → p(q+) + p̄(q−) (in c.m.s. frame) is deˇned as

dσ↑ − dσ↓

dσ↑ + dσ↓ = (an)Rn, (1.111)

where a is the proton polarization vector; n = (q− × p−)/ |q− × p−| is the
unit vector normal to the scattering plane; dσ↑ is the cross section of processes
with proton polarization vector a, dσ↓ is the cross section of processes with
proton polarization vector −a. Thus the denominator in the left-hand side of
Eq. (1.111) is the unpolarized cross section of process e+e− → p + p̄ which is
well known [38] (for the case of protonÄantiproton creation):

dσe+e−→pp̄

dΩ
=

α2β

4s

[(
1 + cos2 θ

)
|GM |2 +

(
1 − β2

)
|GE |2 sin2 θ

]
, (1.112)

where β =
√

1 − 4M2/s is the velocity of proton in c.m. frame; s is the total
energy square, and θ is the angle between vectors q− and p−.

The difference of cross sections in (1.111) is originated by the s-channel
discontinuity of interference of the Born amplitude with TPE amplitude

dσ↑ − dσ↓ ∼ Re
∑

(A+
el · ATPE + Ael · A+

TPE). (1.113)

Using the density matrix of ˇnal proton u(p)ū(p) = (p̂ + M)(1 − γ5â) one gets

Re
∑(

A+
el · ATPE + Ael · A+

TPE

)
= 32

(4πα)3 (2πi)2

sπ2
Re (Y ),

Y =
∫

dk

iπ2

1
(Δ)(Q)(+)(−)

× 1
4

Tr
[
p̂1γ

αp̂′1γ
μ(k̂ − Δ̂)γν

]
×

× 1
4

Tr
[
(p̂ − M)(−γ5â)γα(p̂′ + M)γν(k̂ − Q̂ + M)γμ

]
. (1.114)

Performing the loop-momenta integration, the right-hand side of Eq. (1.114) can
be expressed in terms of basic integrals (see Subsec. 3.1)

Re (Y ) = 4M(a, Δ, Q, P ) Im (FQ − GQ + HQ), (1.115)

where (a, Δ, Q, P ) ≡ εμνρσaμΔνQρPσ = (
√

s/2)3(an)β sin θ. Using the ex-
pressions listed in Subsec. 3.1 we have:

Im (FQ − GQ + HQ) =
π

s
ψ(β) =

π

sβ2

(
1 − β2

β
ln

1 + β

1 − β
− 2
)

. (1.116)
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Fig. 4. Asymmetry Rn for the case of
structureless proton for energies s =
5 GeV2 (dashed line) and s = 15 GeV2

(solid line)

Fig. 5. Asymmetry Tn in the case of
structureless proton for E = 5 GeV
(dashed line) and E = 10 GeV (solid
line)

Thus, after some algebra, the following expression for spin asymmetry can
be obtained for the processes e+ + e− → p + p̄:

Rn = 2α
M√

s

βψ(β) sin θ

2 − β2 sin2 θ
, (1.117)

and it is shown in Fig. 4, as a function of θ at several values of s for the case of
structureless proton.

Such considerations apply to the scattering channel when the initial protons
are polarized. Similarly to (1.116) one ˇnds

Ims(F̄Q − ḠQ + H̄Q) = − π

s + M2
(1.118)

(note that the s-channel imaginary part vanishes for the crossed photon diagram
amplitude). The contribution of the polarization vector appears in the same
combination

(a, Δ, Q, P ) =
1
2
(a, p, p1, q) =

ME2

2ρ
sin θ(an). (1.119)

The single-spin asymmetry for the process e− + p → e− + p (the initial proton
is polarized) has the form:

dσ↑ − dσ↓

dσ↑ + dσ↓ = (an)Tn (1.120)

with

Tn =
α

2M2

s2

s + M2
(1 + τ)

ε

ρσred
sin θ tan2 θ

2
. (1.121)

This quantity is shown in Fig. 5 for the case of structureless proton as a function
of θ, for two values of s. The asymmetry decreases when the c.m.s. energy
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growth, so in experiment it is useful to measure the asymmetry near the threshold
of proton (or heavy lepton) production.

The results obtained here, for the processes e±p → e±p(γ) are particularly
interesting in view of the experiments planned at Novosibirsk and at JLab as well
as e+ +e− → NN̄(γ), which can be investigated at Frascati and Bejing (see [37]
and references therein).

1.4. Compton Tensor with Heavy Photon in the Case of Longitudinally
Polarized Fermion. In the case of unpolarized fermions the Compton tensor
with heavy photon was calculated in papers [8] years ago. It accumulates a
considerable part of radiative corrections and can be used as a building block in

Fig. 6. The Born-level Feynman diagrams
(a Å for t-type, b Å for s-type)

calculations of various processes. This
tensor was used for precision calcula-
tions of radiative corrections to Bhabha
scattering at LEP, cross section of deep
inelastic scattering with tagged pho-
tons [76], and other.

We will restrict ourselves here in
considering only that part of the Comp-
ton tensor which contains the degree of
polarization of the initial electron. The
absence in literature of a closed expression for this quantity and the importance
of it for many applications is the motivation for this investigation.

Let us consider the process (see Fig. 6)

γ∗(q) + e(p1) −→ γ(k1) + e(p2),
(1.122)

q2 < 0, k2
1 = 0, p2

1 = p2
2 = m2, p1 + q = p2 + k1,

where m is the electron mass.
The Compton tensor is deˇned as

Kρσ = (8πα)−2ΣMeγ∗→eγ
ρ (Meγ∗→eγ

σ )∗, (1.123)

where the matrix element M describes the Compton scattering process (1.122).
It reads

Mρ = M0ρ + M1ρ = ū(p2)Oρμu(p1)e
μ
λ(k1), Oρμ = O(0)

ρμ +
α

4π
O(1)

ρμ ,

O(0)
ρμ = γρ

(p̂2 − q̂ + m)
t

γμ + γμ
(p̂1 + q̂ + m)

s
γρ, (1.124)

s = 2p2k1, t = −2p1k1, u = −2p1p2, q2 = s + t + u.

The quantities O
(0)
ρμ and O

(1)
ρμ take into account the lowest and the ˇrst orders of

perturbation theory, respectively.
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Calculating the ˇrst order correction, we will assume that all kinematical
invariants of the process to be large in comparison with the electron mass squared:

s ∼ −t ∼ −u ∼ −q2 � m2. (1.125)

So, we will neglect the electron mass in all places, where possible. Note that for
the unpolarized case in [8] the mass was taken into account.

The Compton tensor deˇned in (1.123) is a Hermitian one by construction:

Kρσ = K∗
σρ. (1.126)

We will separate the contributions, associated with the electron polarization:

Kρσ = K0
ρσ +

α

4π
(K1

ρσ + K1∗
σρ),

(1.127)
K0

ρσ = Bρσ + ξP 0
ρσ , K1

ρσ = Tρσ + ξP 1
ρσ ,

where ξ is the degree of the initial electron polarization. Quantities Bρσ and Tρσ

correspond to the case of unpolarized electron:

Bρσ = Bg g̃ρσ + B11p̃1ρp̃1σ + B22p̃2ρp̃2σ,

Bg =
1
st

[(s + u)2 + (t + u)2] − 2m2q2

(
1
s2

+
1
t2

)
, (1.128)

B11 =
4q2

st
− 8m2

s2
, B22 =

4q2

st
− 8m2

t2
,

where the new variables

g̃ρσ = gρσ − qρqσ

q2
, p̃ρ

1,2 = pρ
1,2 −

p1,2q

q2
qρ (1.129)

provide an explicit fulˇllment of gauge conditions: qρK
ρσ = 0, qσKρσ = 0.

Quantity Tρσ has a rather cumbersome form, it is given in [8].
For the case of the most general form for the electron polarization vector

Σu(p)ū(p) = (p̂ + m)(1 − ξγ5â), (1.130)

one obtains (see also [51,52])

P 0
ρσ = 4m

{
(p1qρσ)

qa − 2p2a

st
+ (p2qρσ)

[
qa

t2
+

p2a

t

(
1
s
− 1

t

)]
+

+ (qaρσ)
[
q2

st
− 1

s
− 1

t
− m2

(
1
s2

+
1
t2

)]}
, (1.131)
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where we used the notation

(abcd) ≡ iεαβγδa
αbβcγdδ. (1.132)

This object obeys the Shouten identity:

(abcd)ef = (fbcd)ae + (afcd)be + (abfd)ce + (abcf)de. (1.133)

Below we restrict ourselves by considering only the case of longitudinally
polarized fermion:

Σu(p1)ū(p1) = p̂1(1 − ξγ5). (1.134)

This is the most interesting case for physical applications. In the Born approxi-
mation we obtain

Pρσ = ξ
[
P 0

ρσ +
α

4π
P 1

ρσ

]
,

(1.135)

P 0
ρσ = P 0t

ρσ + P 0s
ρσ =

2
st

[(u + t)(p1qρσ) + (u + s)(p2qρσ)].

The upper indexes t and s mean the contributions of Feynman diagrams (see
Fig. 6). It is useful to present the explicit expressions for P 0t,s

ρσ :

P 0t
ρσ =

1
st

[4(p1p2qσ)(p1ρ + p2ρ) + 2(t − s)(p1p2ρσ) + 2(s + u)(p2qρσ)],
(1.136)

P 0s
ρσ =

1
st

[−4(p1p2qσ)(p1ρ + p2ρ) + 2(s − t)(p1p2ρσ) + 2(s + t)(p1qρσ)].

It is easy to check the following relations:

qρP
0
ρσ = qσP 0

ρσ = 0, (P 0s,t
σρ )∗ = P 0s,t

ρσ , P 0s,t
ρσ qρ = 0, P 0s,t

ρσ qσ �= 0. (1.137)

Note now that we may consider in calculations only half of the full set of eight
Feynman diagrams in 1-loop level drawn in Fig. 7, namely, the diagrams a, b,

Fig. 7. One-loop virtual t-type Feynman diagrams with photon emission by the initial
electron
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c, d. Really the whole contribution may be obtained knowing the values of the
contributions arising from Feynman diagrams (Fig. 7) using the rearrangement
operator:

P 1
ρσ = (1 + Ĥ)(1 − P̂ )(P a,b + P 1c + P 1d)ρσ + P soft

ρσ , (1.138)

where the operator P̂ is deˇned as

P̂F (ρ, σ, p1, p2, q, s, t) = F (ρ, σ, p2, p1,−q, t, s), (1.139)

and the Hermitization operator Ĥ acts as

Ĥaρσ = a∗
σρ. (1.140)

Note that P̂P 0s,t
ρσ = −P 0t,s

ρσ . The last term in Eq. (1.138) describes the contribu-
tion due to the emission of additional soft photon [8]:

P soft
ρσ = P 0

ρσδsoft,

δsoft = − 4πα

16π3

∫
d3k

ω

(
p1

p1k
− p2

p2k

)2∣∣∣∣
ω<Δε

=
α

π

[
(Lu − 1) ln

m2(Δε)2

λ2ε1ε2
+

+
1
2
L2

u − 1
2

ln2 ε1

ε2
− π2

3
+ Li2

(
1 +

u

4ε1ε2

)]
, Lu = ln

−u

m2
. (1.141)

Here Δε is the maximal energy of additional soft photon escaping the detector;
quantities ε1,2 = p0

1,2 are the energies of the initial and the ˇnal electron in the
laboratory reference frame (rest reference frame of the target).

Considering the contribution of Feynman diagrams (Fig. 7, a, b), we may use
the result given in the preprint of paper [8], namely

(Ma
σ + M b

σ)(−i(4απ)2)−1 =

=
α

2π
ū(p2)γσ

[
mA1

(
ê − k̂1

p1e

p1k1

)
+ A2k̂1ê

]
u(p1). (1.142)

Note that this result may be reproduced using the loop integrals list given in the
Appendix of [57] and the standard renormalization procedure. We see that only
structure in front of coefˇcient A2 survives in the limit m → 0. After simple
algebra we obtain:

P a,b
ρσ = 2

2Lt − 1
st

[2(p1p2qσ)p2ρ + (u + s)((p2qρσ) − (p1p2ρσ))],
(1.143)

Lt = ln
−t

m2
.
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The remaining Fig. 7, c, d contributions have the form:

P 1c
ρσ =

1
t

∫
d4k

iπ2

1
a0a2aq

1
4

Tr p̂2γλ(p̂2 − k̂)γσ(p̂2 − q̂ − k̂)×

× γλ(p̂2 − q̂)γμp̂1γ5Õ
0
ρμ (1.144)

and

P 1d
ρσ =
∫

d4k

iπ2

1
a0a1a2aq

1
4

Tr p̂2γλ(p̂2 − k̂)γσ(p̂2 − q̂ − k̂)×

× γμ(p̂1 − k̂)γλp̂1γ5Õ
0
ρμ, (1.145)

where

a0 = k2 − λ2, a1 = k2 − 2p1k,
(1.146)

a2 = k2 − 2p2k, aq = (p2 − q − k)2 − m2,

and the matrix Õ0
ρμ differs from O0

ρμ (see Eq. 1.124) by reversal order of gamma
matrices. Using the integrals given in the Appendix of [57] one may perform
the loop-momenta integration in right-hand parts of expressions for P 1c, P 1d and
obtain the total expression for the Compton tensor. Its explicit form will be given
below.

Now we will concentrate our attention on the terms containing the infrared
singularities. There are three sources of them. The ˇrst one is the renormalization
constant

Z1 = 1 − α

2π

(
1
2
LΛ + 2 ln

λ

m
+

9
4

)
, LΛ = ln

Λ2

m2
, (1.147)

which is needed to remove the ultraviolet divergence of the vertex function,
entering into P 1c. The next source is a part of the box contribution P 1d, which
comes from the terms from the numerator which does not contain loop momenta.
Really for the Feynman diagram Fig. 7, d they are associated with the scalar
integral,

I =
∫

d4k

iπ2

1
a0a1a2aq

=
1
tu

[
2Lu ln

m

λ
− L2

q + 2LtLu − π2

6
− 2Li2

(
1 − q2

u

)]
,

(1.148)

Lq = ln
−q2

m2
.

The third source is the emission of additional soft photons, which was given
above. The infrared singularities are cancelled in the total sum.



42 ARBUZOV A.B. ET AL.

Let us consider the contribution from oneÄloop corrections (see Fig. 7, aÄd)

P t
ρσ = (P a,b + P 1c + P 1d)ρσ. (1.149)

Extracting the leading logarithmic terms and infrared singularities, we may
present it as follows:

P t
ρσ = P 0t

ρσ

[
−L2

u − 4(Lu − 1) ln
m

λ
+ 3Lu

]
+ Rt

ρσ. (1.150)

After Hermitization and rearrangement operations and adding of the soft-
photon contribution we arrive to the result

Pρσ = P 0
ρσ

{
1 +

α

π

[
(Lu − 1) ln

(Δε)2

ε1ε2
+

3
2
Lu−

− 1
2

ln2 ε2

ε1
− π2

3
+ Li2

(
cos2

θ

2

)]}
+

α

4π
Rρσ.

Quantities Rt
ρσ and Rρσ collect nonleading terms. They are free from infrared

singularities.
Tensor Rt

ρσ can be presented in the form:

Rt
ρσ = A(2qσρ) + B(1qσρ) + C(12qσ)p1ρ+

+ D(12qσ)p2ρ + E(12qσ)qρ + F (12σρ).

The coefˇcients A − F have a rather cumbersome form, we are not going to
present them here. Note only that they obey the condition

Cp1q + Dp2q + Eq2 − F = 0, (1.151)

because of gauge invariance in respect to index ρ.
The rearrangement operation acts as (we use here the designations (1abc) =

(p1abc), etc.):

(1 − P̂ )Rt
ρσ = (A + B̃)(2qσρ) + (B + Ã)(1qσρ) + (C − D̃)(12qσ)p1ρ+

+ (D − C̃)(12qσ)p2ρ + (E + Ẽ)(12qσ)qρ + (F + F̃ )(12σρ) ≡
≡ A1(1qσρ) + A2(2qσρ) + B1(12qσ)p1ρ + B2(12qσ)p2ρ+

+ C1(12qσ)qρ + F1(12σρ). (1.152)

Tests of gauge invariance gives an important check of our calculations:

qρ(1 − P̂ )Rρσ = B1(12qσ)p1q + B2(12qσ)p2q + C1(12qσ)q2+

+ F1(12σq) = 0, qσ(1 − P̂ )Rρσ = F1(12qρ) = 0. (1.153)
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The above conditions yield

F1 = 0, C1 = −B1
p1q

q2
− B2

p2q

q2
,

(1.154)
B1p1ρ + B2p2ρ + C1qρ = B1p̃1ρ + B2p̃2ρ.

By straightforward calculations we checked these relations to be valied.
The Hermitization gives

Rρσ = (1 + Ĥ)(1 − P̂ )Rt
ρσ = (A1 + A∗

1)(1qσρ) + (A2 + A∗
2)(2qσρ)

+ (12qσ)[B1p̃1ρ + B2p̃2ρ] − (12qρ)[B∗
1 p̃1σ + B∗

2 p̃2σ], (1.155)

where (a = s + t, b = s + u, c = t + u)

A1 =
2
st

[
2u(2s− u)

a
Lqu +

4us

a

(
u

a
Lqu − 1

)
+

ub

c
+

2u2 + us − s2

c
Lsq+

+
usb

c2
Lsq − 2cζ(2) − 2cLtu + (2s − c)Lqu − uc

s
G+

+
(

ub

t
+ c

)
G̃ + 5c − 2s

]
,

B1 =
2
st

[
8u

a

(
1 −
(

u

a
+ 1
)

Lqu

)
+

6t

b
Lqt +

2(u2 − 2s2 − su)
cu

Lsq+

(1.156)

+
2b

c

(
1 +

s

c
Lsq

)
+

2
s
(2c − s)Ltu +

(
−2 − 4c2

st
− 12b

t
− 4s2

ut

)
Lqu+

+
4b2

tu
Lsu +

(
−2 +

2uc

s2
− 2t

s

)
G +
(

2b

t
+

2b2

t2

)
G̃ + 6
]
,

G = (Lq − Lu)(Lq + Lu − 2Lt) −
π2

3
− 2Li2

(
1 − q2

u

)
+ 2Li2

(
1 − t

q2

)
,

A2 = (s ↔ t)A1, B2 = −(s ↔ t)B1, G̃ = (s ↔ t)G.

Note that the above expressions are free from kinematical singularities. Really,
in the limits a → 0, b → 0, and c → 0, the quantities are ˇnite. The symmetry
between A1, B1 and A2, B2 is because of the initial symmetry between p1 and
p2 in the traces.

Thus we calculated the part of the leptonic tensor, proportional to the initial
longitudinal polarization. This tensor describes Compton scattering with one
off-shell photon, which is connected with a certain target.

The calculation allows one to obtain the correction coming from one-loop
effects to quantities observable in different polarization experiments. Let us
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consider for deˇniteness the task of calculation of α2 order radiative correction
in polarized deep inelastic scattering. The results for the lowest order QED
correction for nucleon and nuclear targets can be found in [51, 52]. Both the
Born cross section (σB) and the cross section at the level of radiative corrections
(σRC) can be split into unpolarized and polarized parts

σB,RC = σunp
B,RC + ξbξtσ

pol
B,RC, (1.157)

where ξb and ξt are polarization degrees of beam and target. The correction to
asymmetry (A = σpol/σunp):

ΔA =
σpol

RCσunp
B − σunp

RC σpol
B

σunp
B (σunp

B + σunp
RC )

(1.158)

is usually not large because of mutual cancellation of large factorizing terms in
Eq. (1.158). It is clear that in such cases when relatively small correction is
obtained as a difference of two large terms, the radiative correction cross section
has to be calculated with the most possible accuracy, and special attention has to
be paid to nonfactorizing terms like (1.156).

Now the new methods of experimental data processing, where experimental
information about spin observable is extracted directly from polarized part of
cross section (difference of observed cross sections with opposite spin conˇgu-
rations) [53], are actively developed. It makes new requirements for accuracy
of radiative correction calculation. We note that there is no any cancellation of
leading contributions in this case, and factorizing terms in (1.150) give the basic
contribution.

The kinematical regions with very high y (y ∼ 0.9) can be reachable in
the current polarization experiments on DIS [54, 55]. In this region, radiative
correction to cross section is comparable or larger than that of Born cross section.
Basically it is originated by contributions of radiative tails from elastic and quasi-
elastic peaks. This calculation ˇrstly allows one to obtain the contribution of these
tails with taking into account loop effects in the next-to-leading approximation.

There is one particular interesting phenomenon. Note, that P
(1)
ρσ contains

not only the imaginary part, but also a certain real part, which comes from the

imaginary parts of A1 and B1. The conversion of this real part of P
(1)
ρσ with

the ordinary symmetrical part of the hadronic tensor will give rise to one-spin
azimuthal asymmetry for the ˇnal electron [56]. The asymmetry is proportional
to the degree of polarization of the initial electron. It is small because of the
extra power of αQED and the absence of large logarithms.

Compton tensor for longitudinally polarized electron was ˇrst obtained in [57].
Some application was considered in [58].



EXACT RESULTS IN QED 45

1.5. Double Logarithmical Corrections to Beam Asymmetry in Polarized
ElectronÄProton Scattering. The beam asymmetry due to transversal polarization
of an electron beam scattered on (unpolarized) protons is a pure quantum effect
arising from the interference of the Born amplitude (with one photon exchange)
and the imaginary part of the two-photon exchange amplitude (Fig. 8).

Fig. 8. The beam asymmetry due to transversal polarization of an electron beam in the
lowest order

The corresponding contribution to the differential cross section as well as
to the beam asymmetry is proportional to the electron mass. Therefore, the
presence of this contribution does not contradict the KinoshitaÄLeeÄNauenberg
theorem [18] about cancellation of mass singularities, since the corresponding
cross sections are suppressed by the lepton mass.

We show that the main contribution arises from the kinematical region of
loop momenta when the energy of the electron in the intermediate state, being
on mass shell, is small in the reference frame of the center of mass of the initial
particles.

The kinematics is determined by the conservation laws

e−(a, p1) + P (p) + (γ) → e−(p′′1) + X + (γ) → e(p′1) + P (p′) + (γ), (1.159)

where a is an electron spin. In general, the emission of real photons must be
considered, in order to avoid infrared divergences, when higher orders of PT are
taken into account. For the case of one-proton intermediate state in the TPE, the
energies of the initial intermediate state and the ˇnal elastically scattered electrons
are equal

p10 = p′′10 = p′10 = ε =
s − M2

2
√

s
, s = (p1 + p)2,

(1.160)

t = (p1 − p′1)
2 = −2ε2(1 − c), p2

1 = (p′1)
2 = m2, p2 = (p′)2 = M2,

where c = cos θ and θ is the scattering angle in the center-of-mass frame. The
absolute values of the photon momenta squared, in TPE amplitude, can reach
zero:∣∣t1∣∣ = ∣∣(p1 − p′′1 )2

∣∣ = 2ε2(1− c1),
∣∣t2∣∣ = ∣∣(p′1 − p′′1)2

∣∣ = 2ε2(1− c2), (1.161)
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where c1,2 are the cosines of the angles between the initial and intermediate
electron momenta and the intermediate and ˇnal ones, respectively.

For the case of inelastic hadronic intermediate state (for instance, a nucleon
and a pion) the energy of the electron in the intermediate state ε′′ does not exceed
ε : m < ε′′ < ε. The exchanged photon momenta squared become:

t1,2 = −2εε′′(1 − bc1,2), 1 − b2 =
m2

(ε′′)2

(
1 − ε′′

ε

)2

. (1.162)

The main contribution arises from two regions −t1 � t2 = t and −t2 � t1 = t.
Moreover, we will show that the energy of the intermediate electron is much

lower than the electron energy corresponding to the elastic case ε′′ � ε.
Neglecting the dependence on p′′1 from the remaining part of the amplitude,

we ˇnd the main DL asymptotic behavior of the amplitude:

(M∗
boxMB)(DL) ≈

∫
ε′′ dε′′ dO′′

2πt1t2
≈ −1

4t
L2. (1.163)

We do not distinguish here the two kinds of ®large logarithms¯

Ls = ln
s

m2
− iπ, Lt = ln

−t

m2
= ln

2ε2(1 − c)
m2

. (1.164)

The result of exact calculation consists in the replacement

L2 → LtLs. (1.165)

1.5.1. Calculation in Double-Logarithm Approximation. Let us investigate
the question about the size of radiative corrections to the cross section for the
scattering of transversally polarized electron and to the relevant beam asymmetry.
The corrections in the lowest order can be of several types (see Figs. 9, 10, 11,
13, 14).

Let us consider ˇrst the RC at the lowest order. The contribution from the
emission of virtual photons is twofold. Firstly, it is due to the vertex functions
in the kinematics where both electrons are on mass shell and the photon mass
squared is negative and large (in absolute value) compared to the electron mass
squared (see Fig. 9). The main contribution arises from the Dirac form factor. In
the scattering channel we have:

F1(q2) = 1 +
α

π

[
ln

m

λ
(1 − Lq) − 1 +

3
4
Lq −

1
4
L2

q +
π2

12

]
= 1 +

α

π
δv(q2),

(1.166)

q2 = t, t1, t2, Lq = Lt, L1, L2, L1 = ln
−t1
m2

, L2 = ln
−t2
m2

.
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Fig. 9. Vertex corrections δv which contribute to the asymmetry

Fig. 10. Inner bremsstrahlung in two-photon diagram

The second class of contributions arises from emission and absorption of real
photons as an intermediate state of the leptonic block.

Let ˇrstly restrict our considerations to the emission of soft real intermediate
photons (see Fig. 10).

For the corresponding contribution we have

α

π
δs = − 4πα

16π3

∫
d3k

ω

(
− p1

p1k
+

p′′1
p′′1k

)(
p′′1
p′′1k

− p′1
p′1k

)∣∣∣∣∣
ω<Δ1

, Δ1 � ε. (1.167)

Using the expressions

− 4πα

16π3

∫
d3k

ω

m2

(p′′1k)2

∣∣∣∣
ω<Δ1

= −α

π
ln

mΔ1

λε′′
,

4πα

16π3

∫
d3k

ω

2p1p
′′
1

(p1k)(p′′1k)

∣∣∣∣
ω<Δ1

=

=
α

2π

[
L1 ln
(

m2Δ2
1

λ2εε′′

)
+

1
2
L2

1 −
1
2

ln2

(
ε′′

ε

)
− π2

3
+ Li2

(
1 + c1

2

)]
,
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Fig. 11. Inelastic two-photon contribution δinel
s

where λ is a ˇctitious ®photon mass¯, the resulting contribution

δvs = δv(t) + δv(t1) + δv(t2) + δs (1.168)

suffers from infrared divergences. To remove these divergences, we must take
into account the inelastic process of electronÄproton scattering with emission of
additional soft (or hard) real photons by initial and ˇnal electrons (see Fig. 11):

α

π
δinel
s = − 4πα

16π3

∫
d3k

ω

(
− p1

p1k
+

p′1
p′1k

)2
∣∣∣∣∣
ω<Δ2

, Δ2 � ε. (1.169)

The total sum δ = δvs + δinel
s is free from infrared divergences:

δ = 2(Lt−1) ln
Δ2

ε
+

1
2
(L1+L2) ln

Δ2
1

εε′′
−ln

Δ1

ε′′
−Lt ln

Δ1

ε
+

3
4
(Lt+L1+L2)−

− 3 − π2

4
+

1
2

[
Li2

(
1 + c1

2

)
+ Li2

(
1 + c2

2

)
+ Li2

(
1 + c

2

)]
−

− 1
2

ln2

(
ε′′

ε

)
. (1.170)

Keeping in mind that the dominant (DL) contribution arises from the region of
intermediate state with a soft lepton in the presence of photons, we can generalize
the above result including the emission of ®hard¯ internal and external photons.
This can be realized by the choice

Δ1 ∼ Δ2 ∼ ε′′. (1.171)

In this case, the hadronic block remains the same as for the lowest order of PT.
In DL approximation we have

δDL =
[
Lt +

1
2
(L1 + L2)

]
ln

ε′′

ε
− 1

2
ln2 ε′′

ε
. (1.172)
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Up to now we calculate the contribution of box diagram to the matrix element.
For the calculation of the asymmetry we must take into account imaginary pairs
of the contribution. By general arguments of analyticity [59], the matrix diagram
with two-photon exchange and insertion of vertex function with correction of αn

order in DL approximation is proportional to LsL
2n−1
t .

It is natural to expect (keeping in mind the arguments in favor of expo-
nentiation of soft-photon emission contributions proved by Yenne, Frautchi, and
Suura [13]) that this result can be generalized to all orders of PT:

R∞ =
Acorr

AB
=

Im (M∗
boxMB)(DL)+corr

Im (M∗
boxMB)(DL)

=

=

⎡⎣ Lt∫
0

(1 − c) dO′′ dl

2π(1 − bc1)(1 − bc2)
exp
(α

π
δDL
)⎤⎦×

×

⎡⎣ Lt∫
0

(1 − c) dO′′ dl

2π(1 − bc1)(1 − bc2)

⎤⎦−1

. (1.173)

Born approximation reads:

ABorn = −me

√
Q2σγp

tot

8π2

Ge

τG2
M + εG2

E

(
ln

Q2

m2
e

− 2
)

. (1.174)

We can use here (see Subsec. 3.2)

dO′′ =
2dc1 dc2√

1 − c2
1 − c2

2 − c2 + 2cc1c2

,

δDL =
3
4
Ltl +

1
8
l2 − 7

8
L2

t +
1
4
(l − Lt) [ln (1 − bc1) + ln (1 − bc2)] , (1.175)

l = ln
2(ε′′)2(1 − c)

m2
.

The calculation in the lowest order of PT leads to

RLO ≈ 1 − α

π

7L2
t

24
. (1.176)

The numerical results for R in the lowest order, RLO, and in higher orders, R∞,
are presented in Fig. 12. One can see they are sizable and should be taken into
account.

The asymmetry at the lowest order of PT has been calculated in previous
papers (see, for instance, [60]).
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Fig. 12. Numerical results for R, Eq. (1.176).
RLO (dashed line) is the result of the calcu-
lation with RC in the lowest order of PT,
R∞ (solid line) when all orders of PT are
taken into account. We assume c = 1/2

Mass suppressed amplitudes connected with Higgs production and decay in
DL approximation were calculated in the paper [61].

The contribution to the imaginary part of the amplitude from the square
of the box diagram (Fig. 13) is of order (α/π)2L, and can be omitted in DL
approximation. This holds also for the interference of the born diagram with the
two-loop box diagram (Fig. 14) [2].

Fig. 13. Square box contribution to the asymmetry

Fig. 14. Contribution to the asymmetry of the interference of the Born diagram with the
two-loop box diagram

We note that the limiting case t → 0 cannot be obtained using the approach
described above. Contrary to the hadronic block, where the t → 0 limit can be
put smoothly, the leptonic block drastically depends on the parameter (−t/m2).
For the t = 0 case, the exact cancellation of RC related to the internal emission
of virtual and real photons takes place, as it was shown in Appendix D of [1].

The presence of infrared singularities in RC to the impact factor of the
electron was previously noted in the paper of one of us [7]. In the present paper,
the way to eliminate such singularities is explicitly shown.
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1.6. Possible Method to Measure the Ratio of Proton Form Factors in
Processes with Proton Spin Transmission. The investigation of the proton
electromagnetic form factors, which are very important characteristics of this
fundamental object, provides a deeper insight into the structure of the proton and
the properties of the interaction between the constituent quarks.

Since the mid-1950s [23,71], to obtain the experimental data on the behavior
of the proton electric, GE(Q2), and magnetic, GM (Q2), form factors (Sachs form
factors) and to analyze the electromagnetic structure of the proton, the electronÄ
proton elastic scattering has been used. For the case of the unpolarized electrons
and protons, all experimental data on the proton form factors were obtained with
the Rosenbluth formula [23] corresponding to the differential cross section of the
elastic ep → ep process,

σ =
dσ

dΩ
=

α2E′
e cos2(θe/2)

4E3
e sin4(θe/2)

1
1 + τ

(
G2

E +
τ

ε
G2

M

)
. (1.177)

Here, τ = Q2/4M2, where M is the proton mass and Q2 = −q2 = 4EeE
′
e×

sin2(θe/2); Ee and E′
e are the energies of the initial and ˇnal electrons, respec-

tively; θe is the electron scattering angle in the rest frame of the initial proton;
and the degree of the transverse (linear) polarization of a virtual photon, ε, is
determined by the expression ε−1 = 1 + 2(1 + τ) tan2(θe/2).

According to the Rosenbluth formula, the leading contribution to the ep → ep
cross section for high Q2 values comes from the term proportional to the proton
magnetic form factor squared G2

M (Q2); therefore, the accuracy of the separation
of the G2

E(Q2) contribution decreases. For this reason, the use of the Rosenbluth
formula for experimental determining the form factors GE(Q2) and GM (Q2)
gives signiˇcant uncertainties at Q2 � 1 GeV2.

Note that Rosenbluth formula (1.177) valid in the laboratory reference frame,
where the initial proton is at rest, is naturally represented as the sum of two terms
proportional to the squares of the Sachs form factors, G2

E and G2
M ,

σ = σ↑↑ + σ↑↓, σ↑↑ = κ G2
E , σ↑↓ = κ

τ

ε
G2

M . (1.178)

Here, κ is the factor in front of the parentheses in Eq. (1.177). However, the
physical meaning of these terms is not explained in the literature and is unknown
for most researchers. To elucidate the physical meaning of the terms σ↑↑ and
σ↑↓, the following simple consideration is sufˇcient. The scattering cross sec-
tion disregarding the polarizations of the initial and ˇnal protons can always be
represented as the sum of the cross sections without and with the spin 	ip of
the initial proton, which should be fully polarized along a certain direction deter-
mined by the process kinematics. Since the initial proton is at rest, this separated
direction can be only the direction of the motion of the scattered proton. Then,
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according to the commonly known additional reasonings (see, e.g., Eqs. (4.55)
from [63] or Eqs. (8.55) and (8.56) from [64]), in the Breit system of the initial
and ˇnal protons, the matrix element of the proton current for the case of the
transition with change in helicity (without spin 	ip) is expressed only in terms of
the electric form factor GE , whereas the matrix element of the proton current for
the case of the transition without change in helicity (with spin 	ip) is expressed
only in terms of the magnetic form factor GM . Thus, the terms σ↑↑ and σ↑↓
in Eq. (1.178) are the cross sections without and with the spin 	ip for the case
where the initial proton is fully polarized in the direction of motion of the ˇnal
proton. Below, we demonstrate that our simple physical consideration is based
on rigorous mathematical results obtained using the approach of the diagonal spin
basis [65, 66]. Since the cross sections without and with the proton spin 	ip in
Eq. (1.178) are expressed only in terms of one of the Sachs form factors, they
can be attractable for performing direct experiments on their measurement and
acquiring new independent data on the behavior of G2

E and G2
M as functions

of Q2.
Akhiezer and Rekalo [67] proposed a method for measuring the ratio of the

Sachs form factors that is based on the polarization transfer from the longitudinally
polarized initial electron to the ˇnal proton and is independent of the Rosenbluth
technique. In [67], it was shown that the ratio of the degrees of the longitudinal,
Pl, and transverse, Pt, polarizations of the scattered proton is proportional to the
ratio of the proton electric and magnetic form factors:

Pl

Pt
= −GM

GE

Ee + E′
e

2M
tan
(

θe

2

)
. (1.179)

The experiments based on the method of the polarization transfer from the initial
electron to the ˇnal proton were recently performed with high accuracy by the
Bates [68] and JLAB [69] Collaborations. They gave surprising results according
to which GE(Q2) decreases with an increase in Q2 faster than GM (Q2)) does;
this contradicts the data acquired by means of the Rosenbluth technique according
to which GE(Q2) and GM (Q2)) up to several GeV2 approximately follow the
dipole form and, hence, μpGE(Q2)/GM (Q2) ≈ 1.

Here it is proposed a new independent method for measuring the squared
Sachs form factors [62]. In this approach, they can be determined separately
and independently by direct measurements of the cross sections without and
with spin 	ip of the initial proton, which should be at rest and fully polarized
in the direction of the motion of the scattered proton. For the case of the
partially polarized initial proton, we propose measuring the ratio of these cross
sections, which makes it possible to determine the ratio of the squared Sachs form
factors.

According to Eq. (1.178), when the initial and ˇnal protons are fully polarized,
the ratio of the cross sections without and with proton spin 	ip has the extremely
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simple form

dσ↑↑
dσ↑↓

=
ε

τ

G2
E

G2
M

. (1.180)

The simplest way for verifying the correctness of Eqs. (1.178) and (1.180) is to
use the method for calculating the matrix elements in the diagonal spin basis [66]
(see Eq. (1.201)), which allows one to project the spins in the initial and ˇnal states
of the particles onto one common direction. The generalization of Eq. (1.180) for
the most general case of the partially polarized initial proton is given below
(see Eq. (1.190)).

Our proposals are based on the results obtained in [65], where it was shown
that the matrix elements of the proton current in the diagonal spin basis that
correspond to the transitions without and with proton spin 	ip are expressed only
in terms of the electric, GE , and magnetic, GM , Sachs form factors, respectively.
Note that our terminology for the cross sections (amplitudes) with and without
proton spin 	ip is not conventional, but has an absolute physical meaning, be-
cause we choose one common direction of the spin projection for the initial and
detected protons; this direction coincides with the direction of the motion of the
scattered proton.

The corresponding experiment on the measurement of the squared Sachs form
factors in the processes with and without proton spin 	ip can be performed as
follows. The initial proton at rest and detected proton should be partially polarized
along the direction of the scattered proton or in the opposite direction. Measuring
the corresponding differential cross section, one can determine the ratio of the
squared Sachs form factors. The proposed method can be applied to the elastic
muonÄproton scattering and implemented in the COMPASS experiment. The
mechanism under consideration is also present in the radiative ep scattering. In
the BetheÄHeitler kinematics, where the leading contribution to the process cross
section comes from two diagrams corresponding to the emission of a photon by an
electron, the above consideration for the elastic ep scattering remains applicable.
The ratio of the squares of the proton electric and magnetic form factors can also
be measured for the process of the photoproduction of lepton pairs on a polarized
proton in the BetheÄHeitler kinematics. Here we consider only the mechanism of
the single-photon exchange between the electron and proton. Our consideration
is inapplicable for the two-photon exchange. However, the contribution of the
two-photon mechanism (caused by the interference of the amplitudes with the
exchange by one and two photons) is about 0.5% of the contribution from the
single-photon mechanism.

1.6.1. Matrix Elements of the Proton Current in the Diagonal Spin Basis. In
the Born approximation, the matrix element corresponding to the electronÄproton
elastic scattering,

e(p1) + p(p, a) → e(p2) + p(p′, a′), (1.181)
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where a and a′ are the polarization 4-vectors of the initial and ˇnal protons, has
the form

Mep→ep = u(p2)γμu(p1) · u(p′)Γμ(q2)u(p)
1
q2

, (1.182)

Γμ(q2) = F1γμ +
F2

4M
(q̂γμ − γμq̂), q = p′ − p, (1.183)

with the mass-shell conditions p2
1 = p2

2 = m2 for electrons and p2 = p′2 = M2

for protons. The matrix elements of the proton current corresponding to the
transitions without and with spin 	ip,

(J±δ,δ
p )μ = u±δ(p′)Γμ(q2)uδ(p), (1.184)

calculated in the diagonal spin basis [65, 66] can be expressed in terms of the
Sachs form factors,

GE = F1 − τF2, GM = F1 + F2, (1.185)

where F1 and F2 are the Dirac and Pauli proton form factors, respectively. The
matrix elements of the proton current given by Eq. (1.184) in the diagonal spin
basis have the form [65,66]

(Jδ,δ
p )μ = 2GEM(b0)μ, (1.186)

(J−δ,δ
p )μ = −2δM

√
τGM (bδ)μ, (1.187)

where

b0 =
(p + p′)√
(p + p′)2

, b3 =
q√
Q2

,

(b1)μ = εμνκσbν
0bκ

3bσ
2 , (b2)μ = εμνκσpνp′κ

pσ
1

ρ
, (1.188)

bδ = b1 + iδb2, δ = ±1, b2
1 = b2

2 = b2
3 = −b2

0 = −1.

Here εμνρσ is the Levi-Civita tensor (ε0123 = −1); ρ is determined from the
normalization conditions, and the set of unit 4-vectors b0, b1, b2, b3 is an ortho-
normalized basis, b∗δ = b1 − iδb2.

Therefore, the matrix elements of the proton current in the diagonal spin
basis that correspond to the transitions with and without proton spin 	ip given
by Eqs. (1.186) and (1.187) are expressed in terms of the electric, GE , and
magnetic, GM , form factors, respectively (see [65, 66]). In the Breit system of
the initial and ˇnal protons, which is a particular case of the diagonal spin basis,
Eqs. (1.186) and (1.187) coincide with similar Eq. (4.55) from [63] and Eqs. (8.55)
and (8.56) from [64].
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In the diagonal spin basis [65,66], the spin 4-vectors a and a′ of the protons
with the 4-momenta p and p′ (ap = a′p′ = 0, a2 = a′2 = −1), respectively, lie
in the hyperplane formed by the 4-vectors p and p′:

a = − (vv′)v − v′√
(vv′)2 − 1

, a′ =
(vv′)v′ − v√

(vv′)2 − 1
, v =

p

M
, v′ =

p′

M
. (1.189)

Spin 4-vectors (1.189) obviously remain unchanged under the transformations of
the small Lorentz group common for the particles with the 4-momenta p and
p ′. Thus, the diagonal spin basis provides the description of the spin states of
the system of two particles by means of the spin projections onto one common
direction. Note that this common direction of the projection of the spins of the
initial and ˇnal protons in the rest frame of the initial proton is the direction of
the motion of the ˇnal proton (see Subsubsec. 1.6.3).

The fundamental fact of the existence of the small Lorentz group common
for the particles with the momenta p and p′ in the diagonal spin basis gives
rise to a number of remarkable features. First, the particles with the 4-momenta
p (before interaction) and p ′ (after interaction) in the diagonal spin basis have
common spin operators. This makes it possible to separate the interactions with
and without change in the spin states of the particles involved in the reaction in
the covariant form and, thus, to trace the dynamics of the spin interaction. The
spin states of massless particles in the diagonal spin basis coincide up to sign with
helical states [66]; in this case, the diagonal spin basis formalism is equivalent to
the CALKUL group method [4].

1.6.2. Generalization of the Diagonal Spin Basis to the Case of Partially
Polarized Protons. The general expression for the ratio of the cross sections for
the ep → ep process with and without spin 	ip for the partially polarized initial
and ˇnal protons has the form:

dσ↑↑
dσ↑↓

=
G2

E(1 + η) + (τ/ε)G2
M (1 − η)

G2
E(1 − η) + (τ/ε)G2

M (1 + η
, η = λλ′, (1.190)

where λ and λ′ are the degrees of the polarization of the initial and ˇnal protons
in the direction of the motion of the ˇnal proton (λ, λ′ � 1).

For the peripheral processes of the radiative electronÄproton scattering and
production of pairs by a photon on a polarized proton at high energies, we can
set ε = 1. In this approximation, relation (1.190) is valid not only for the elastic
process ep → ep, but also for the ep → epγ and γp → eēp processes (see
below). To separate elastic events on a proton, it is necessary to measure the
spectrum of elastic electrons in the radiative ep scattering or distribution over the
fraction of the energy of the component of a pair produced in the photoproduction
process.
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Let us consider the radiative electronÄproton scattering

e(p1) + p(p, a) → e(p2) + p(p′, a′) + γ(k, e), (1.191)

where a and a′ are the polarization 4-vectors of the initial and ˇnal protons,
respectively, and e is the polarization 4-vector of the photon such that ap =
a′p′ = ek = 0. In the peripheral (BetheÄHeitler) kinematics speciˇed by the
relations

se = 2p1p � Q2 = −q2 = −(p − p′)2 ∼ M2, (1.192)

the matrix element of process (1.191) has the factorized form (this is easily shown
using the Gribov identity [1]):

Me = 2se
(4πα)3/2

q2
NeN

e
p , (1.193)

where

Ne
p =

1
se

ū(p′, a′)p̂1

(
F1(q2) − 1

2M
F2(q2)q̂

)
u(p, a),

Ne =
1
se

ū(p2)
(

p̂
p̂2 − q̂ + m

d2
ê + ê

p̂2 − q̂ + m

d2
p̂

)
u(p1).

Similar expressions can be written for the matrix element for the production of
pairs by a photon on a polarized proton:

γ(k, e) + p(p, a) → e+(p+) + e−(p−) + p(p′, a′) . (1.194)

In the BetheÄHeitler kinematics,

sγ = 2kp � Q2 ∼ M2,

the matrix element of process (1.194) has the form

Mγ = 2sγ
(4πα)3/2

q2
NγNγ

p , (1.195)

where

Nγ
p =

1
sγ

ū(p′, a′)k̂
(

F1(q2) − 1
2M

F2(q2)q̂
)

u(p, a),

Nγ =
1
sγ

ū(p−)

(
p̂
k̂ − p̂+ + m

d+
ê + ê

p̂− − k̂ + m

d−
p̂

)
v(p+) .

Calculating the squared absolute values of the matrix elements of the proton
current, |Ne

p |2 and |Nγ
p |2, for processes ep → epγ (1.191) and γp → eēp (1.194)
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with and without spin 	ip, we arrive at the same expressions

|Ne
p (a,±a′)|2 = |Nγ

p (a,±a′)|2 = 4G±,

G± =
1

2(1 + τ)
(
G2

E(1 ± η) + τG2
M (1 ∓ η)

)
.

Averaging and summing the expression for |Ne|2 over the spin states of the
electrons and photon, we obtain∑

|Ne|2 = 4De,

De = x(1 − x)2
(

Q2(1 + x2)
d1d2

− 2m2x(
1
d1

− 1
d2

)2
)

,

where
d1 = m2(1 − x)2 + p 2

2 ,

d2 = m2(1 − x)2 + (p2 + q(1 − x))2,

and x is the energy fraction carried by the scattered electron; p2 is the momentum
component transverse to the electron beam, and q is the transverse momentum
component transferred to the proton.

Finally, averaging and summing the expression for |Nγ |2 over the spin states
of the components of a pair and the photon for γp → eēp process (1.194), we
obtain ∑

|Nγ |2 = 4Dγ ,

Dγ = x+x−

(
Q2(x2

+ + x2
−)

d+d−
+ 2m2x+x−

(
1

d+
− 1

d−

)2
)

,

where x− and x+ are the energy fractions carried by the electron and positron
(x+ + x− = 1), respectively; d± = p 2

± + m2; and p− and p+ are the transverse
momenta of the components of the pair (p− + p+ = q).

Relation (1.190) is valid for processes ep → epγ (1.191) and γp → eēp
(1.194), because the differential cross sections for these processes in the BetheÄ
Heitler kinematics have the form

dσep→epγ (a,±a′) =
2α3

π2(Q2)2
DeG±

d2q d2p2 dx

x(1 − x)
, (1.196)

dσγp→eēp(a,±a′) =
2α3

π2(Q2)2
DγG±

d2q d2p− dx−
x−x+

. (1.197)

The integration of differential cross section (1.196) with respect to the transverse
momentum of the ˇnal electron yields

dσep→epγ

dQ2dx
(a,±a′) =

2α3

(Q2)2
G± × [[τ1(1 + x2) + x]R(τ1) − x], (1.198)
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where τ1 = Q2/m2 and

R(z) =
1√

z(1 + z)
ln (

√
1 + z +

√
z). (1.199)

A similar expression for the cross section for the photoproduction of pairs on the
proton has the form

dσγp→eēp

dQ2 dx−
(a,±a′) =

2α3

(Q2)2
G±×

× [[τ1(x2
+ + x2

−) − x+x−]R(τ1) + x+x−]. (1.200)

The details of the ep → ep kinematics in the rest frame of the initial proton are
discussed in Subsubsec. 1.6.3.

1.6.3. Kinematics of the Elastic Process in the Laboratory Reference
Frame. In the laboratory reference frame where the initial proton is at rest,
p = M(1, 0, 0, 0), the polarization 4-vectors a and a′ of the initial and ˇnal
protons, respectively, in the diagonal spin basis given by Eqs. (1.189) and the
4-momentum of the ˇnal proton p′ have the form

a = (0,a) = (0,n), a′ =
1
M

(p, E′n),

p′ = (E′, pn), E′ = M(1 + 2τ), p = 2M
√

τ(1 + τ),

where n is the unit vector along the direction of the motion of the ˇnal proton.
Thus, the spin 4-vectors of the diagonal spin basis for the initial and ˇnal protons
are deˇned so that the axes of the spin projections of the protons in the laboratory
reference frame under consideration coincide and are directed along the momen-
tum of the ˇnal proton: a = n. In this case, the spin state of the ˇnal proton is
helical. The 4-momentum of the initial electron has the form p1 = Ee(1, 0, 0, 1).

Calculating the convolution I = LμνPμν of the lepton,

Lμν = pμ
1pν

2 + pν
1pμ

2 +
q2gμν

2
,

and proton,

Pμν =
1
4

Tr (p̂′ + M)(1 − γ5â
′)γμ

(
F1 − q̂

1
2M

F2

)
×

× (p̂ + M)(1 − γ5â)γν

(
F1 + q̂

1
2M

F2

)
,

tensors and using the kinematic relations

(aa′) = −1 − 2τ, (ap′)(a′p) = −4M2τ(1 + τ),

(ap′)(ap1) = τ [2M2(1 + 2τ) − s],
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(ap1)(a′p) = −2M(E + M)τ,

(ap1)(a′p1) =
τ

1 + τ
(E + M)[−E + M(1 + 2τ)],

we arrive at the result (1.180). To generalize the diagonal spin basis to the
case of the partially polarized states of the initial and ˇnal protons and to derive
the corresponding general expressions for the ratio of the cross sections with
and without proton spin 	ip, it is necessary to change a → λa and a′ → λ′a′,
λ, λ′ � 1. As a result, we obtain Eq. (1.190).

The energy and 3-momentum of the recoil proton in the laboratory reference
frame are expressed in terms of its scattering angle with respect to the direction
of the motion of the initial electron θp (see [70]) as

E′

M
=

1 + cos2 θp

sin2 θp

,
p

M
=

2 cos θp

sin2 θp

.

The use of the matrix elements of the proton current given by Eqs. (1.186)
and (1.187) reduces the calculation of the probability of the ep → ep process to
the calculation of the trivial trace

| T |2=

=
4M2

q4

1
8

∑
δ

Tr
(
G2

E(p̂2 + m)b̂0(p̂1 + m)b̂0 + τG2
M (p̂2 + m)b̂δ(p̂1 + m)b̂∗δ

)
.

As a result, we arrive at the following expression coinciding with the result
presented in [23]:

dσ =
α2do

4w2

1
1 + τ

(G2
EYI + τG2

MYII)
1
q4

,

YI = (p+q+)2 + q2
+q2, YII = (p+q+)2 − q2

+(q2 + 4m2), (1.201)

p+ = p1 + p2, q+ = p + p′,

where do is the solid angle element, and w is the total energy in the center-of-mass
system.

The ratio of the cross sections for the processes with and without proton spin
	ip is given by the expression

dσ↑↑
dσ↑↓

=
YI

τYII

G2
E

G2
M

. (1.202)

In the rest system of the initial proton, neglecting the electron mass, we obtain
Eqs. (1.178) and (1.180).
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2. RADIATIVE PROCESSES IN e+e− AND γe± COLLISIONS

2.1. Hadronic Cross Sections in ElectronÄPositron Annihilation with Tag-
ged Photon. Experiments with tagged photons, radiated from the initial state
in electronÄproton and electronÄpositron collisions become particularly attractive.
The reason is [72] that these radiative processes will permit one to extract in-
formation about the ˇnal states at continuously varying values of the collision
energy. To investigate deep inelastic scattering, the authors of [73] suggested to
use radiative events instead of using the colliders at reduced beam energies. The
method takes advantage of a PD placed in the very forward direction from the
incoming electron beam. The effective beam energy, for each radiative event,
is determined by the energy of the hard photon observed in PD. In fact, ra-
diative events were already used to measure the structure function F2 down to
Q2 � 1.5 GeV2 [74]. The speciˇc theoretical work concerns the evaluation of
QED radiative corrections [75, 76] to the radiative Born cross section. With an
accurate determination of the cross sections and of the possible sources of back-
ground, we believe that the use of radiative events may become particularly useful
to carry investigations at various present and future machines.

A detailed analysis of bremstrahlung cross section including the case of
polarized photon was considered in papers [94,95].

The important role of the initial-state radiation in the process of electronÄ
positron annihilation was underlined in a series of papers by V.N. Baier and
V.A.Khoze [39, 40, 77], where the radiative process was studied in detail in the
Born approximation. In these papers the mechanism of returning to a resonant
region was discovered. This mechanism consists in the preferable emission of
photons from the initial particles, which provides a resonant kinematics of a
subprocess. A utilization of radiative events can become a common type of
investigations at various machines.

In this Section we derive explicit formulae for the spectrum of tagged photons.
The calculations are performed with an accuracy of the per-mill order. Formulae
can be used at electronÄpositron colliders to investigate, for instance, hadronic
ˇnal states at intermediate energies. A measurement of the total hadronic cross
section at low energies is essential as a high precision test of the Standard Model
particularly for a precise determination of the ˇne structure constant αQED(MZ)
and of the muon anomalous magnetic moment (g − 2)μ. The largest contribu-
tion to the errors for these quantities comes from the large indetermination still
present on the measurement of the total hadronic cross section in electronÄpositron
annihilation at the center-of-mass energies of a few GeV.

We will consider here the RC-corrected cross section for the radiative
electronÄpositron annihilation process

e−(p1) + e+(p2) −→ γ(k) + X(q), k = (1 − z)p1, (2.1)
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where X is a generic hadronic state. The hard photon hitting of the PD has a
momentum k and an energy fraction 1 − z with respect to the beam energy. In
the following, we assume that the PD is placed along the electron beam direction,
and has an opening angle 2θ0 � 1, such that ε2θ2

0 � m2, with m Å the electron
mass, and ε Å the beam energy. Below we ˇrst consider the cross section of the
process (2.1) in the Born approximation. We give formulae suitable to study both
the differential distributions in hadronic channels, as well as the total (in terms
of quantity R),

R =
σeē→X

σeē→μμ̄
, (2.2)

and inclusive (in terms of hadron fragmentation functions) hadronic cross sections.
Further we calculate separate contributions into radiative corrected cross section
of the process (2.1) within the next-to-leading accuracy due to virtual- and soft-
photon emission. The case, when additional hard photon hits a PD is considered
as well.

2.1.1. The Born Approximation. In order to obtain the Born approximation for
the cross section of the process (2.1), when the PD is placed in front of electron
(positron) beam, we can use the quasi-real electron method [5,6]. It gives

dσ(k, p1, p2) = dWp1 (k)σ0(p1 − k, p2), (2.3)

where dWp1(k) is the probability to radiate photon with energy fraction 1 − z
inside a narrow cone with the polar angle not exceeding θ0 � 1 around the
incoming electron, and dσ0 is the differential cross section for the radiationless
process of electronÄpositron annihilation into hadrons at the reduced electron
beam energy. The form of both, dWp1(k) and σ0(p1 − k, p2) is well known:

dWp1(k) =
α

2π
P1(z, L0) dz,

(2.4)

P1(z, L0) =
1 + z2

1 − z
(L0 − 1) + (1 − z), L0 = ln

ε2θ2
0

m2
.

We need further the general form of the lowest order cross section σ0 for the
process e+(z1p2)+e−(zp1) → γ∗(q)+ hadrons boosted along the beam axis (p1):

σ0(z, z1) =
8π2α2

q2|1 − Π(q2)|2
∫

T (q) dΓ(q), T (q) =
LρσHρσ

(q2)2
,

Lρσ =
q2

2
g̃ρσ + 2z2p̃1ρp̃1σ, dΓ(q) = (2π)4δ

(
q −
∑

qj

)∏ d3qj

2εj(2π)3
, (2.5)

q = zp1 + z1p2, q2 = sz1z, g̃ρσ = gρσ − qρqσ

q2
, p̃1ρ = p1ρ − p1q

q2
qρ,
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where q is the full 4-momentum of ˇnal hadrons; qj is 4-momentum of an
individual hadron; s = 2p1p2 = 4ε2 is the full center-of-mass energy squared,
and Hρσ is the hadronic tensor. The vacuum polarization operator Π(q2) of
the virtual photon with momentum q is a known function [78] and will not be
speciˇed here.

Tensors Hρσ and Lρσ obey the current conservation conditions once saturated
with the 4-vector q. The differential cross section with respect to the tagged
photon energy fraction z can be obtained by performing the integration on the
hadrons phase space. It takes the form

dσ

dz
=

α

2π
P1(z, L0)σ0(z, 1). (2.6)

Each hadronic state is described by its own hadronic tensor. The cross section
in Eqs. (2.4) and (2.5) is suitable for different uses and, as mentioned above, it
can be used to check different theoretical predictions.

The sum of the contributions of all hadronic channels by means of the relation∑
h

∫
Hρσ dΓ = fh(q2)g̃ρσ, (2.7)

can be expressed in terms of the ratio of the total cross section for annihilation
into hadrons and muons R = σh/σμ. For the μ+μ− ˇnal state we get

fμ =
q2

6π
K(q2), K(q2) =

(
1 +

2m2
μ

q2

)√
1 −

4m2
μ

q2
,

and so,

fh(q2) =
q2R(q2)

6π
K(q2). (2.8)

Substituting this expression into the right-hand side of Eqs. (2.4), (2.5) results in
the replacement σ0(z, z1) = R(q2)4πα2K(q2)/(3q2).

In experiments of semiÄinclusive type one ˇxes an hadron with 3-momentum
q1 energy ε1 and mass M in every event and sums over all the rest. In this case
instead of Eq. (2.7) we will have (similarly to the DIS case [76]):∑

h′

∫
Hρσ dΓ = H(1)

ρσ

d3q1

2ε1(2π)3
,

H(1)
ρσ = F1(η, q2)g̃ρσ − 4

q2
F2(η, q2)q̃1ρq̃1ρ, (2.9)

η =
q2

2qq1
> 1, q̃1 = q1 − q

qq1

q2
,
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where we have introduced two dimensionless functions F1(η, q2) and F2(η, q2)
in a way similar to the DIS case.

By introducing the dimensionless variable χ = 2qq1/(2zp1q1), we can write
the corresponding cross section for radiative events in e+e− annihilation in the
same form as in the case of deep inelastic scattering with a tagged photon [76]:

dσ

dz
=

α2(q2)
2π

α

2π
P1(z, L0)Σ(η, χ, q2)

1
(q2)2

d3q1

ε1
,

(2.10)

Σ(η, χ, q2) = F1(η, q2) +
2F2(η, q2)

η2χ2

(
χ − 1 − M2

q2
η2χ2

)
.

2.1.2. Corrections Due to the Virtual and Real Soft Photons. The interference
of Born and one-loop contributions to the amplitude of the initial-state radiation
in annihilation of e+e− into hadrons can be obtained from the analogous quantity
of hard-photon emission in electronÄproton scattering [76]. We do that by using
the crossing transformation. The contribution coming from the emission of real
soft photons is:

dσS

dσ0
=

α

π

[
2(Ls − 1) ln

mΔε

λε
+

1
2
L2

s −
π2

3

]
,

(2.11)

Ls = ln
s

m2
= L0 + Lθ, Lθ = ln

4
θ2

.

where λ is the ®photon mass¯, Δε is the energy in c.m.s. carried by the soft
photon. The sum of the two contributions is free from infrared singularities.
It reads

dσV +S =
8π2α2

s|1 − Π(q2)|2
α

2π
[ρBρσ(q) + Aρσ(q)]

Hρσ(q) dΓ(q)
(q2)2

α

4π2

d3k

ω
, (2.12)

where

ρ = 4(Ls − 1) ln Δ +3Lq −
π2

3
− 9

2
, Lq = Ls + ln z, Δ =

Δε

ε
� 1, (2.13)

where k and ω are the 3-momentum and the energy of the hard photon, respec-
tively. The tensors Aρσ and Bρσ have a rather involved form. The ˇrst can be
obtained from the corresponding expressions of [8]. The tensor Bρσ coincides
with the one of the Born approximation. In the kinematical region where the hard
photon is emitted close to the initial electron direction of motion one has

Bρσ =
2
z

(
1 + z2

y1(1 − z)
− 2m2z

y2
1

)
Lρσ(q),

(2.14)

Aρσ =
2
q2

AgLρσ(q), q = zp1 + p2,
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where tensor Lρσ is given in Eq. (2.5), y1 = 2kp1, and quantity Ag reads

Ag =
4zsm2

y2
1

Ls ln z +
s

y1

[
1 + z2

1 − z

(
−2Ls ln z − ln2 z + 2Li2(1 − z)+

+ 2 ln
y1

m2
ln z

)
+

1 + 2z − z2

2(1 − z)

]
. (2.15)

Further integration over the hard-photon phase space can be performed within the
logarithmic accuracy by using the integrals∫

d3k

2πk0

[
1
y1

,
m2

y2
1

,
ln (y1/m2)

y1

]
=
∫ [

1
2
L0,

1
2(1 − z)

,
1
4
L2

0 +
1
2
L0 ln (1 − z)

]
dz.

The ˇnal expression for the Born cross section corrected for the emission of soft
and virtual photons has the form

dσB+V +S

dz
= σ0(z, 1)

[
α

2π
P1(z, L0) +

(
α

2π

)2

(ρP1(z, L0) + N)
]
,

N = −1 + z2

1 − z

[
(L0 + ln z) ln z − π2

3
+ 2Li2(z)

]
L0 − 2P1(z, L0) ln

θ2
0

4
+

+
1 + 2z − z2

2(1 − z)
L0 +

4z

1 − z
L0 ln z. (2.16)

2.1.3. Two Hard Photons Are Tagged by the Detector. If an additional hard
photon emitted by the initial-state electron hits the PD, we cannot use the quasi-
real electron method and have to calculate the corresponding contribution starting
from the Feynman diagrams.

We can use double hard photon spectra as given in [79] for annihilation
diagrams only and write the cross section under consideration as follows:

dσH
c1

dz
= σ0(z, 1)

(
α

2π

)2

L0×

×
1−z−Δ∫

Δ

dx

ξ

[
γτ

2
L0 + (z2 + (1 − x)4) ln

(1 − x)2(1 − z − x)
zx

+

+ zx(1 − z − x) − x2(1 − x − z)2 − 2τ(1 − x)
]
, (2.17)

ξ = x(1 − x)2(1 − z − x), γ = 1 + (1 − x)2, τ = z2 + (1 − x)2.

Here the variable x under the integral is the energy fraction of one hard photon.
The quantity 1− z − x is the energy fraction of the second hard photon provided
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that their total energy fraction equals 1 − z. We write the index c1 in the left-
hand side of Eq. (2.17) to emphasize that this contribution arises from the collinear
kinematics, when the additional hard photon is emitted along the initial electron
with 4-momentum p1.

The integration in the right-hand side of Eq. (2.17) leads to the result

dσH
c1

dz
= σ0(z, 1)

(
α

2π

)2
L0

2

{[
P

(2)
Θ (z) + 2

1 + z2

1 − z

(
ln z − 3

2
− 2 ln Δ

)]
L0+

+ 6(1 − z) +
3 + z2

1 − z
ln2 z − 4(1 + z)2

1 − z
ln

1 − z

Δ

}
, (2.18)

where the quantity P
(2)
Θ (z) represents the so-called Θ term of the second-order

electron structure function:

P
(2)
Θ (z) = 2

1 + z2

1 − z

(
ln

(1 − z)2

z
+

3
2

)
+ (1 + z) ln z − 2(1 − z). (2.19)

2.1.4. Additional Hard Photon Is Emitted outside PD. If an additional hard
photon, emitted from the initial state, does not hit the PD situated in the direction
of motion of the initial electron, we distinguish the case when it is emitted in the
direction close, within a small cone with angle θ′ � 1, to the direction of the
initial positron. In this case we obtain:

dσH
c2

dz
=

α

2π
P1(z, L0)

1−δ/z∫
Δ

α

2π
P1(1 − x, L′)σ0(z, 1 − x) dx, (2.20)

where L′ = Ls + ln (θ′2/4), δ = M2/s, and M2 is the minimal hadron mass
squared. We suppose that z ∼ 1.

We have introduced the additional auxiliary parameter θ′ � 1 which, together
with θ0, separates collinear and semicollinear kinematics of the second hard
photon. Contrary to θ0, which is supposed to determine the PD acceptance, θ′

will disappear in the sum of the collinear and semicollinear contributions of the
second photon. This last kinematical region gives

dσH
sc

dz
=
( α

2π

)2
P1(z, L0)

∫
d3k1

2πω3
1

16π2α2

(1 − c2)z2
T (c, z, x),

T (c, z, x) =
∫

Hρσ(q2)dΓ(q2)
s(q2

2)2|1 − Π(q2
2)|2

[
s

2
((z − x2)2 + z2(1 − x1)2)gρσ+

+ 2(z(1 − x1) − x2)(z2p1ρp1σ + p2ρp2σ)
]
, (2.21)

x1 =
x

2
(1 − c), x2 =

x

2
(1 + c), q2 = zp1 + p2 − k1, c = cos ̂k1p1.
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The phase volume of the second photon is parameterized as

∫
d3k1

2πω3
=

x̂∫
Δ

dx

x

2π∫
0

dϕ

2π

1−θ2
0/2∫

−1+θ′2/2

dc, x̂ =
2(z − δ)

1 + z + c(1 − z)
. (2.22)

Explicitly extracting the angular singularities we represent this expression as

dσH
sc

dz
=
(

α

2π

)2

P1(z, L0)

[
Σsc(z) + ln

4
θ2
0

z−δ∫
Δ

dx

x

z2 + (z − x)2

z2
σ0(z − x, 1)+

+ ln
4

θ′2

1−δ/z∫
Δ

dx

x
(1 + (1 − x)2)σ0(z, 1 − x)

]
, (2.23)

Σsc =
8π2α2

z2

1∫
−1

dc

x̂∫
Δ

dx

x

[
T (c, z, x)− T (1, z, x)

1 − c
+

T (c, z, x) − T (−1, z, x)
1 + c

]
.

2.1.5. Complete QED Correction and Leading Logarithmic Approximation.
The ˇnal result in the order O(α) for radiative corrections to radiative events can
be written as follows:

dσ

dz
=

α

2π
P1(z, L0)σ0(z, 1)(1 + r) =

=
α

2π
P1(z, L0)σ0(z, 1)+

(
α

2π

)2
{

L0

(
1
2
L0P

(2)(z)+G

)
σ0(z, 1)+P1(z, L0)×

×
[ 1−δ/z∫

0

C1(x)σ0(z, 1 − x) dx + Lθ

z−δ∫
0

C2(z, x)σ0(z−x, 1) dx+Σsc

]}
, (2.24)

where the last term is deˇned by Eq. (2.23), �Lθ = ln 4/θ2
0 and

C1(x) = P1(1 − x, Ls)Θ(x − Δ) + (Ls − 1)
(

2 lnΔ +
3
2

)
δ(x),

C2(z, x) =
z2 + (z − x)2

z2x
Θ(x − Δ) +

(
2 lnΔ +

3
2
− 2 ln z

)
δ(x),

(2.25)

G(z) =
1 + z2

1 − z
(3 ln z − 2Li2(z)) +

1
2
(1 + z) ln2 z − 2(1 + z)2

1 − z
ln (1 − z)+

+
1 − 16z − z2

2(1 − z)
+

4z ln z

1 − z
.
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In order to include the higher order leading corrections to the tagged photon
differential cross section and show the agreement of our calculation with the well-
known DrellÄYan representation for the total hadronic cross section at electronÄ
positron annihilation [11]

σ(s) =

1∫
δ

dx1

1∫
δ/x1

dx2 D(x1, αeff)D(x2, αeff)σ0(x1x2s), (2.26)

where the electron structure functions include both nonsinglet and singlet parts

D(x1, αeff) = DNS(x, αeff) + DS(x1, αeff), (2.27)

it is convenient to introduce the quantity

Σ = D(z, ᾱeff)

1∫
δ/z

dx1

1∫
δ/zx1

dx2 D(x1, α̃eff)D(x2, α̂eff)σ0(zx1x2s). (2.28)

Note that we use here another deˇnition of nonsinglet structure function [80,81],
which enters into the right-hand side of Eq. (2.27)

DNS(x, αeff) = δ(1 − x) +
∞∑

n=1

1
n!

(
αeff

2π

)n

P⊗n
1 (x), (2.29)

DS(x, αeff) =
1
2!

(
αeff

2π

)2

R(x) +
1
3!

(
αeff

2π

)3[
2P1 ⊗ R(x) − 2

3
R(x)
]
, (2.30)

with P1(x) given above (see [97]) and

R(x) = 2(1 + x) ln x +
1 − x

3x
(4 + 7x + 4x2), (2.31)

P1(x) ⊗ R(x) =

1∫
x

P1(t)R
(

x

t

)
dt

t
, (2.32)

and the effective electromagnetic couplings in the right-habd side of Eq. (2.28) are

ᾱeff = −3π ln
(

1 − α

3π
L0

)
,

α̃eff = −3π ln

⎛⎝1 − α

3π
Ls

1 − α

3π
L0

⎞⎠ , (2.33)

α̂eff = −3π ln
(

1 − α

3π
Ls

)
.
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At ˇxed values of z (z < 1), the quantity Σ deˇnes the leading logarithmic
contributions into differential cross section for the events with tagged particles.
That corresponds to only Θ terms in the expansion of the structure function
D(z, ᾱeff) before the integral in Eq. (2.28). If we consider photon corrections (as
in the previous Sections) it needs to restrict ourselves with the nonsinglet part of
the electron structure functions and with the ˇrst order terms in the expansion of
all effective couplings, namely:

ᾱeff → αL0, α̃eff → αLθ, α̂eff → αLs. (2.34)

It is easy to see that in this case the leading contribution into differential cross
section (2.24) can be obtained as an expansion of the quantity Σ(z < 1) by the
powers of α, keeping the terms of the order α2 in the production of D functions.

To include the contribution due to e+e−-pair (real and virtual) production, it
is required [82] to use both nonsinglet and singlet structure functions and effective
couplings deˇned by Eq. (2.33). Note that the insertion into consideration of
higher order corrections rises additional questions about experimental conditions
concerning registration of events with e+e− pairs.

The total hadronic cross section in e+e− annihilation can be obtained by
integration of quantity Σ over z (see (2.28))

σ(s) =

1∫
δ

dz D(z, ᾱeff)

1∫
δ/z

dx1×

×
1∫

δ/zx1

dx2 D(x1, α̃eff)D(x2, α̂eff)σ(zx1x2s). (2.35)

We can integrate the expression in the right-hand side of Eq. (2.35) over the
variable z provided the quantity zx1 = y ˇxed

1∫
δ

dz D(z, ᾱeff)

1∫
δ/z

dx1 D(x1, α̃eff) =

1∫
δ

dz

1∫
y

dy D(z, ᾱeff)D
(

y

z
, α̃eff

)
=

=

1∫
δ

dy D(y, ᾱeff + α̃eff), ᾱeff + α̃eff = α̂eff . (2.36)

Using this result and deˇnition of α̂eff we indicate the equivalence of the DrellÄ
Yan form of the total cross section as given by Eq. (2.26) and the representation
of the cross section by Eq. (2.35).
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Let us show now that D functions in expression for the quantity Σ have
effective couplings as given by Eq. (2.33). By deˇnition, the nonsinglet electron
structure function satisˇes the equation [9,12]

D(x, s, s0) = δ(1 − x) +
1
2π

s∫
s0

ds1

s1
α(s1)

1∫
x

dz

z
D(z)D

(
x

z
,
s1

s0

)
, (2.37)

where α(s1) is the electromagnetic running coupling

α(s1) = α

(
1 − α

3π
ln

s1

m2

)−1

,

and s0(s) is the minimal (maximal) virtuality of the particle, which radiates
photons and e+e− pairs.

The structure function D(z, ᾱeff) describes the photon emission and pair pro-
duction inside narrow cone along the electron beam direction. In this kinematics
s0 = m2, s = ε2θ2

0. The corresponding iterative solution of Eq. (2.37) has the
form (2.29) with αeff = ᾱeff . The structure function D(x1, α̃eff) describes the
events, when emitted (by the electron) particles escape this narrow cone. In this
case s0 = ε2θ2

0, s = 4ε2. The corresponding solution of Eq. (2.37) gives the
structure function with αeff = α̃eff . At last, the structure function D(x2, α̂eff)
is responsible for the radiation off the positron into the whole phase space. In
this case s0 = m2, s = 4ε2. Therefore we obtain D function with αeff = α̂eff .
The analogous consideration can be performed for the singlet part of structure
functions.

When writing the representation (2.35) for the total cross section we, in fact,
divide the phase space of the particles emitted by the electron on the regions
inside and outside the narrow cone along electron beam direction. Therefore, we
can use this representation to investigate the events with tagged particles in both
these regions. As we saw before, the differential cross section for events with
tagged particles inside the narrow cone is deˇned by the quantity Σ(z < 1). In
order to obtain the corresponding differential cross section for events with tagged
particles outside this narrow cone we have to change the places of ᾱeff and α̃eff in
expression for Σ(z, 1). This follows from the symmetry of representation (2.35)
relative to such a change.

2.1.6. Numerical Estimation. In Fig. 15, we show the cross section dσ/dz
as a function of z. The beam energy is chosen to be Ebeam = 0.5 GeV. The
region of z values is limited by the pion production threshold at the left, and by
the threshold of photon detection (we choose 50 MeV) at the right. The peak in
the middle corresponds to the large contribution of the ρ meson. Values of R,
used for numerical estimations, were taken from [20]. The values of corrections
r (see Eq. (2.36)) in percent are shown in Fig. 16.
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Fig. 15. The cross section of e+e− →
hadrons with tagged photon

Fig. 16. The radiative corrections to
e+e− → hadrons with tagged photon

So, we calculated the cross section of e+e− annihilation with detection of a
hard photon at small angles in respect to the electron beam. The general structure
of a measured cross section, from which one should extract the annihilation cross
section σ0, looks as follows:

σ = σ0

[
a1

α

π
L + b1

α

π
+ a2

(
α

π

)2

L2 + b2

(
α

π

)2

L + c2

(
α

π

)2

+ O(α3)
]
, (2.38)

where L denotes some large logarithm. We calculated the terms a1, b1, a2, b2 and
some contributions to c2. The generalized formula (2.28) allows one to involve
the leading terms of the order O(α3L3). In this way our formulae provide high
theoretical precision.

Similar formulae can be obtained for an experimental setup by tagging a def-
inite hadron. Keeping in mind such installations as BEPS, DAΦNE [83], VEPP,
CLEO, SLAC-B/factory and others with luminosity of order 1033 cm−2 · s−1, one
may be in principle able to scan, by measuring the initial-state radiation spectrum,
the whole energy region of hadron production with an effective luminosity of the
order of 1031 cm−2 · s−1. We hope further study will follow on these issues both
from the experiments and theory.

2.2. High-Accuracy Description of Radiative Return Production of Low-
Mass Muon and Pion Pairs at e+e− Colliders. Radiative return method, when
the hard initial-state radiation is used to reduce the invariant mass of a hadronic
system produced in the high-energy electronÄpositron annihilation, provides an
important tool to study various hadronic cross sections in a wide range of in-
variant masses without actually changing the center-of-mass energy of the col-
lider [39,77,85]. The very high luminosity of the modern meson factories makes
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the method competitive with the more conventional energy scan approach [86,87].
Preliminary experimental studies both at KLOE [88], BABAR [89], and BELLE
conˇrm the excellent potential of the radiative return method. The case of res-
onance production by this mechanism was ˇrst considered in [90]. Recently,
considerable efforts were devoted to elucidate the theoretical understanding of the
radiative return process, especially for the case of low-energy pion-pair produc-
tion (see, for example, [44, 91, 92]). In this Subsection [84] we, by means of
explicit calculations, conˇrm the DrellÄYan form of the cross section. This fact
allows us to take into account all leading and next-to-leading terms in all orders
of PT and as a consequence to improve the accuracy of theoretical predictions.

The case, when the invariant mass of hadron system
√

s1 is small compared
to the center-of-mass total energy

√
s = 2ε, represents a special interest. Such

situation is realized, for example, in the BABAR radiative return studies, where
such interesting physical quantities as form factors of the pion and the nucleon can
be investigated. The processes of radiative annihilation into muon and pion pairs,
considered here, play a crucial role in such studies, both for the normalization
purposes and as one of the principal hadron-production process at low energies.

We specify the kinematics of the radiative muon (pion)-pair creation process

e−(p−) + e+(p+) → μ−(q−) + μ+(q+) + γ(k1) (2.39)

as follows:

p2
± = m2, q2

± = M2, k2
1 = 0,

χ± = 2k1 · p±, χ′
± = 2k1 · q±, s = (p− + p+)2,

(2.40)
s1 = (q− + q+)2, t = −2p− · q−, t1 = −2p+ · q+,

u = −2p− · q+, u1 = −2p+ · q−,

where m and M are the electron and muon (pion) masses, respectively. Through-
out the paper we will suppose

s ∼ −t ∼ −t1 ∼ −u ∼ −u1 � 4M2 � m2, (2.41)

and s � s1 > M2.
We will systematically omit the terms of the order of M2/s and m2/s1

compared with the leading ones. In O (α) radiative corrections, we will drop
also terms suppressed by the factor s1/s. Also we imply that the invariant mass
s1 � M2

z , where MZ is the mass of Z boson (due to we do not consider the
weak interactions).

In this Subsection we will consider only the charge-even part of the differ-
ential cross section, which can be measured in an experimental setup blind to the
charges of the created particles. So we omit the contribution from box-type FD,
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when additional virtual photon connects both muon and electron line. In the ˇnal
state we consider corrections only in the lowest order of PT including 1-loop
virtual corrections, soft real ones and hard real photon contributions. We imply
that invariant mass of the ˇnal pairs with photon emission is small compared
with

√
s.

2.2.1. The Born-Level Cross Section. Within the Born approximation, the
corresponding contribution to the cross section is

dσj
B

dΓ
=

α3

8π2ss2
1

Rj, Rj = Bρσi(0j)
ρσ , j = μ, π,

(2.42)
Bρσ = Bggρσ + B11(p−p−)ρσ + B22(p+p+)ρσ ,

Bg = − (s1 + χ+)2 + (s1 + χ−)2

χ+χ−
, B11 = − 4s1

χ+χ−
,

(2.43)

B22 = − 4s1

χ+χ−
,

where we have used the shorthand notations (qq)ρσ = qρqσ , (pq)ρσ = pρqσ+qρpσ .
For muon-pair ˇnal state

i(0μ)
ρσ = 4

[
(q+q−)ρσ − gρσ

s1

2

]
. (2.44)

For the case of pions,

i(0π)
ρσ = |F str

π (s1)|2(q− − q+)ρ(q− − q+)σ, (2.45)

where F str
π (s1) is the pion strong interaction form factor, in which we include all

the effects of strong interactions in two-pion formation.
Note that the Born-level cross section for the e+e− → μ+μ−γ process was

calculated in [29,93].
For the case of small invariant mass of the created pair s1 � s, the phase

space volume of the ˇnal particles can be rewritten as

dΓ = π2dx− dc ds1 (2.46)

(note that s1 is small (s1 ≈ 4μ2) due to c → 1, but the energy of muon pair is
large: sx2

± � 4M2) and approximately

x± =
ε±
ε

, x+ + x− = 1, c = cos (p̂−q−) = cos θ. (2.47)

We will assume that the emission angle of the hard photon lies outside the narrow
cones around the beam axis: θ0 < θ < π − θ0, with θ0 � 1, θ0ε � M .
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When the initial-state radiation dominates, the Born cross section takes a
rather simple form:

dσ
(μ)
B (p−, p+; k1, q−, q+) =

α3(1 + c2)
ss1(1 − c2)

[2σ + 1 − 2x−x+] dx− dc ds1,

dσ
(π)
B (p−, p+; k1, q−, q+) =

α3(1 + c2)
ss1(1 − c2)

|F str
π (s1)|2 [−σ + x−x+] dx−dc ds1,

1
2
(1 − β) < x− <

1
2
(1 + β), β =

√
1 − 4M2

s1
, σ =

M2

s1
.

Here β is the velocity of the pair component in the center-of-mass reference frame
of the pair.

2.2.2. Radiative Corrections. Radiative corrections can be separated into three
gauge-invariant parts. They can be taken into account by the formal replacement
(see (2.42)):

Rj

s2
1

−→
KρσJj

ρσ

s2
1|1 − Π(s1)|2

, (2.48)

where Π(s1) describes the vacuum polarization of the virtual photon, Kρσ is
the initial-state emission Compton tensor with RC taken into account; Jj

ρσ is the
ˇnal-state current tensor with O (α) RC.

First we consider the explicit formulae for RC due to virtual, soft, and hard
collinear ˇnal-state emission. As concerns RC to the initial state for the charge-
blind experimental setup considered here, we will use the explicit expression
for the Compton tensor with heavy photon Kρσ calculated in paper [8] for the
scattering channel and apply the crossing transformation. Possible contribution
due to emission of an additional real photon from the initial state will be taken
into account, too.

2.2.3. Corrections Connected with the Final State. The third part is related
to the lowest order RC to the muon (pion) current

Jρσ = i(v)
ρσ + i(s)ρσ + i(h)

ρσ . (2.49)

The virtual photon contribution i
(v)
ρσ takes into account the Dirac and Pauli form

factors of the muon current

Bρσi(vμ)
ρσ = Bg

∑
pol

|J (vμ)
ρ |2 + B11

[∑
pol

|p− · J (vμ)|2+

+
∑
pol

|p+ · J (vμ)|2
]
. (2.50)
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Here Σ means a sum over the muon spin states and∑
pol

|J (vμ)
ρ |2 =

α

π

[
−8(s1 + 2M2)f (μ)

1 − 12s1f
(μ)
2

]
,

(2.51)∑
pol

|J (vμ) · p±|2 =
α

π
s2(1 ± c)2

(
x+x−f

(μ)
1 +

1
4
f

(μ)
2

)
.

Explicit expressions for the Dirac and Pauli form factors of muon are well
known [3]:

F1(s) = 1 +
α

π
F

(2)
1 (s), F2(s) =

α

π
F

(2)
2 (s), f1,2 = Re F

(2)
1,2 . (2.52)

For the pion ˇnal state we have

Bρσi(vπ)
ρσ = 2

α

π
Bρσi(0π)

ρσ fQED
π ,

Bρσi(0π)
ρσ = 2

α

π
|F str

π (s1)|2×

×
[
(4M2 − s1)Bg +

1
8
s2B11(x+ − x−)2(1 + c2)

]
fQED

π .

Explicit expression for the fQED
π form factor of pion is [3]:

Re
[
FQED

π (s1)
]

= 1 +
α

π
fQED

π (s1),

fQED
π (s1) =

(
ln

M

λ
− 1
)(

1 − 1 + β2

2β
Lβ

)
+

+
1 + β2

2β

(
−1

4
L2

β + Lβ ln
1 + β

2β
+

π2

3
+ Li2

(
1 − β

1 + β

))
, (2.53)

Lβ = ln
1 + β

1 − β
.

Soft-photon emission correction to the ˇnal-state currents reads

i(sπ)
ρσ =

α

π
Δ1′2′ i(0π)

ρσ , i(sμ)
ρσ =

α

π
Δ1′2′i(0μ)

ρσ ,

Δ1′2′ = − 1
4π

∫
d3k

ω

(
q+

q+k
− q−

q−k

)2∣∣∣∣
ω�Δε

=

=
(

1 + β2

2β
ln

1 + β

1 − β
− 1
)

ln
(Δε)2M2

ε2x+x−λ2
+

1 + β2

2β
×

×
[
−g − 1

2
ln2 1 + β

1 − β
− ln

1 + β

1 − β
ln

1 − β2

4
− π2

6
− 2Li2

(
β − 1
β + 1

)]
,
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g = 2β

1∫
0

dt

1 − β2t2
ln
(

1 +
1 − t2

4
(x+ − x−)2

x+x−

)
=

= ln
(

1 + β

1 − β

)
ln
(

1 + z − z

β2

)
+ Li2

(
1 − β

1 + β/r

)
+ Li2

(
1 − β

1 − β/r

)
−

− Li2

(
1 + β

1 − β/r

)
− Li2

(
1 + β

1 + β/r

)
,

β =

√
1 − 4M2

s1
, z =

1
4

(√
x+

x−
−
√

x−
x+

)2

, r = |x+ − x−| .

This formulae provide the generalization of known expression (see (25), (26)
in [22]) for the case of small invariant mass 4M2 ∼ √

s1 � ε±.
The contribution of an additional hard-photon emission (with momentum k2)

by the muon block, provided s̃1 = (q+ + q− + k2)2 ∼ s1 � s, can be found by
the expression

Bρσi(hμ)
ρσ =

α

4π2

∫
d3k2

ω2
Bρσ
∑

J (γ)
ρ (J (γ)

σ )∗
∣∣∣∣
ω2�Δε

, (2.54)

with∑
|J (γ)

ρ |2 = 4Q2(s1 + 2k2 · q− + 2k2 · q+ + 2M2) − 8
(k2 · q−)2 + (k2 · q+)2

(k2 · q−)(k2 · q+)
,

Q =
q−

q− · k2
− q+

q+ · k2
,

and∑
|J (γ) · p±|2 = −8Q2(q− · p±)(q+ · p±)+

+8(p± ·k2)
(

Q ·q+
p± · q−
q+ · k2

−Q ·q−
p± · q+

q− · k2

)
+8(p± ·k2)

(
p± · q−
q+ · k2

+
p± · q+

q− · k2

)
+

+ 8(p± · Q)(p± · q+ − p± · q−) − 8
(k2 · p±)2M2

(k2 · q+)(k2 · q−)
.

For the case of charged pion-pair production, the radiative current tensor has
the form

i(hπ)
ρσ = − α

4π2

∫
|F str

π (s̃1)|2
d3k2

ω2

[
M2

χ2
2−

(Q1Q1)ρσ +
M2

χ2
2+

(Q2Q2)ρσ−

− q+q−
χ2+χ2−

(Q1Q2)ρσ + gρσ − 1
χ2−

(Q1q−)ρσ +
1

χ2+
(Q2q+)ρσ

]∣∣∣∣
ω2>Δε

, (2.55)

Q1 = q− − q+ + k2, Q2 = q− − q+ − k2, χ2± = 2k2 · q±.
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One can check that the Bose symmetry and the gauge invariance condition are
valid for the pion current tensor. Namely, it is invariant with regard to the
permutation of the pion momenta and turns to zero after conversion with 4-vec-
tor q.

The sum of soft- and hard-photon corrections to the ˇnal current does not
depend on Δε/ε.

2.2.4. Corrections Connected with the Initial State. Let us now consider the
Compton tensor with RC, which describes virtual corrections to the initial state.
In our kinematical region it will be convenient to rewrite the tensor explicitly
extracting large logarithms. We will distinguish two kinds of large logarithms:

Ls = ln
s

m2
, l1 = ln

s

s1
. (2.56)

We rewrite the Compton tensor [8] in the form:

Kρσ =
(
1 +

α

2π
ρ
)

Bρσ +
α

2π

[
τggρσ + τ11(p−p−)ρσ+

+ τ22(p+p+)ρσ − 1
2
τ12(p−p+)ρσ

]
, (2.57)

ρ = −4 ln
m

λ
(Ls − 1) − L2

s + 3Ls − 3l1 +
4
3
π2 − 9

2
,

with τi given in [8].
The infrared singularity (the presence of the photon mass λ in ρ) is compen-

sated by taking into account soft-photon emission from the initial particles:

dσsoft = dσ0
α

π
Δ12,

(2.58)

Δ12 = − 1
4π

∫
d3k

ω

(
p+

p+k
− p−

p−k

)2∣∣∣∣
ω�Δε

= 2(Ls − 1) ln
mΔε

λε
+

1
2
L2

s −
π2

3
.

As a result, the quantity ρ in formula (2.57) will change to

ρ → ρΔ =
(

4 ln
Δε

ε
+ 3
)

(Ls − 1) − 3l1 +
2π2

3
− 3

2
.

Cross section of two hard photons emission for the case when one of them is
emitted collinearly to the incoming electron or positron can be obtained by means
of the quasi-real electron method [5]:

dσj
γγ, coll

dx− dc ds1
= dWp−(k3)

dσ̃j
B(p−(1 − x3), p+; k1, q+, q−)

dx− dc ds1
+

+ dWp+(k3)
dσ̃j

B(p−, p+(1 − x3); k1, q+, q−)
dx− dc ds1

,
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with

dWp(k3) =
α

π

[(
1 − x3 +

x2
3

2

)
ln

(εθ0)2

m2
− (1 − x3)

]
dx3

x3
,

x3 =
ω3

ε
, x3 >

Δε

ε
.

Here we suppose that the polar angle θ3 between the directions of the additional
collinear photon and the beam axis does not exceed some small value θ0 � 1,
εθ0 � m.

The boosted differential cross section dσ̃j
B(p−x, p+y; k1, q+, q−) with re-

duced momenta of the incoming particles reads (compare with Eq. (2.21))

dσ̃μ
B(p+x2, p−x1; k1, q+, q−)

dx− dc ds1
=

=
α3(1 + 2σ − 2ν−(1 − ν−))(x2

1(1 − c)2 + x2
2(1 + c)2)

s1sx2
1x

2
2(1 − c2)(x1 + x2 + c(x2 − x1))

,

(2.59)
dσ̃π

B(p+x2, p−x1; k1, q+, q−)
dx− dc ds1

=
α3(ν−(1 − ν−) − σ)(x2

1(1 − c)2 + x2
2(1 + c)2)

s1sx2
1x

2
2(1 − c2)(x1 + x2 + c(x2 − x1))

,

ν− =
x−
y2

, y2 =
2x1x2

x1 + x2 + c(x2 − x1)
.

In a certain experimental situation, an estimate of the contribution of the
additional hard-photon emission outside the narrow cones around the beam axes
is needed. It can be estimated by

dσj
γγ, noncoll

dx− dc ds1
=

α

4π2

∫
d3k3

ω3

[
ε2 + (ε − ω3)2

εω3

]
×

×
{

1
k3 · p−

dσj
B(p−(1 − x3), p+; k1, q+, q−)

dx− dc ds1
+

+
1

k3 · p+

dσj
B(p−, p+(1 − x3); k1, q+, q−)

dx− dc ds1

}
, x3 =

ω3

ε
,

where the integration was done under condition that θ3 � θ0, Δε < ω3 < ω1.
It is a simpliˇed expression for the two-photon initial state emission cross

section. Deviation, for the case of a large angle emission, of our estimate from
the exact result is small. It does not depend on s and slightly depends on θ0. For
θ0 ∼ 10−2 we have

π

α

∣∣∣∣
∫
(dσj

γγ, noncoll − dσj
γγ, noncoll exact)∫

dσj
B

∣∣∣∣ <∼ 10−1. (2.60)
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2.2.5. Master Formula. By summing up all contributions for the charge-even
part, we can put the cross section of the radiative production in the form:

dσj(p+, p−; k1, q+, q−)
dx− dc ds1

=

1∫ 1∫
dx1 dx2

|1 − Π(sx1x2)|2
×

× dσ̃j
B(p+x2, p−x1; k1, q+, q−)

dx− dc ds1
D(x1, β)D(x2, β)

(
1 +

α

π
Kj

)
+

+
α

2π

1∫
Δ

dx

[
1 + (1 − x)2

x
ln

θ2
0

4
+ x

][
dσ̃j

B(p−(1 − x), p+; k1, q+, q−)
dx− dc ds1

+
dσ̃j

B(p−, p+(1 − x); k1, q+, q−)
dx− dc ds1

]
+

dσj
γγ, noncoll

dx− dc ds1
, (2.61)

D(x, β) = δ(1 − x) + βP (1)(x) + . . . ,

Δ =
Δε

ε
, P (1)(x) =

(
1 + x2

1 − x

)
+

, j = μ, π.

The boosted cross sections dσ̃ are deˇned above in Eq. (2.59). The lower limits
of the integrals over x1,2 depend on the experimental conditions.

The structure function D includes all dependence on the large logarithm Ls.
The so-called K factor reads

Kj =
1

Rj
Bλσ
(
i
(vj)
λσ + i

(sj)
λσ + i

(hj)
λσ

)
+ R

(j)
compt. (2.62)

Quantities R
(j)
compt include the ®nonleading¯ contributions from the initial-

state radiation. Generally, they are rather cumbersome expressions for the case
s1 ∼ s. For the case s1 ∼ M2 � s we obtain

R
(μ)
compt = R

(π)
compt +

c2

(1 − 2x−x+ + 2σ)(1 + c2)
,

R
(π)
compt =

1 − c2

4(1 + c2)

{
5 + 2c + c2

1 − c2
ln2

(
2

1 + c

)
−

− 5 − c

1 + c
ln
(

2
1 + c

)
+

5 − 2c + c2

1 − c2
ln2

(
2

1 − c

)
−

− 5 + c

1 − c
ln
(

2
1 − c

)
− 4

c2

1 − c2

}
+

π2

3
. (2.63)
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Here we see the remarkable phenomena: the cancellation of terms containing
ln (s/s1). In such a way only one kind of large logarithm Ls enters into the ˇnal
result. This fact is the consequence of the renormalization group invariance.

This result shows that the cross section in our quasi 2 → 2 kinematics can be
written in the form of the cross section of the DrellÄYan process. Thus the results
of Structure Function Approach (see [97]) for the RC to the one-photon e+e−

annihilation into hadrons are generalized to the situation when a hard photon at a
large angle is present in the ˇnal state.

This generalization is not a trivial fact because the two types of large loga-
rithms are present in the problem.

Possible background from the peripheral process eē → eēμμ̄ is negligible
in our kinematics: it is suppressed by the factor α/πs1/s and, besides, can
be eliminated if the registration of the primary hard photon (see Eq. (2.39)) is
required by the experimental cuts for event selection.

2.3. Compton and Double Compton Scattering Processes at Colliding
ElectronÄPhoton Beams. The Compton scattering process [45]

γ(k1) + e−(p1) → γ(k2) + e−(p2),

k2
1 = k2 = 0, p2

1 = p2
2 = m2,

κ1 = 2p1k1 = 4ε1ω1, κ′
1 = 2p2k1 = 2ε2ω1(1 − c), (2.64)

s1 = 2p1p2 = 2ε1ε2(1 + c),

κ1 ∼ κ′
1 ∼ s1 � m2, ε2 =

2ε1ω1

ω1(1 − c) + ε1(1 + c)

(where ε1,2, ω1 are the energies of initial and scattered electrons and the initial
photon; c = cos θ, θ is the angle between p2,k1) plays an important role as
a perspective calibration process at high-energy photonÄelectron colliders [46].
Modern methods based on the renormalization group approach in combination
with the lowest order radiative corrections (RC) permit us to obtain a differential
cross section with the leading (((α/π)L)n ∼ 1, with ®large logarithm¯ L =
ln (s1/m2)) and the next-to-leading approximation (i.e., keeping the terms of the
order (α/π)nLn−1). So the accuracy of the formulae given below is determined
by the terms of the order (which are systematically omitted)

m2

κ1
,

α2

π2
L, α

κ1

M2
Z

, (2.65)

compared with the terms of the order of unity and is at the level of per mill
for typical experimental conditions [46] θ ∼ 1, κ1 ∼ 10 GeV2. We consider
the energies of initial particles to be much less than the Z-boson mass MZ and,
therefore, the weak corrections to the Compton effect in our consideration are
beyond our accuracy.
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First papers devoted to calculation of radiative corrections to Compton scat-
tering were published in 1952 by Brown and Feynman [16] (virtual and soft
real photon emission contribution), and Mandl and Skyrme [47] (emission of an
additional hard photon).

In the work of H.Veltman [48], the lowest order radiative corrections to the
polarized Compton scattering were calculated in nonrelativistic kinematics. This
case of kinematics was also considered in the paper of M. Swartz [49].

In the papers of A.Denner and S. Dittmaier [50,80], the lowest order radiative
corrections in the framework of Standard Model were calculated for the case of
polarized electron and photon.

In this Subsection we consider the case of high-energy electron and photon
Compton scattering (CMS energy supposed to be much higher than the electron
mass but much less than the Z-boson mass). We found that the cross section
with radiative corrections of all orders of PT taken into account could be written
down in the form of the DrellÄYan process. Both leading and next-to-leading
contributions are derived explicitly.

We imply the kinematics when the initial photon and electron move along
the z axis in the opposite directions The energy of the scattered electron will be
the function of its scattering angle:

z0 =
ε2

ω1
=

2ρ

a
, a = a(c, ρ) = 1 − c + ρ(1 + c), ρ =

ε1

ω1
. (2.66)

Hereafter we imply the kinematic case ρ < 1. The case ρ > 1 will be considered
in Subsubsec. 2.3.6.

The differential cross section in the Born approximation will be

dσB

dc
(p1, θ) =

πα2U0

ω2
1a

2
, U0 =

a

1 − c
+

1 − c

a
. (2.67)

When taking into account RC of higher orders (arising from both emission of
virtual and real photons), a simple relation between the scattered electron energy
and the scattering angle changes, so the differential cross section is in general
dependent on the energy fraction z of the scattered electron. Accepting the
DrellÄYan form of cross section, we can put it in the form

dσ

dc dz
(p1, θ, z) =

=

1∫
0

dxD(x, β)

z0∫
z

dt

t
D
(z

t
, β
) dσh

dc dt
(xp1, θ, t)

(
1 +

α

π
K
)

, (2.68)

where the structure function D(x, β) (see [97]) describes the probability of ˇnding
the electron (considered as a parton) inside the electron, K is the so-called
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K factor which can be calculated from the lowest RC orders, and the ®hard¯
cross section is

dσh

dc dt
(xp1, θ, t) =

dσB

dc
(xp1, θ)δ(t − t(x)),

dσB(xp1, θ)
dc

=
πα2

ω2
1

1
(1 − c + ρx(1 + c))2

×

×
(

1 − c

1 − c + ρx(1 + c)
+

1 − c + ρx(1 + c)
1 − c

)
, (2.69)

t(x) =
2xρ

1 − c + ρx(1 + c)
,

with K speciˇed below (see (2.71), (2.81), (2.87)).
The cross section being written in the DrellÄYan form explicitly satisˇes

the KinoshitaÄLeeÄNauenberg theorem about mass singularities cancellation [18].
Really, being integrated on the scattered electron energy fraction z, the structure
function corresponding to the scattered electron turns to unity due to its property

1∫
0

dz

1∫
z

dt

t
D
(z

t
, β
)

f(t) =

1∫
0

dt f(t). (2.70)

Mass singularities associated with the initial lepton structure function remain.
So our master formula for the cross section with RC taken into account is

dσ

dz dc
(p1, p2) =

1∫
x0

dx

t(x)
D(x, β)

dσB

dc
(xp1, θ)D

(
z

t(x)
, β

)
+

+
α

π

dσB(p1, θ)
dc

[KSVδ(z − z0) + Kh], (2.71)

z =
ε′2
ω1

< z0, x0 =
z(1 − c)

ρ(2 − z(1 + c))
, L = ln

2ω2
1z0ρ(1 + c)

m2
.

The second term in the r.h.s. of (2.71) collects all the nonleading contri-
butions from virtual, soft- and hard-photons emission, with KSV given in Sub-
subsec. 2.3.1 where the virtual, soft real and additional hard-photon emission is
considered. We introduce an auxiliary parameter θ0 to distinguish the collinear
and noncollinear kinematics of photon emission. Also, we put the expression for
the hard-photon contribution Kh.
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2.3.1. Contribution of Virtual and Soft Real Photons. To obtain the explicit
form of the K factor, we reproduce the lowest order RC calculation. It consists of
virtual photon emission contribution and the contribution from the real (soft and
hard) photon emission taken into account. The virtual- and soft-photon emission
contribution was ˇrst calculated in the famous paper of the 1952 year by Laura
Brown and Richard Feynman [16]. The result has the form

dσvirt

dσB
= −α

π

U1

U0
, (2.72)

with (see [16], kinematic case II):

U1

U0
= (1 − L)

(
3
2

+ 2 ln
λ

m

)
+

1
2
L2 − π2

6
− KV , U0 =

κ2

κ1
+

κ1

κ2
, (2.73)

with KV (virtual photon contribution to the K factor):

KV = − 1
U0

[(
1 − κ2

2κ1
− κ1

κ2

)(
ln2 s1

κ1
− ln

s1

κ1
+ 2 ln

κ2

κ1

)
+ (2.74)

+
(

1 − κ1

2κ2
− κ2

κ1

)(
ln2 s1

κ2
− ln

s1

κ1
− ln

κ1

κ2
+ π2

)]
, (2.75)

and

κ2

κ1
=

z0(1 − c)
2ρ

,
s1

κ1
=

z0(1 + c)
2

,
s1

κ2
=

ρ(1 + c)
1 − c

. (2.76)

The soft-photon emission for our kinematics has the form

dσsoft

dσB
= − 4πα

16π3

∫
d3k

ω

(
p1

p1k
− p2

p2k

)2

ω=
√

k2+λ2<Δε�ε1∼ε2

. (2.77)

Standard calculations lead to the result

dσsoft

dσB
=

=
α

π

[
(L − 1) ln

(
m2Δε2

λ2ε1ε2

)
+

1
2
L2 − 1

2
ln2 ε1

ε2
− π2

3
+ Li2

(
1 − c

2

)]
. (2.78)

The resulting contribution to the cross section from virtual and soft real photons
does not depend on the ˇctitious ®photon mass¯ λ as well as the terms of L2

type. It can be written in the form(
dσ

dz dc

)
sv

=
dσvirt + dσsoft

dc
δ(z − z0) =

=
α

2π

dσB(p1, θ)
dc

[
(L − 1)(P1Δ + P2Δ) + 2KSV

]
δ(z − z0), (2.79)
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where we have introduced the notation

P1Δ =
3
2

+ 2 ln
Δε

ε1
, P2Δ =

3
2

+ 2 ln
Δε

ε2
. (2.80)

We can see that the terms proportional to the ®large¯ logarithm L have the form
conforming with the RG prescription of the structure function. The contribution
of nonleading terms KSV is

KSV = −π2

6
+ Li2

(
1 − c

2

)
− 1

2
ln2 z0

ρ
+ KV . (2.81)

2.3.2. Contribution of the Hard Collinear Real Photon Emission. The depen-
dence on the auxiliary parameter Δε will be eliminated when taking into account
the emission of real additional hard photon with 4-momentum k and the energy ω
exceeding Δε.

It is convenient to consider the kinematics when this additional photon moves
within the narrow cone of the angular size m/ε1 � θ0 � 1 along the directions
of the initial or scattered electrons. The contribution of these kinematic regions
can be obtained by using the ®Quasi-Real Electron Method¯ [5] instead of using a
general (rather cumbersome) expression for the cross section of the DC scattering
process [47].

In the case when the collinear photon is emitted along the initial electron the
result has the form:

(
dσ

dz dc

)
k||p1

=
α

2π

1−Δε
ε1∫

0

dx
dσB

dc
(xp1, θ)

[
1 + x2

1 − x
(L1 − 1) + 1 − x

]
δ(z − t(x)),

(2.82)

L1 = ln
θ2
0ε

2
1

m2
= L + ln

θ2
0ρ

2z0(1 + c)
.

When the photon is emitted along the scattered electron, we have:(
dσ

dz dc

)
k||p2

=
α

2π

dσB

dc
(p1, θ)×

×
z0∫

z
(
1+Δε

ε2

)

dt

t
δ(t − z0)

[
1 + z2/t2

1 − z/t
(L2 − 1) + 1 − z

t

]
, (2.83)

L2 = ln
ε
′2
2 θ2

0

m2
= L + ln

θ2
0z

2

2ρ(1 + c)z0
,
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where z = ε′2/ω1 < z0 is the energy fraction of the scattered electron (after
emission of the collinear photon).

It is convenient to write down the contribution of the collinear kinematics in
the form

(
dσh

dz dc

)
coll

=
α

2π
(L−1)

[ 1∫
0

dx
1 + x2

1 − x
θ(1−x−Δ1)

dσB(xp1, θ)
dc

δ(z−t(x))+

+

z0∫
z

dt

t

1 + (z/t)2

1 − z/t
θ
(
1 − z

t
− Δ2

) dσB(p1, θ)
dc

δ(t − z0)

]
+

df (1)

dz dc
+

df (2)

dz dc
,

with

df (1)

dz dc
=

α3

4ρ(1 − c)ω2
1

(
2 − z(1 + c)

2
+

2
2 − z(1 + c)

)
×

×
[
1 + x2

1 − x
ln

ρθ2
0

2z0(1 + c)
+ 1 − x

]
x=x0

θ(1 − x − Δ1),

(2.84)

df (2)

dz dc
=

α3

4ρaω2
1

(
1 − c

a
+

a

1 − c

)
×

×
[
1 + z2/t2

1 − z/t
ln

z2θ2
0

2ρ(1 + c)z0
+ 1 − z

t

]
t=z0

θ
(
1 − z

t
− Δ2

)
, Δ1,2 =

Δε

ε1,2
.

We use here the relation δ(z − t(x)) = (2x2
0ρ/(z2(1 − c))δ(x − x0).

Again we can see that the terms containing large logarithm L have the form
conforming with the structure function. So our suggestion (2.68) is conˇrmed.

The auxiliary parameter θ0 dependence vanishes when taking into account
the contribution of noncollinear kinematics of the additional hard-photon emission
(see Subsubsec. 2.3.4).

2.3.3. Noncollinear Kinematics Contribution. Double Compton Scattering
Process. The general expression for the cross section of the DC scattering process

γ(k1) + e−(p1) → γ(k2) + γ(k) + e−(p2),
(2.85)

κ = 2kp1, κ′ = 2kp2, κ2 = 2k2p1, κ′
2 = 2k2p2

was obtained years ago by Mandl and Skyrme [47]. The expression for the
cross section presented in this paper is exact but, unfortunately, too complicated.
Instead, we use the expression for the differential cross section calculated (by the
methods of chiral amplitudes (see [98])) with the assumption that all kinematic
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invariants are large compared with the electron mass squared κ ∼ κ′ ∼ κi ∼
κ′

i � m2

ε2dσDC
0

d3p2
=

1
2!

α3

2π2κ1
R dΦ, dΦ =

d3k2

ω2

d3k

ω
δ4(p1 + k1 − p2 − k2 − k),

(2.86)

R = s1
κκ′(κ2 + κ′2) + κ1κ

′
1(κ2

1 + κ′2
1 ) + κ2κ

′
2(κ2

2 + κ′2
2 )

κκ′κ1κ′
1κ2κ′

2

.

The explicit expression for the contribution to the K factor from hard-photon
emission Kh is

α

π

dσB

dc
Kh =

dσDC
θ0

dz dc
+

df (1)

dz dc
+

df (2)

dz dc
, (2.87)

with

dσDC
θ0

dz dc
=

α3z

2!4πρ

∫
R dΦ, (2.88)

and the phase volume dΦ is restricted by the conditions ω, ω2 > Δε and the re-
quirement that the angles between 3-vectors k2,k and 3-vectors p1, p2 exceed θ0.

The values of Kh calculated numerically are given in Tables 2, 8. We show
numerically and analytically (see Subsubsec. 2.3.4) the independence of Kh on
the auxiliary parameters θ0, Δε.

Table 2. The value of Kh as a function of z, cos θ (calculated for ρ = 0.4)

z
cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.8

0.1 Ä2.82 Ä2.61 Ä2.39 Ä2.19 Ä2.09 Ä1.89 Ä1.87 Ä2.06 Ä2.75
0.2 Ä2.77 Ä2.47 Ä2.17 Ä1.90 Ä1.65 Ä1.46 Ä1.39 Ä1.56 Ä2.30
0.3 Ä3.43 Ä2.98 Ä2.55 Ä2.14 Ä1.77 Ä1.47 Ä1.30 Ä1.38 Ä2.13
0.4 Ä4.96 Ä3.87 Ä3.23 Ä2.65 Ä2.13 Ä1.67 Ä1.34 Ä1.30 Ä2.02

The cross section of the DC scattering process in an inclusive experimental
setup with the leading logarithmic approximation in terms of structure functions
has the form

dσDC(p1, k1; p2, k, k2) =

1∫
0

dxD(x, β)×

×
1∫

z

D
(z

t
, β
) dt

t
dσDC

0

(
xp1, k1;

tp2

z
, k, k2

)
, (2.89)
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where the structure functions could be found in [97] and

dσDC
0 (p1, k1; p2, k, k2) =

=
α3

4π2κ1
R

d3k2 d3k d3p2

ω2ωε2
δ4(p1 + k1 − p2 − k2 − k). (2.90)

2.3.4. Cancellation of θ Dependence. Performing the integration over k2 of
the phase volume

dΦ =
d3k

ω

d3k2

ω2
δ4(Q − k − k2), Q = p1 + k1 − p2, (2.91)

we can put it in the form

dΦ =
ωdω

ω2
1

2dc1dc2√
D

×

× δ

[
2ρ − ρz(1 + c) − z(1 − c) − ω

ω1
(ρ(1 − c1) − z(1 − c2) + 1 + c1)

]
,

where D = 1− c2
1− c2

2− c2−2cc1c2; c1, c2 are the cosines of the angles between
k and p1, p2, respectively.

For collinear kinematics the following relation can be useful:
1. k ≈ (1 − x)p1

R1 = R|k||p1 =
(

2xρ

z(1 − c)
+

z(1 − c)
2xρ

)
1 + x2

(1 − x)2
1

2ρ2(1 − c1)xω2
1

,

dΦ1 = dΦ|k||p1 = 2
d3k

ω
δ((xp1 + k1 − p2)2) = 2π

ρ(1 − x)dx dc1

2 − z(1 + c)
δ(x − x0),

(2.92)
dσ1

h

dz dc
=

α3z

2!4πρ

∫
R1 dΦ1 =

α3

4ρω2
1(1 − c)

1 + x2
0

1 − x0
×

×
(

2x0ρ

z(1 − c)
+

z(1 − c)
2x0ρ

)
ln
(

4
θ2
0

)
.

In the last equation we take into account the same contribution from the region
k2 ≈ (1 − x)p1.

2. For the case k ≈ (t/z − 1)p2, we obtain

R2 = R|k||p2 =
(

2xρ

z(1 − c)
+

z(1 − c)
2xρ

)
1 + x2

(1 − x)2
1

2ρ2(1 − c1)xω2
1

,

(2.93)

dΦ2 = dΦ|k||p2 = 2
d3k

ω
δ((xp1 + k1 − p2)2) = 2π

ρ(1 − x) dx dc1

2 − z(1 + c)
δ(x − x0).
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So the contribution of the case k||p2 (k2||p2) has the form

dσ2
h

dz dc
=

α3z

2!4ρω2
1

∫
R2 dΦ2 =

α3

4ρaω2
1

×

×
(

1 − c

a
+

a

1 − c

)
1 + z2/t2

1 − z/t
ln
(

4
θ2
0

)
. (2.94)

Comparing formulae (2.92), (2.94) with (2.84) we can see explicit cancellation
of the θ0 dependence.

2.3.5. Numerical Estimation. The characteristic form ®reverse radiative tail¯
(see Tables 3, 5) of the differential cross section on the energy fraction z can
be reproduced if one uses the ®smoothed¯ expression for nonsinglet structure
functions which includes the virtual electron pair production (see [97]).

Table 3. The value of ω2
1/α2 dσ/(dc dz) (leading contribution, ˇrst term in the right-

hand side of the master formula (2.71) ) as a function of z, cos θ (calculated for ρ = 0.4,
ω1 = 5 GeV)

z
cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.8

0.1 0.211 0.237 0.265 0.299 0.345 0.413 0.526 0.754 1.450
0.2 0.337 0.357 0.378 0.405 0.445 0.508 0.618 0.850 1.576
0.3 0.703 0.669 0.643 0.634 0.644 0.685 0.782 1.013 1.784
0.4 3.883 2.153 1.554 1.264 1.113 1.054 1.090 1.296 2.122

Fig. 17. The leading order radiative
corrections as cos θ distribution (see
formulae (2.95))

In Fig. 17 we put the magnitude of RC
in the leading approximation

R(θ) =
(

dσB

dc

)−1

×

×
(∫

dz
dσ

dz dc
− dσB

dc

)
. (2.95)

The results cited above imply the ex-
perimental setup without additional e+e−,
μ+μ−, π+π− real pairs in the ˇnal state.

The accuracy of the formulae given
above is determined by the order of magni-
tude of the terms omitted (see (2.65)) com-
pared to the terms of order of unity, i.e., is of the order of 0.1% for typical
experimental conditions. In particular, it is the reason why we omit the evolution
effect of the K-factor terms.
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Table 4. Born cross section (2.67) (without factor α2/ω2
1) for ρ = 0.4

cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.8

ω2
1

α2

dσB

dc
1.779 2.038 2.365 2.796 3.389 4.266 5.721 8.669 17.881

Table 5. The value of ε2
1/α2dσ̃/(dc dy) (leading contribution, ˇrst term in the right-

hand side of the master formula (2.98)) as a function of z, cos θ (calculated for ω1 =
400 MeV, ε1 = 6 GeV)

y
cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6

0.05 9.658 11.110 13.626 17.513 23.678 34.116 53.669 98.208

0.10 11.350 15.024 22.633 39.297 86.017
0.15 13.839 23.190 56.097
0.20 17.735 45.672
0.25 24.303

Table 6. Born cross section (2.99) (without factor α2/ω2
1) for ω1 = 400 MeV, ε1 = 6 GeV

cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.88

ε2
1

α2

dσ̃B

dc
93.317 60.706 49.42 8 44.994 44.351 47.084 54.584 72.444 129.944

The numerical value of Kh, leading contributions, and the Born cross section
for different kinematic regions are presented as a functions of z, c in Tables 2Ä6, 8.

2.3.6. Kinematical Region ρ > 1. Here we put the different case of kinematic
region for ρ, z.

All the above formulae were considered for the case ρ < 1, and the possible
region for the variable z was determined by the equation x0 < 1

z � 2ρ

1 − c + ρ(1 + c)
, (2.96)

which means that the low boundary of integration in formula (2.71) is less than 1.
In the case of ρ > 1 it is convenient to put the new variable

η =
ω1

ε1
, y =

ε′2
ε1

, y0 =
ε2

ε1
=

2η

1 + c + η(1 − c)
, η < 1. (2.97)
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The master equation (2.71) for the case ρ > 1 (or η < 1) reads

dσ̃

dy dc
(p1, p2) =

1∫
x̃0

dx

t̃(x)
D(x, β̃)

dσ̃B(xp1, θ)
dc

D

(
y

t̃(x)
, β̃

)
+

+
α

π

dσ̃B(p1, θ)
dc

[
K̃SVδ(y − y0) + K̃h

]
,

(2.98)

x̃0 =
yη(1 − c)

2η − y(1 + c)
, L̃ = ln

2ε2
1y0(1 + c)

m2
, t̃(x) =

2ηx

x(1 + c) + η(1 − c)
,

β̃ =
α

2π
(L̃ − 1),

with the possible values for energy fraction of the scattered electron
y(x̃0 < 1): y � y0. The Born cross section (2.67), (2.69) and formulae for
hard-photon emission, K̃SV, K̃h for the case ρ > 1 appear just by appropriate
exchange ρ → η−1:

dσ̃B(xp1, θ)
dc

=
πα2

ε2
1

1
(η(1 − c) + x(1 + c))2

×

×
(

η(1 − c)
η(1 − c) + x(1 + c)

+
η(1 − c) + x(1 + c)

η(1 − c)

)
. (2.99)

Large amounts of the leading contribution near the kinematic bound can be
understood as manifestation of the δ(y − y0) character of the differential cross
section. The y0, z0 dependence is given in Table 7.

Table 7. The value of y0, z0 as a function of c for η = 0.064 and ρ = 0.4

cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.8

y0 0.417 0.263 0.192 0.152 0.125 0.106 0.093 0.082 0.074
z0 0.423 0.455 0.489 0.526 0.571 0.625 0.690 0.769 0.870

Table 8. The value of K̃h as a function of y, cos θ (calculated for η = 0.064)

y
cos θ

Ä0.8 Ä0.6 Ä0.4 Ä0.2 0.0 0.2 0.4 0.6 0.8

0.05 0.70 Ä1.97 Ä7.41 Ä15.54 Ä26.90 Ä42.70 Ä65.40 Ä100.64 Ä166.21
0.10 0.36 Ä3.20 Ä9.85 Ä18.38 Ä18.35
0.15 0.03 Ä3.38 Ä1.34
0.20 Ä0.20 0.29
0.25 Ä0.25
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3. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

3.1. Integrals for Process e+e− → μ+μ−. Considering the lowest order
radiative corrections to the amplitude of process annihilation of electronÄpositron
pair to muonÄantimuon pair

e+(p+) + e−(p−) → μ+(q+) + μ−(q−), p2
± = m2

e, q2
± = m2, (3.1)

it is convenient to use such linear combinations of 4-vectros:

Δ =
1
2
(p+ − p−), Q =

1
2
(q+ − q−), P =

1
2
(p+ + p−) (3.2)

and kinematical invariants:

s = (p+ + p−)2 = 4E2, t = (p− − q−)2 = −s

4
[1 + β2 − 2βc],

(3.3)
u = (p− − q+)2 = −s

4
[1 + β2 + 2βc],

where E is the energy of electron in the center-of-mass initial particles frame:
c = cos θ, θ is the angle between 3-momentum of electron and negatively charged
muon, β =

√
1 − (4m2)/s is the muon velocity. We will suppose below the value

β not to be specially close to unity

β ∼ 1,
m2

e

s
� 1.

Another bilinear combinations are

Δ2 = −P 2 = −s

4
, Q2 = −s

4
β2, σ = ΔQ =

1
4
(u − t). (3.4)

We use the following set of scalar integrals with three and four denominators
deˇned as [29]:

(Δ) = (k − Δ)2 − m2
e, (Q) = (k − Q)2 − m2, (P±) = (k ± P )2 − λ2. (3.5)

They have the form [10,17,29,93,96]:

FΔ =
−i

π2

∫
d4k

(Δ)(P+)(P−)
=

1
s

[
π2

6
+

1
2

ln2 s

m2
e

]
,

FQ =
−i

π2

∫
d4k

(Q)(P+)(P−)
=

=
1
sβ

[
1
2

ln2 1 − β

2
− 1

2
ln2 1 + β

2
+ Li2

(
1 + β

2

)
− Li2

(
1 − β

2

)]
,
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H =
−i

π2

∫
d4k

(Δ)(Q)(P+)
= G =

−i

π2

∫
d4k

(Δ)(Q)(P−)
= − 1

2(m2 − t)
×

×
[
ln2 m2 − t

m2
+
(

2 ln
m2 − t

m2
+ ln

m2

m2
e

)
×

× ln
m2

λ2
− 1

2
ln2 m2

m2
e

− 2Li2

(
− t

m2 − t

)]
, (3.6)

F =
1
2
sJ − G = − 1

2(m2 − t)

[(
2 ln

m2 − t

m2
+ ln

m2

m2
e

)
ln

s

m2
−

− ln2 m2 − t

m2
+

1
2

ln2 m2

m2
e

+ 2Li2

(
− t

m2 − t

)]
,

J =
−i

π2

∫
d4k

(Δ)(Q)(P+)(P−)
= − 1

s(m2 − t)

(
2 ln

m2 − t

m2
+ ln

m2

m2
e

)
ln

s

λ2
.

The terms proportional to m2
e/s, m2

e/m2
μ were neglected.

The vector integrals with three denominators are:

1
iπ

∫
kμd4k

(Δ)(Q)(P+)
= HP Pμ + HΔΔμ + HQQμ, HQ =

1
t

ln
m2 − t

m2
,

HΔ =
1

m2 − t

(
− ln

m2

m2
e

− m2 + t

t
ln

m2 − t

m2

)
,

HP = H +
1

m2 − t

(
ln

m2

m2
e

+ 2 ln
m2 − t

m2

)
, (3.7)

1
iπ

∫
kμ d4k

(Δ)(P+)(P−)
= GΔΔμ, GΔ =

1
s

(
−2 ln

s

m2
e

+
1
2

ln2 s

m2
e

+
π2

6

)
,

1
iπ

∫
kμd4k

(Q)(P+)(P−)
= GQQμ, GQ =

1
s − 4m2

(
−2 ln

s

m2
+ sFQ

)
.

Four denominator vector and tensor integrals have the form:

Jμ; Jμν =
∫

d4k

iπ2

kμ; kμkν

((Δ)(Q)(P+)(P−)
, Jμ = JΔΔμ + JQQμ,

(3.8)
Jμν = K0gμν + KP PμPν + KQQμQν + KΔΔμΔν + Kx(QμΔν + QνΔμ).

The relevant coefˇcients are:

JΔ =
1
2d

[
(F + FΔ)σ − Q2(F + FQ)

]
,

JQ =
1
2d

[
(F + FQ)σ − Δ2(F + FΔ)

]
, d = Δ2Q2 − σ2,
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K0 = − 1
2σ

[
σ(F − G + HP + HΔ + HQ) + HΔ(σ − Δ2) − HQ(σ − Q2)+

+2P 2(Δ2 − 2σ)JΔ + Δ2GΔ − Q2GQ − 2P 2Q2JQ

]
,

KΔ = − 1
2σd

[
Q2σ(G − F − HP − 3HΔ + 6P 2JΔ)+

+(Δ2Q2 + σ2)(HΔ − 2P 2JΔ − GΔ) − (Q2)2(HQ − 2P 2JQ − GQ)
]
, (3.9)

KP =
1

2P 2σ

[
2σ(HΔ−2P 2JΔ +Hp +

1
2
F − 1

2
G)+Q2(HQ−2P 2JQ−GQ)−

− Δ2(HΔ − 2P 2JΔ − GΔ)
]
,

KQ = − 1
2σd

[
−Δ2σAP + 2(Δ2)2AΔ + (σ2 − 2Δ2Q2)AQ

]
,

Kx = − 1
2d

(
σAP + Q2AQ − 2Δ2AΔ

)
,

where we used

AΔ = HΔ + 2Δ2JΔ − GΔ, AQ = HQ + 2Δ2JQ − GQ,

AP = F − G + HP + 3HΔ + 6Δ2JΔ.

3.2. Some Useful One-Fold Integrals. Trace Conversion. Loop momentum
integrals by means of Feynman joining denominators trick

1
ya
1yb

2

=
Γ(a + b)
Γ(a)Γ(b)

1∫
0

dxxa−1(1 − x)b−1

(y1x + y2(1 − x))a+b
(3.10)

can integrate over Feynman parameters. We put some of them below:

1∫
0

dz

R(z)
=

1√
d
L,

1∫
0

z dz

R(z)
=

1
2a

ln
R(1)

c
− b

2a
√

d
L,

1∫
0

dz

R2(z)
=

b2 + ab − 2ac

R(1) c d
− 2a√

d3
L,

1∫
0

z dz

R2(z)
= −2a + b

R(1) d
+

b√
d3

L, (3.11)

1∫
0

z2dz

R2(z)
=

2c + b

dR(1)
− 2c√

d3
L,

with

R(z) = az2 + bz + c, d = b2 − 4ac > 0, L = ln
(b + 2c +

√
d)2

4cR(1)
. (3.12)
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In problems with two ˇxed axes, the angular phase volume for the case of
one axis

∫
dOn =

∫
dϕ sin θ dθ must be replaced by

dOn = 2
∫

dx1 dx2√
D

, D = 1 − a2 − x2
1 − x2

2 + 2ax1x2 > 0, (3.13)

with a = cos θ0, xi = cos θi, i = 1, 2 and θ0 being the angle between the axes
directions, θi Å the angles between the current three-vector n and one of axes
directions. We present below some onefold integrals. Writing D = (x1 −
x−)(x+ − x1), x± = x2a ±

√
(1 − a2)(1 − x2

2) and using the Euler substitution
t2 = (x+ − x1)/(x1 − x−) we obtain:

x+∫
x−

dx1√
D

[1; x1; x2
1] = π

[
1; ax2; a2x2

2 +
1
2
(1 − x2

2)(1 − a2)
]

,

x+∫
x−

dx1√
D

[
1

1 − βx1
;

1
(1 − βx2)2

]
= π

[
1
r
,
1 − βax2

r3

]
, |β| < 1, (3.14)

r =
√

(1 − βx−)(1 − βx+) =
√

(a − βx2)2 + (1 − β2)(1 − x2
2).

Also the next twofold integrals colud be useful:

1∫
−1

dx2

x+∫
x−

dx1

(1 − β1x1)(1 − β2x2)
√

D
=

=
π

R

[
ln

4
1 − β2

1

+ ln
4
β2

2

+ 2 ln
1 − β1β2a + R

4

]
, (3.15)

1∫
−1

dx2

x+∫
x−

dx1

(1 − βx1)
√

D
=

π

β
ln

1 + β

1 − β
,

with

R =
√

(1 − β1β2a)2 − (1 − β2
1)(1 − β2

2) =

=
√

(β1 − β2)2 + β1β2(1 − a)[2 − β1β2(1 + a)], (3.16)

here we assume that 0 < β, β1,2 < 1.
The following relation of converted tensor can be useful in hand calculation

of traces:

1
4

Tr [âγσ b̂γν ĉγλ]
1
4

Tr [d̂γσêγν f̂γλ] = 8ad · be · cf + 2 · 1
4

Tr [ĉd̂b̂f̂ âê], (3.17)
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or in more general form

1
4

Tr [γλâ2γσ b̂2γν ĉ2(α2 + β2γ5)]
1
4

Tr [γλâ1γσ b̂1γν ĉ1(α1 + β1γ5)] =

= 8(α1α2 + β1β2)a1a2 · b1b2 · c1c2+

+ 2 · 1
4

Tr [ĉ1â2b̂1ĉ2â1b̂2(α1α2 − β1β2 + γ5(α1β2 − α2β1))].
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