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We consider several applications of the simplest nonlinear QED phenomena described by the
light-by-light (LBL) scattering tensor. Among the relevant processes we present the splitting of high
energy photon in a Coulomb ˇeld, calculate the asymptotics of differential photonÄphoton elastic
scattering. We show that the LBL mechanism of the four-photon mode of neutral-pion decay have
a dominant role compared, for instance, with the quark-loop Feynman amplitude contribution. The
mechanisms of creation of two and three gluon jets at colliding electronÄpositron beams is analyzed.
We calculate also the contribution of the LBL mechanism to the orthopositronium decay width. One
of the important applications is the analytic calculation of the QED contribution to the anomalous
magnetic moment of the muon arising from the LBL mechanism realized through electronÄpositron
loops, which is enhanced by the logarithm of the ratio of muon to electron masses. The modiˇcation
of the QED kernel, which takes into account the QED polarization operator, is used to extract the pure
strong-interaction contribution. We consider the problem of the Coulomb law modiˇcation as well.
In the second part of the review we consider the Méoller scattering process and radiation corrections
(RC) to it. We show that RC are in agreement with the renormalization-group approach and could be
taken into account in the form of DrellÄYan process cross section.

� ¸¸³μÉ·¥´ ¶·μ¸É¥°Ï¨° ´¥²¨´¥°´Ò° ¶·μÍ¥¸¸ ¢ Š�„, μ¶¨¸Ò¢ ¥³Ò° É¥´§μ·μ³ · ¸¸¥Ö´¨Ö
¸¢¥É  ´  ¸¢¥É¥. ˆ§ÊÎ¥´μ · ¸Ð¥¶²¥´¨¥ ËμÉμ´  ¢ ¶μ²¥ Ö¤·  ´  ¤¢  ËμÉμ´ ,   É ±¦¥  ¸¨³¶ÉμÉ¨± 
ËμÉμ´-ËμÉμ´´μ£μ ¤¨ËË¥·¥´Í¨ ²Ó´μ£μ ¸¥Î¥´¨Ö. �μ± § ´μ, ÎÉμ ³¥Ì ´¨§³ · ¸¸¥Ö´¨Ö ¸¢¥É  ´  ¸¢¥É¥
¢ ¶·μÍ¥¸¸¥ · ¸¶ ¤  ´¥°É· ²Ó´μ£μ ¶¨μ´  ´  Î¥ÉÒ·¥ ËμÉμ´  ¤μ³¨´¨·Ê¥É ´ ¤ μ¸É ²Ó´Ò³¨ ¢±² ¤ ³¨,
¢ Î ¸É´μ¸É¨, ´ ¤ ¢±² ¤μ³ μÉ ±¢ ·±μ¢μ° ¶¥É²¨. � ¸¸³μÉ·¥´ ¢±² ¤ μÉ É¥´§μ·  · ¸¸¥Ö´¨Ö ¸¢¥É  ´ 
¸¢¥É¥ ¢ μ¡· §μ¢ ´¨¥ ¤¢ÊÌ ¨ É·¥Ì ¸É·Ê°´ÒÌ £²Õμ´ÒÌ ¤¦¥Éμ¢ ¶·¨ Ô²¥±É·μ´-¶μ§¨É·μ´´μ³ ¸Éμ²±´μ-
¢¥´¨¨,   É ±¦¥ ¶μ¶· ¢±¨ ± Ï¨·¨´¥ · ¸¶ ¤  μ·Éμ¶μ§¨É·μ´¨Ö. � ¸¸Î¨É ´ ¢  ´ ²¨É¨Î¥¸±μ³ ¢¨¤¥
¢±² ¤ ³¥Ì ´¨§³  · ¸¸¥Ö´¨Ö ¸¢¥É  ´  ¸¢¥É¥, ·¥ ²¨§μ¢ ´´Ò° Î¥·¥§ Ô²¥±É·μ´-¶μ§¨É·μ´´ÊÕ ¶¥É²Õ, ¢
 ´μ³ ²Ó´Ò° ³ £´¨É´Ò° ³μ³¥´É ³Õμ´ . �μ± § ´μ, ÎÉμ ¤ ´´Ò° ¢±² ¤ Ê¸¨²¥´ ¡μ²ÓÏ¨³ ²μ£ ·¨Ë³μ³
μÉ´μÏ¥´¨Ö ³Õμ´´μ° ¨ Ô²¥±É·μ´´μ° ³ ¸¸. �ËË¥±ÉÒ ¶μ²Ö·¨§ Í¨¨ ¢ ±ÊÊ³  ²¥¶Éμ´ ³¨ ¶·¨´ÖÉÒ ¢μ
¢´¨³ ´¨¥ ¶·¨ ¢Ò¤¥²¥´¨¨ ¢±² ¤  ¸¨²Ó´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¢  ´μ³ ²Ó´Ò° ³ £´¨É´Ò° ³μ³¥´É ³Õ-
μ´ . � ¸¸³μÉ·¥´  § ¤ Î  ³μ¤¨Ë¨± Í¨¨ ±Ê²μ´μ¢¸±¨Ì ¸¨² ¶·¨ ¢§ ¨³μ¤¥°¸É¢¨¨ § ·Ö¦¥´´ÒÌ Î ¸É¨Í
§  ¸Î¥É ³¥Ì ´¨§³  · ¸¸¥Ö´¨Ö ¸¢¥É  ´  ¸¢¥É¥. ‚μ ¢Éμ·μ° Î ¸É¨ · ¸¸³ É·¨¢ ÕÉ¸Ö · ¤¨ Í¨μ´´Ò¥
¶μ¶· ¢±¨ ± · ¸¸¥Ö´¨Õ Œß²²¥· . �·μ¨§¢¥¤¥´ Ö¢´Ò° · ¸Î¥É ¤μ¶μ²´¨É¥²Ó´μ£μ ¢±² ¤  ¢ ¸¥Î¥´¨¥
¶·μÍ¥¸¸  μÉ ¨§²ÊÎ¥´¨Ö ¤μ¶μ²´¨É¥²Ó´μ£μ ¦¥¸É±μ£μ ËμÉμ´ . �μ± § ´μ, ÎÉμ ¸Ê³³  ¢±² ¤μ¢ ¢ ¸¥Î¥-
´¨¥ μÉ ¢¨·ÉÊ ²Ó´ÒÌ ¶μ¶· ¢μ±, ¨§²ÊÎ¥´¨Ö ¤μ¶μ²´¨É¥²Ó´μ£μ ³Ö£±μ£μ ¨ ¦ß¸É±μ£μ ËμÉμ´μ¢ ³μ¦¥É
¡ÒÉÓ ¶·¥¤¸É ¢²¥´  ¢ ¢¨¤¥ ¸¥Î¥´¨Ö ¶·μÍ¥¸¸  „·¥²² ÄŸ´ . ‚ Ö¢´μ³ ¢¨¤¥ ¶·¥¤¸É ¢²¥´ ¢±² ¤ μÉ ´¥-
²¨¤¨·ÊÕÐ¨Ì ¸² £ ¥³ÒÌ (¢ Éμ³ Î¨¸²¥ ¨ μÉ ´¥±μ²²¨´¥ ·´μ£μ ¨§²ÊÎ¥´¨Ö ¤μ¶μ²´¨É¥²Ó´μ£μ ËμÉμ´ ).

PACS: 12.15.Lk; 12.20.-m; 12.20.Ds; 13.66.-a
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Akhiezer, Sergej Semenovich Sannikov, and Vladimir
Naumovich Gribov

INTRODUCTION

Some applications of the LBL scattering tensor which contributes from elect-
ronÄpositron closed loop are considered. Among them are the total cross section
of LBL scattering at high energies [4] (and references therein), contribution to
muon anomalous magnetic moment [5Ä7], four-photon channel of neutral-pion
decay [8], splitting of photon to two photons in Coulomb ˇeld [9], and the
crossing process of photons fusion [10]. In modern experiments the contribution
of LBL mechanisms to orthopositronium total width [11] becomes important.
Creation of two and three gluon jets in electronÄpositron collisions [12] can be
investigated. We also mention the Delbréuck process Å scattering of photon on
Coulomb ˇeld started from [13] with further development in [7, 32]. In spite of
rather cumbersome form of LBL tensor, the processes considered in this section
are described in a compact form.

At small photon energies, where high-intensity sources can be applied,
the cross section of photon on photon elastic scattering is very small
σγγ ∼ (0.1α2r2

0/π)(ω/m)6, with m, r0, ω being respectively mass, classical
radii of electron and center-of-mass photon energy. So for ω = 1 MeV the
cross section has an order σγγ ∼ 10−65 cm2. The cross section is maximal
σγγ ∼ 1.2πα2r2

0 ∼ 1.6 · 10−30 cm2 for ω ∼ m. For large values of photon ener-
gies ω � m, the cross section (in lowest order of perturbation theory) decreases
as σγγ ∼ (20α2r2

0/π)(m/ω)2.
Additional process of annihilation of e+e− pair through one virtual photon to

three real photons cannot be directly measured due to large background of direct
annihilation to three photons. Nevertheless, its contribution to the width of or-
thopositronium can in principle be measured. A similar process in the framework
of QCD annihilation to three gluons in the region of energies without narrow
resonances can also be used to investigate nonlinear effects. The problem of
calculation of anomalous magnetic moment of muon also requires the knowl-
edge of LBL scattering tensor in 6 and 8 orders of PT due to the fact that the
corresponding contribution is now within experimental accuracy.

A lot of attention was paid to calculations of LBL tensor and investigation
of manifestations of nonlinear phenomena. We send the reader to the paper
by Costantini, De Tollis and Pistoni [4] with almost complete list of relevant
literature. We do not pretend to the complete description of this problem. Some
applications to the questions mentioned above are given below.

In the second part of the rewiew we consider the Méoller scattering process
and radiative corrections (RC) to it. In Sec. 2 we calculate the contribution of
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additional hard-photon emission and, by using the well-known result for RC from
soft-photon emission and virtual RC, we show that all corrections are in agreement
with the renormalization-group approach and could be taken into account in the
form of DrellÄYan process. Also, we put the explicit form of nonleading terms
(including the compensation term from additional hard-photon emission) in the
form of the so-called K factor.

Throughout our paper we use the following designations: FD Å Feynman
diagram; LBL Å light by light; QCD Å quantum chromodynamics; QED Å
quantum electrodynamics; RC Å radiative corrections; SM Å Standard Model.

1. LIGHT-BY-LIGHT SCATTERING TENSOR
AND VACUUM POLARIZATION

1.1. Photon Splitting in a Coulomb Field. PhotonÄPhoton Elastic Scatter-
ing. Consider ˇrst the splitting of photon on an atomic electron [9]:

γ(k1, λ1) + Y (p) → Y (p′) + γ(k3, λ3) + γ(k4, λ4). (1.1)

The cross section in WeizséackerÄWilliams approximation will be

dσγ→γγ =
α

π

dr

r
L dσγγ→γγ, (1.2)

with differential photonÄphoton elastic scattering cross section

dσγγ→γγ =
α4

2πr
|M |2 d3k3

ω3

d3k4

ω4
δ4(k1 + k2 − k3 − k4), (1.3)

and

L =

q2
max∫

q2
min

dz

z
(1 − F (z))2, k2 = p − p′, (1.4)

where q2
min,max are minimal and maximal transverse momenta squared to the

nuclei, which are determined by experiment; F (z) is the atomic form factor. The
kinematical invariants are deˇned as

r = k3k4 =
k2

3

2y(1 − y)
= ω2

1θ
2
3

y

2(1 − y)
, s = −k1k3 = −1

2
ω2

1θ
2
3y,

(1.5)

t = −k1k4 = −ω2
1θ

2
3

y2

2(1 − y)
,
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where ω3 = yω1, ω4 = (1 − y)ω1, θ3 = ̂k1,k3, and ωi are the energies of
corresponding photons. We use here the normalization accepted in [4].

The cross section for the case of unpolarized photons can be written in the
form

dσγ→γγ

dω3 dΩ3
=

4Z2α5(1 − y)
yπ3

L

ω3
3θ

4
3

¯|M2|. (1.6)

The total photon splitting cross section in the case of full screening is (we

use the numerical estimation of the integral
∞∫
0

(dr/r)σtot
γγ→γγ(r) = 5 · 10−30 cm2)

σγ→γγ =
2Z2α

π
ln (183Z1/3)

∞∫
0

dr

r
σγγ→γγ =

=
Z2α

π
ln (183Z−1/3) · 10−29 cm2. (1.7)

For the large-invariant case r ∼ −t ∼ −s � m2 and unpolarized photons,
we have

|M |2 → ¯|M |2 =
1
2
[
|M++++|2 + |M++−−|2 + |M+−+−|2+

+ |M+−−+|2 + 4|M+++−|2
]
, (1.8)

with

M++++(x) = 1 + (2x − 1)L2 +
1
2
[x2 + (1 − x)2](L2

2 + π2),

M+−+−(x) = 1 +
(

1 − 2
x

)
(L1 − iπ) +

1
2x2

[1 + (1 − x)2](L2
1 − 2iπL1),

M++−− = M++−+ = M+++− = M+−++ = M−+++ = −1, (1.9)

M+−−+(x) = M+−+−(1 − x),

L1 = ln
1

1 − x
, L2 = ln

1 − x

x
, x = − t

r
.

Using these asymptotic expressions for chiral amplitudes, one has a possibility to
calculate the high center-of-mass energy limit of the cross section of photon on
photon (ω is the photon energy in center-of-mass reference frame):

lim
ω→∞

ω2σtot
γγ→γγ(ω) =

α4

2π

1∫
0

dx ¯|M |2(x) =

=
α4

2π

[
108
5

+
13
2

π2 − 8π2ξ3 +
148
225

π4 − 24ξ5

]
≈ 1.4 · 10−8. (1.10)
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Taking into account the contribution from muon in fermion loop, this result must
be multiplied by a factor of 4.

We do not consider here the contribution of hadrons in the intermediate state
(the last one was considered in papers [14,15].

Using the asymptotic for chiral amplitudes of LBL tensor, given above, we
can calculate the ratio of cross sections with equal and different chiral state of
initial photons in the limit of large center-of-mass photon energies compared with
loop fermion mass:

R =
σLL + σRR

σLR + σRL
=

1∫
0

dx[|M++++|2 + 3]

1∫
0

dx[2|M+−+−|2 + 2]
. (1.11)

Using
1∫

0

dx|M++++|2 =
1
5

+ 2ξ2 +
224
25

ξ2
2 ,

(1.12)
1∫

0

dx|M+−+−|2 = −24ξ5 − 48ξ3ξ2 +
96
5

ξ2
2 + 38ξ2 + 19,

one obtains
R = 1.0480707.

1.2. Four-Photon Decay Mode of the Neutral Pion. Next application of
LBL tensor is connected with experimental looking for the four-photon decay of
the neutral pion [8]. It was recently shown [16] that hadronic mechanisms of
this channel contribute too little and lead to branching at the level of 10−16. It
turns out that the main contribution arises from the QED mechanism with decay
to one real and another virtual photons and the latter one decays through the LBL
mechanism to three real photons:

Br (π0 → 4γ)LBL ≈ (2.6 ± 0.1) · 10−11. (1.13)

The main contribution arises from the electron (positron) as a fermion in the
fermion loop amplitude.

The purpose of experiments is measuring the C-violating decay π0 → 3γ,
which may be a signal of ®new physics¯. The allowed decay channel π0 → 4γ
is a potential background for π0 → 3γ. Keeping in mind the Bose statistics of
photons, the matrix element can be described by four types of diagrams:

π0(q) → [γ(k1) + (γ∗ → γ(k2) + γ(k3) + γ(k4))]+
+ (k1 ↔ k2) + (k1 ↔ k3) + (k1 ↔ k4).
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Using the dimensionless version of Kumar's variables [17]:

s1 =
1

m2
(q − k1)2, s2 =

1
m2

(q − k1 − k2)2,

u1 =
1

m2
(q − k2)2, u2 =

1
m2

(q − k3)2,
(1.14)

ξ =
1

2(1 − u1)ρ
[ρ − (1 − s1)2 + (1 − u1)2], ρ =

√
λ(1, s2, 1 + s2 − u1 − s1),

q2 = m2, k2
i = 0, i = 1, 2, 3, 4, λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc),

where m is the pion mass, the branching ratio can be written in the form

Br (π0 → 4γ) ≈ Γ(π0 → 4γ)
Γ(π0 → 2γ)

=
1
6π

( α

8π

)4

R, (1.15)

with

R =

1∫
0

ds1

s1∫
0

ds2

1−s1+s2∫
s2/s1

du1

ρ

1∫
−1

dξ√
1 − ξ

F (s1, s2, u1, u2, ξ). (1.16)

The function F (s1, s2, u1, u2, ξ) stands for half sum of the squared helicity am-
plitudes:

F (s1, s2, u1, u2, ξ) =
∑

λ

|M+λ2λ3λ4 |2.

For evaluating these helicity amplitudes, we use the asymptotic form of LBL
tensor found in [4] with electron as a fermion in a loop. The main contribu-
tion arises from the region where the intermediate (virtual) photon 4-momentum
squared k2 ∼ m2 � m2

e is large compared with electron mass squared. These
contributions do not have any problems with infrared divergences.

The contribution of muons in fermion loop is suppressed compared with
electron contribution by a factor (me/(4Mμ))4 and can be neglected.

The numerical estimation gives the result (1.13). This value is about three or-
ders of magnitude below the present experimental limits. Note, however, that this
value is dominant compared with contributions arising from hadronic mechanisms
ones and exceed them by at least 3 orders of magnitude [16].

1.3. Explanation of 1973 Year Experiment on Photon Splitting in Coulomb
Field. In the experiment on the elastic and inelastic photon scatterings in a
Coulomb ˇeld of nuclei (performed in experiment [18]), the excess in number
of photon with energy 0.87ω0 was observed for different values of initial photon
energy ω0 = 1, 7; 3, 4; 6.1 GeV/c.
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The authors of the experiment believe that they measure the photon splitting
process. In paper [19] it was shown that really the process

γ(ω0) + Y (Z) → e+ + e− + γ(θ, ω) + Y (Z)

was measured. Also, in the experiment the magnetic ˇeld was used which ex-
cludes the possibility to tag the pair component. As was shown in Subsec. 1.1,
the real photon splitting process has the cross section of two orders of magnitude
lower than the radiative pair production process. Inclusive on photon, the cross
section of radiative pair production process has the form

ωdσ

d3k
=

Z2α4x

π2(k⊥)4
L

[
A(x) ln

k2
⊥

m2
e

+ B(x)
]

, (1.17)

with k⊥ = xθω0, x = ω/ω0, L is given in (1.4) and

A(x) =
1
3
[20 + 56x − 56x2 − 20x3] + 16x(1 + x) ln x,

B(x) =
1
3
[32 − 96x + 96x2 − 32x3] +

1
3
[−48x + 16x2 + 40x3] lnx−

− 16x(1 − x) ln (1 − x) +
(
−16x2 + 16x +

32x

1 − x

)
(ln x)(ln (1 − x))+

+
[
−16x2 − 24x +

16x

1 − x2

]
ln2 x −

[
16x2 − 16x +

32x

1 + x

]
Li2(1 − x). (1.18)

It was shown in [19] that formulae (1.17) and (1.18) describe satisfactorily
the result of experiment [18].

1.4. Creation of Gluon and Quark Jets at ElectronÄPhoton High-Energy
Collisions. QED results for LBL can also be used for describing QCD
processes with creation of two and three gluons [31]. The cross section of
jets caused by quarkÄantiquark pair creation by photon on electron differs only
by factor N = (

∑
Q2

q)
2:

dσγe→jet,e = Ndσγe→e+e−e,
(1.19)

dσγe→e+e−e

dΔ
=

2α3

m2

[
1 − 4

3
Δ(1 − Δ)

] [
2 ln

(
sΔ(1 − Δ)

m2

)
− 1

]
,

where Δ = ε+/ω is positron energy fraction; s = 4Eω = 4E2 is the square of
total energy in the center-of-mass frame.

It is interesting to consider the limit of photon-splitting differential cross
section for the case that the energy fraction of one of the photons is close to
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unity. In this case the kinematics is similar to elastic scattering of photon on a
Coulomb ˇeld of nuclei (Delbréuck scattering limit).

In the main logarithmic approximation (WeizséackerÄWilliams approxima-
tion), the cross sections of processes γe → Fe, F = e+e−γ; q̄qg (quarkÄanti-
quark gluon state) can be expressed in terms of convergent integral:

s∫
sth

ds1

s1
σγγ→F (s1).

The lower value of two-photon mass squared s1 in x → 1 limit is sth = (p2 +
m2)/(1 − x), where x and p are the energy fraction and transverse component
of 4-momentum of ˇnal state F . It results in nonvanishing limit of the photon-
splitting cross section due to the massless nature of a gluon (m = 0).

As a result, the Delbréuck limit of photon conversion to gluon jet is not zero:

dσγ→gg

dx dp2

∣∣∣∣
x→1

=
2α3α2

s

π2(p2)2
n2

f(CF CV )2I. (1.20)

For the qq̄g jet we obtain

dσγ→q̄qg

dx dp2
=

=
2α3αs

π2(p2)2
(1 − x)

[
20
3

ln
p2

m2
q

− 32(ln (1 − x) + 1)
]

ln
(

s(1 − x)
p2

)
nfCF CV ,

with CV = N , CF = (N2 − 1)/2N being structure constants of color group; nf

is the number of light quarks, and

I =

∞∫
0

dz

z2
[I1 + I2 + I3 + π2(I4 + I5)],

I1 =
z

1 − z
+

z2

(1 − z)2
ln z − Li2(1) + Li2(1 − z),

I2 =
2z2

1 − z2
+

2z2(3 − z2)
(1 − z2)2

ln z + z2

[
Li2(1) − Li2

(
1 − 1

z2

)]
, (1.21)

I3 =
z

1 + z
− z2

(1 + z)2
ln z + Li2(1) − Li2(1 + z),

I4 =
z2(3 + 2z)
(1 + z)2

+ 2z2 ln
z

1 + z
, I5 =

z2

(1 + z)2
− ln (1 + z).
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This expression can be inferred from the results of paper [4]. Calculation leads to

I =
14
9

π4 − 12π2 ≈ 31. (1.22)

We note that the creation of gluon jets in this kinematics provides the independent
test of QCD predictions.

1.5. Three-Gluon Jet Production at High-Energy ElectronÄPositron Anni-
hilation. In the lowest order of PT the creation of three-gluon mechanism consists
in conversion of lepton pair to the virtual photon and subsequent conversion to
gluons through the LBL mechanism. The difference compared with QED consists
in the replacement of fermions by quarks, in the taking into account the gluon
color effects and replacement of the coupling constant factor as α5 → α2α3

s . First
we note that only heavy quarks are relevant due to the fact that the contribution
of light quarks is cancelled as a consequence of zero sum of their charges:∑

u,d,s

Qq = 0. (1.23)

The color factor Tr (tatbtc) = (1/4)[dabc + ifabc], with ta color group generators,
results in factor (dabc)2/16 = (N2 − 1)(N2 − 4)/(16N) = 5/6 for color SU(3)
group. Really the structures connected with fabc are cancelled if one takes into
account both directions of lines in fermion loop. So we further will consider pure
QED process of annihilation, by means of the LBL mechanism, of e+e− pair to
three photons. The differential cross section has the form (s = 4E2, E is the
energy of initial particles in c.m.f.)

dσ =
α5

213π4E6

(∑
|M |2

)
dΓ, (1.24)

with phase volume

dΓ =
d3k2

ω2

d3k3

ω3

d3k4

ω4
δ4(p+ + p− − k2 − k3 − k4),

and ki, ωi, i = 2, 3, 4 being real photons momenta and energies, and∑
|M |2 = 2

∑
ησ

(|Mησ
+++|2 + |Mησ

++−|2 + |Mησ
+−+|2 + |Mησ

−++|2),

(1.25)
Mησ

λ2λ3λ4
= v̄η(p+)γμu(p−)σGλ2λ3λ4

μ , λi = ±;

here λi, i = 2, 3, 4 are real photon chiralities. The current of heavy-photon
decay to three real photons Gμ (see [4] for designations of chiral amplitudes
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E
(i)
λ2λ3λ4

(i1i2i3i4)) could be expressed in terms of chiral amplitudes:

Gλ2λ3λ4
μ =

i√
32Δ

[
E

(1)
λ2λ3λ4

(1234)
(

k3 −
ν3

ν2
k2

)
μ

−

− E
(1)
λ2λ3λ4

(1243)
(

k4 −
ν4

ν2
k2

)
μ

+ iE
(2)
λ2λ3λ4

(1234)εμαβγqαkβ
2 kγ

3

]
, (1.26)

and q = p+ + p−, q2 = 4E2, νi = ωi/E, Δ = E6(1 − ν2)(1 − ν3)(1 − ν4).
To obtain the distribution on the photon energy fractions, we average over

the angular variables and sum over photon polarization states the product of two
such currents. Due to gauge invariance it has the form

GμG∗
ν =

1
3

(
gμν − qμqν

q2

)
GηG∗

η. (1.27)

The evident advantage of this averaging is the possibility to express the right-hand
side in terms of photon energy fractions. Expressing the phase volume as∫

dΓ = 8π2E2

∫
dν2 dν3 dν4δ(2 − ν2 − ν3 − ν4), (1.28)

the energy fractions distribution could be written in the form

d2σe+e−→3γ

dν3dν4
=

α5

3!
1

12π2E2
[R(234) + R(324) + R(423)], (1.29)

where dimensionless quantities R(234) = R(243) could be found in Appendix
of [12]. The quantity R(z) (r.h.s. of Eq. (1.29)), which is deˇned as

R
(m

E

)
=

=
∫

dν2 dν3 dν4[R(234) + R(324) + R(423)]δ(2 − ν2 − ν3 − ν4), (1.30)

can be approximated as a step function

R(z) ≈ 16, z < 1, R(z) ≈ 0, z > 1. (1.31)

Now by using the changes which we discuss at the beginning of this subsec-
tion, we can consider the case of annihilation to the three gluons. The inclusive
distribution over the energy fraction of one of the gluons (we take into account
only one sort of quarks with charge eq = eQq) has the form

dσ

dx
=

5α2α3
s

432π2E2
F (x), x = ν2, (1.32)
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the function F (x) has a rather cumbersome analytic form. Its asymptotic expres-
sions are

F (x) ≈ 4x(ln2 x − 2 ln x + 3), x � 1,
(1.33)

F (x) ≈ 1.93 ln2(1 − x) + 0.4 ln (1 − x) + 16, 1 − x � 1.

Compare now the cross section of gluon-jet production with the cross section of
production of quarkÄantiquark and gluon state in annihilation channel:

dσe+e−→q̄qg

dν+ dν−
=

α2αsQ
2
q

3E2

[
2(ν2

+ + ν2
−)

(1 − ν+)(1 − ν−)
+

+
m2

q

E2

[
2(1 − ν)

(1 − ν+)(1 − ν−)
− ν2

(1 − ν+)2(1 − ν−)2

]
−

m4
q

2E4

ν2

(1 − ν+)2(1 − ν−)2

]
,

with conservation law restrictions

ν± =
E±
E

, ν = 2 − ν+ − ν−,

(1.34)

(1 − ν)(1 − ν+)(1 − ν−) >
m2

q

4E2
(1 − ν).

It can be concluded that measuring the three-gluon jet production in annihilation
channel, at least three orders of magnitude are suppressed compared with quarkÄ
antiquark gluon production.

1.6. Gluon-Jet Creation in the Scattering Channel at e+e− High-Energy
Collisions. Within equivalent photons approximation applied to both electron and
positron, the cross section of two-gluon jet creation in e+e− scattering has the
form [12]

dσ =
α4α2

s

8π3p2
m

(
ln

E2

m2
e

)2 ∑
λ

∑
q

Q2
q|M

q
λ1λ2λ3λ4

|2 d cos θ1 d cos θ2

sin4

(
θ1 + θ2

2

) , (1.35)

where pm is the value of the component, transverse to beams axes, of gluon
momentum; θ1,2 are the polar angles of the gluons to the beam axes; M q

λ1λ2λ3λ4

are chiral amplitudes of LBL tensor with fermion mass mq . As well as these
amplitudes fall rapidly with increasing fermion mass, one can consider only light-
quark contribution,

∑
λ

∑
q

Q2
q|M

q
λ1λ2λ3λ4

|2 → 16
9

¯|M |2, (1.36)
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with ¯|M |2 given in Eq. (1.8), where we must substitute x = sin (θ1/2) cos (θ2/2)/
sin ((θ1 + θ2)/2). The ratio of this cross section to the cross section of quarkÄ
antiquark production at the same conditions:

dσe+e−→e+e−2g

dσe+e−→e+e−2q̄q
=

α2
s

π2

2 ¯|M |2x(1 − x)
x2 + (1 − x)2

2
(∑

Q2
i

)2

3(
∑

Q4
i )

(1.37)

shows that it is contrary to the case of three-gluon jet and it is the quantity of
order 0.1 and in principle could be measured.

1.7. LBL Contribution to Orthopositronium Width. In the last decade
before the year 2000 a lot of attention was paid to the problem of orthopositronium
width. It was realized that the result of QED calculations was in contradiction
with experimental data on the level of ten standard deviations. Namely, the most
accurate experimental rates

Γexp = (7.0514 ± 0.0014) μs−1,
(1.38)

Γexp = (7.0482 ± 0.0016) μs−1

deviate by 9.4σ, 6.2σ from the most accurate theoretical estimations (up to the
order of α/π, see [20] and references therein). Great efforts to compute the next
correction (α/π)2 of the perturbation theory

ΓQED(PS → 3γ) = Γ0

[
1 + (−10.2866± 0.0006)

α

π
+ C

(α

π

)2

+ . . .

]
,

(1.39)

Γ0 = α6m
2(π2 − 9)

9π

were done. To eliminate this contradiction, the value of C must be too large
(about C ≈ 400), which is unusual for perturbative QED.

The contribution to the width arising from the square of the matrix element
describing the conversion of orthopositronium state to a virtual photon with its
subsequent conversion to three real photons by the LBL mechanism could be
considered [11].

The corresponding matrix element has the form

−
√

4πα

4m2

∫
d4p

(2π)4
Tr [Ψ(m)(p)γρ] G(λ2,λ3,λ4)

ρ ; (1.40)

here G
(λ2,λ3,λ4)
ρ are the same as in (1.26), and

Ψ(m)(p) = (2π)δ(p0)
√

2mGmΦ(p), (1.41)
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where
Gm = (0, σεm, 0, 0), (1.42)

εm is the orthopositronium polarization vector and

Φ(p) =

√
γ3

m

8πγ

p2 + γ2
, γ =

mα

2
. (1.43)

By integrating an averaging as in Subsec. 1.5 we obain the relevant contribution
to the width:

ΔΓ = −m
α8

249π3

∫
dν2 dν3 dν4[R(234)+R(324)+R(423)]δ(2−ν2−ν3−ν4) =

= 0.17021(10)
(α

π

)2

Γ0. (1.44)

This kind of contributions of course do not solve the contradiction problem, but,
nevertheless, must be taken into account.

1.8. LBL Tensor and Anomalous Magnetic Moment of Muon. We consider
below the contribution to the anomalous magnetic moment of muon (amm) (Δa)μ

from the gauge-invariant set of Feynman amplitudes, containing LBL block [5].
It is one of contributions to amm in (α/π)3 order of PT which turns out to be
the numerically largest. Really, it equals(α

π

)3
[(

2π2

3

)
ln

(
M

m

)
+ const

]
≈ 21.4(α/π)3, (1.45)

(here M, m are the muon and electron masses, respectively), whereas the total
contribution in this order is 24.07(α/π)3. Our result is in agreement with ones
obtained numerically [21] and analytically [22].

It can be shown [21] (and references therein) that relevant contribution to
amm has the form

(Δa)μ =
1

48M
Tr (p̂ + M)[γργσ](p̂ + M)Mρσ, (1.46)

with

Mρσ = − 4πα

(2π)8

∫
d4k1 d4k2 d4k3

k2
1k

2
2k

2
3

δ4(k1 + k2 + k3)×

× Jμνλ
ρσ (k1, k2, k3)γλ(p̂ + k̂3 + M)−1γν(p̂ − k̂1 + M)−1γμ. (1.47)

The current Jμνλ
ρσ is connected with the antisymmetric part of the derivative of

the LBL tensor Gμνλσ(Δ, k1, k2, k3):

Jμνλ
ρσ = lim

Δ→0

(
∂

∂Δ[ρ

)
Gμνλ

σ] (Δ, k1, k2, k3). (1.48)
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Building the current Jμνλ
ρσ (k1, k2, k3) = Jμνλ

ρσ (123), we follow the logical
scheme of the famous paper by Karplus and Neuman [23], imposing the Bose-
symmetry and gauge-invariance requirements

Jμνλ
ρσ (123) = Jνλμ

ρσ (231) = Jλμν
ρσ (312) = . . . , k1μJμνλ

ρσ (123) = 0. (1.49)

As a result, we obtain such a general expression in terms of Maxwell tensor

Fμ
αβ(k1) = k1αδμ

β − k1βδμ
α, Fμ(k1)k1μ = 0,

(1.50)
Fαβ(k, ε) = kαεβ − kβεα,

and six scalar functions d1, d2, d3, d4, a, A1 (®heads¯ in terms of [23]):

Jμνλ
ρσ (123) = a(123)[12]ρσ(Fμ(k1)F ν(k2)Fλ(k3))+

+
∑
perm

[
(F ν(k2)Fλ(k3))

[
1
4
Fμ

ρσ(k1k3A1(321)− d3(132))−

− 1
2
A1(231)((k̄2)ρσFμ(k1)k2)

]
−

− 1
2k1k3

d2(123)(k1F
λ(k3)k2)(Fμ(k1)F ν(k2))γη[γη]ρσ+

+
1

2k1k2
d4(123)[(Fμ(k1)Fλ(k3)F ν(k2))ηγ [ηγ]ρσk1k2+

+ ((k̄1)ρσF ν(k2)Fμ(k1)Fλ(k3)k3) − ((k̄2)ρσFμ(k1)F ν(k2)Fλ(k3)k1)
]
,

with
(k̄μ

i )ρσ = kiρδ
μ
σ − kiσδμ

ρ , [νλ]ρσ = δν
ρδλ

σ − δν
σδλ

ρ ,

and conversion on lower indices implied

(F ν(k2)Fμ(k1)) = F ν
αβ(k2)F

μ
βα(k1), (aFμb) = aαFμ

αβbβ, . . . (1.51)

This form is general and does not depend on theoretical model. We now can
identify the six functions by comparing the characteristic terms in Feynman am-
plitudes and fermion loop diagrams describing the LBL scattering.

Let us now discuss the details of integration over virtual photons momenta.

The main contribution leading to ®large logarithm¯
M∫
m

(dk/k) arises from such a

region of 3-momenta of virtual photons variation (muon rest frame implied):

m � |ki| � M, |k0i| ∼
k2

i

M
� |ki|, i = 1, 2, 3. (1.52)
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It corresponds to almost real muon intermediate states. Besides, the main con-
tribution arises from ®nearest singularities¯ Å small values of yi = k0i/m,
y1 + y2 + y3 = 0. To provide the convergence of yi integrations, we must use
the symmetrization procedure. It consists in using the relation

1
3!

∫
J(y1, y2, y3)d3yδ

(∑
yi

) [
1

−y1 + i0
1

y3 + i0
+

+
1

−y1 + i0
1

y2 + i0
1

−y2 + i0
1

y1 + i0
+

1
−y2 + i0

1
y3 + i0

+

+
1

−y3 + i0
1

y1 + i0
1

−y3 + i0
1

y2 + i0

]
= −4π2J(0, 0, 0). (1.53)

Further manipulations are straightforward but tedious. After that we arrive at an
expression valid in logarithmic approximation

(Δa)μ = −2π

3

(α

π

)3

ln
M2

m2
I,

I =

1∫
0

dx

x2

∞∫
0

dt

t3
[arctan (xt) − xt]×

×
[
5x − 2x2 +

2x(1 − 4x(1 − x))
xt2 + 1

− (1 − x)(1 − 2x)
(xt2 + 1)2

]
.

Analytic calculation of I gives the value −π/2, reproducing Eq. (1.45).
As a check of our calculations we consider the case of small photons virtu-

alities |k2
i | � m2. In this case we have A1 = a = 0, d1 = d2 = d3 = 8α2/9,

d4 = 28α2/(45m4) and explicit expression for current J is in agreement with
HeisenbergÄEuler result for the LBL tensor [24].

1.9. New Formulation of (g − 2)μ Hadronic Contribution. 1.9.1. Motiva-
tion. Anomalous magnetic moment of muon aμ is very sensitive laboratory to
search for new physics beyond the Standard Model (SM) (see [25] and refe-
rences therein). However, before deriving any premature conclusions about
new physics, careful calculations of hadronic uncertainties in amm should be
done [26]. The estimation of theoretical and experimental ones becomes very
important.

Here we suggest a new, more natural form of inclusion of hadronic vac-
uum polarization effects. The theoretical as well as the systematic experimental
uncertainties are expected to be considerably reduced.

The SM contributions are usually split into three parts: aμ = aQED
μ + aEW

μ +
ahadr

μ . The part of ahadr
μ takes into account only vacuum polarization effects
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(we do not consider hadronic contributions of light-by-light type) and usually is
presented in the form (see, for instance, [27] and references therein)

ahadr
μ =

1
3

(α

π

)2
∞∫

4m2
π

ds

s
R(s)

[
K(1)(s) +

α

π
K(2)(s)

]
, (1.54)

with

K(1)(s) =

1∫
0

dx
x2(1 − x)

x2 + ρ(1 − x)
, ρ =

s

M2
, (1.55)

where M is the muon mass and

R(s) =
σe+e−→hadr

0 (s)
σe+e−→μ+μ−(s)

= 12π Im Πh(s), σe+e−→μ+μ−
(s) =

4πα2

3s
. (1.56)

The quantity σe+e−→hadr
0 (s), which enters the quantity R(s), is rather unphysical

one and it does not take into account the effects of vacuum polarization of virtual
photon (e+ + e− → γ∗ → hadr.). The physical one can be obtained by the
replacement

Im Πh(s) → Im
(

Π(s)
1 − Π(s)

)
=

Im Πh(s)
|1 − Π(s)|2 , Π(s) = Πl(s) + Πh(s), (1.57)

where Πl(s), Πh(s) are leptonic and hadronic contributions to the vacuum polar-

ization operator. Namely, the quantity σe+e−→hadr
exp (s), deˇned as

σe+e−→hadr
exp (s) =

σe+e−→hadr
0 (s)
|1 − Π(s)|2 , (1.58)

is more relevant to experiment, contrary to Born one σe+e−→hadr
0 (s). In the

region of narrow resonances the application of this formula must be performed
with some care [28].

1.9.2. Second-Order Kernel Modiˇcation. Keeping this deˇnition in mind,
one must revise the formulae for ahadr

μ , cited above. Really, one must replace

in integrands of ahadr
μ : σe+e−→hadr

0 (s) → σe+e−→hadr
exp (s). The kernel K(1)(s)

remains the same, but the kernel K(2)(s) must be modiˇed to avoid the double
counting. The modiˇcation consists in eliminating of contributions of all Feynman
diagrams containing two kinds of polarization of vacuum insertions (hadronic,
leptonic sort and the mixed ones). It results in omitting the contributions of
K(2b,2c)(s) in terminology of [27]. As for K(2a)(s), it must be modiˇed in
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Fig. 1. Subtracting Feynman diagram

such a way as to extract the contribution of the Feynman diagram (see Fig. 1)
that contains polarization operator for the muon case with hadronic one. So, our
result consists in replacement of K(2a)(s) [29,30]:

K(2a)(s) = 2
{
−139

144
+

115
72

ρ +
(

19
12

− 7
36

ρ +
23
144

ρ2 +
1

ρ − 4

)
L+

+
1
Δ

(
−4

3
+

127
36

ρ − 115
72

ρ2 +
23
144

ρ3

)
ln y +

(
9
4

+
5
24

ρ − 1
2
ρ2 − 2

ρ

)
ξ2 +

+
5
96

ρ2L2 +
1
Δ

(
−1

2
ρ +

17
24

ρ2 − 7
48

ρ3

)
L ln y +

+
(

19
24

+
53
48

ρ − 29
96

ρ2 − 1
3ρ

+
2

ρ − 4

)
ln2 y +

+
1
Δ

(
−2ρ +

17
6

ρ2 − 7
12

ρ3

)
Dp(ρ)+

+
1
Δ

(
13
3

− 7
6
ρ +

1
4
ρ2 − 1

6
ρ3 − 4

ρ − 4

)
Dm(ρ)+

+
(

1
2
− 7

6
ρ +

1
2
ρ2

)
T (ρ)

}
, (1.59)

with L = ln (s/M2), Δ =
√

ρ(ρ − 4), ξ2 = π2/6 and

y =
√

ρ −
√

ρ − 4
√

ρ +
√

ρ − 4
,

Dp(ρ) = Li2(y) + ln y ln (1 − y) − 1
4

ln2 y − ξ2,
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Dm(ρ) = Li2(−y) +
1
4

ln2 y +
1
2
ξ2,

T (ρ) = −6Li3(y) − 3Li3(−y) + ln2 y ln (1 − y)+

+
1
2
(ln2 y + 6ξ2) ln (1 + y) + 2 ln y(Li2(−y) + 2Li2(y)),

Li3(y) =

y∫
0

dx

x
Li2(x), (1.60)

by the new one:

K̄(2)(s) = K(2a)(s) − K(2b)(s)
∣∣∣
mf=M

, (1.61)

with

K(2b)(s)mf =M = 2

1∫
0

dx
x2(1 − x)

x2 + ρ(1 − x)
Π(1, x),

(1.62)

Π(1, x) = −8
9

+
b2

3
− b

(
1
2
− b2

6

)
ln

b − 1
b + 1

, b =
2 − x

x
.

The quantity K(2b)(s)mf =M can be calculated analytically:

K(2b)(s)mf =M =
2
ρ

[
8
9
ρ2 +

35
36

ρ − 4
3
ξ2 −

1
Δ

[L−P1(x−) − L+P1(x+)] −

− 1
Δ

[Li−P2(x−) − Li+P2(x+)]
]

, (1.63)

with x± = (ρ ± Δ)/2 and

L± = ln
x±

x± − 1
, Li± = Li2(1 − x∓),

(1.64)

P1(z) = −5
9
z4 − 4

3
z3 +

4
3
z2, P2(z) =

1
3
z4 − 2z2 +

4
3
z.

For expansion into series by powers of ρ−1, we have

K̄(2)(s) = 2
1
ρ

[
ā1 + b̄1L +

1
ρ
(ā2 + b̄2L + c̄2L

2) +
1
ρ2

(ā3 + b̄3L + c̄3L
2) +

+
1
ρ3

(ā4 + b̄4L + c̄4L
2) +

1
ρ4

(ā5 + b̄5L + c̄5L
2)

]
+ O(ρ−6), (1.65)
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with

ā1 =
50
27

− 2
3
ξ2, b̄1 = −23

36
,

ā2 =
9241
1152

− 103
24

ξ2, b̄2 = −487
216

, c̄2 =
43
144

,

ā3 =
15256601
432000

− 803
40

ξ2, b̄3 = −29279
3600

, c̄3 =
221
80

,

ā4 =
66452261
432000

− 10829
120

ξ2, b̄4 = −57917
1800

, c̄4 =
3763
240

,

ā5 =
18433084459

27783000
− 13877

35
ξ2, b̄5 = −34443349

264600
, c̄5 =

47651
630

.

(1.66)

So, our ˇnal result for the hadronic contribution to the anomalous magnetic
moment of muon is

ahadr
μ =

1
3

(α

π

)2
∞∫

4m2
π

ds

s
Rh

exp(s)
[
K(1)(s) +

α

π
K̄(2)(s)

]
, (1.67)

Fig. 2. Typical contribution
with lepton and hadron vac-
uum polarization associated
with different virtual photon
lines enhanced by logarithmic
factor

where Rh
exp(s) = σe+e−→hadr

exp (s)/σe+e−→μ+μ−
(s)

and K̄(2)(s) is given above (see (1.61), (1.65)).
The set of Feynman diagrams contribution

with lepton and hadron vacuum polarization as-
sociated with different virtual photon lines cannot
be considered with the method discussed above.
Their contribution (see Fig. 2) enhanced by log-
arithmic factor can be estimated as δahadr

μ ∼
(α/π)2(1/3) lnM2/m2

e ≈ 2 · 10−5ahadr
μ . Fortu-

nately, this is beyond the modern experimental pos-
sibilities.

1.10. LBL Modiˇcation of Coulomb Force.
The LBL mechanism provides a correction to the
Coulomb force of the charged target [33] (see
also [1, Ch. 5]). Really, for large distances mr ∼ 1,
using the effective HeisenbergÄEuler Lagrangian,
one obtains

ϕ(r) =
Ze

4πr

[
1 − 2Z2α3

225π

(
1

mr

)4
]

, (1.68)

with m-electron mass. For example, for Z = 20, r = 10 fm the expression in the
square brackets is negative. It is some kind of antiscreening effect.
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It is interesting to estimate the contribution of the light quarks as a fermion in
the loop of the LBL-type Feynman amplitude. Keeping in mind the interaction of
three gluons with the quarks in the nuclei of a charge Z with the atomic number
N > Z, we obtain for the ratio of the QCD and QED corrections:

ΔQCD

ΔQED
=

(
αs(0)

α

)3 (
m

Mu

)4 (
3N

Z

)2

Cq, (1.69)

where Mu ≈ Md ≈ 200 MeV is the constituent light-quark mass; αs(0) ≈ 2 [34]
is the gluonÄquark coupling constant; the color factor Cq is

Cq = (Qu + Qd)
(

1
4
dabc

)2

=
5
18

, (1.70)

with Qu = 2/3, Qd = −1/3 being the quark charges in units e. We see that
the QCD contribution is at least two orders of magnitude suppressed compared
with light-fermion ones. The situation can be changed if the critical charge
αs(0) ≈ 20 [35]. In this case the antiscreening effect can take place already at
r = 15−20 fm and, in principle, can be measured experimentally Å by carefully
searching for the energy levels of heavy ions.

2. MéOLLER SCATTERING

We put below the results of calculations of the high-energy electronÄelectron
quasi-elastic scattering in ultrarelativistic approximation (Méoller scattering):

e−(p1) + e−(p2) → e−(p′1) + e−(p′2),

p2
1,2 = p

′2
1,2 = m2, s = (p1 + p2)2 = 4E2, (2.1)

u = (p1 − p′2)
2 ≈ −s(1 − χ), t = (p1 − p′1)

2 ≈ −sχ,

where χ = sin2(θ/2), θ is the angle between the three momenta of the initial
electron p1 (the direction of z axis) and the scattered electron p′

1. Here and
below we imply the center-of-mass reference frame of initial particles.

Taking into account the lowest-order RC, due to emission of virtual and soft
real photons, one obtains [3]

dσe−e−→e−e−

dO1
=

dσ̄e−e−→e−e−

B

dO1
×

×
[
1 +

α

π

{(
4 ln

ΔE

E
+ 3

)
L − 4 + 4(ln (χ(1 − χ)) − 1) ln

ΔE

E

}
+

+
2α

πFB
F (χ)

]
, L = ln

s

m2
, (2.2)



SOME QED PROCESSES: LIGHT-BY-LIGHT AND MéOLLER SCATTERING 165

with the Born cross section, corrected by vacuum polarization of virtual photon:

dσ̄e−e−→e−e−

B

dO1
=

α2

2sχ2(1 − χ)2
FB ,

FB = (1 − χ)2(1 + (1 − χ)2)
1

(1 − Πt)2
+

+ χ2(1 + χ2)
1

(1 − Πu)2
+ 2χ(1 − χ)

1
(1 − Πt)(1 − Πu)

. (2.3)

Here ΔE � E is the energy of soft photons, escaping the detectors.
The expression for F (χ), which contains the nonleading terms, is

F (χ) = (1 + P (χ, 1−χ))
[
−3π2

8
χ(1−χ)+

1
6
χ(11− 3χ + 14χ2) ln (1−χ)+

+
1
4
χ(−3 + 8χ − 4χ2 + 3χ3) ln2 χ +

+
1
4
(−8 + 19χ(1 − χ) − 8χ2(1 − χ)2) ln χ ln (1 − χ)

]
, (2.4)

with P (χ, 1 − χ) being the exchange operator P (χ, 1 − χ)f(χ) = f(1 − χ).
Emission of hard photon with c.m. energy ω > ΔE

e−(p1) + e−(p2) → e−(p′1) + e−(p′2) + γ(k) (2.5)

is described in terms of kinematic invariants:

s = (p1 + p2)2, t = (p1 − p′1)
2, u = (p1 − p′2)

2, χi = kpi, i = 1, 2;

s1 = (p′1 + p′2)
2, t1 = (p2 − p′2)

2, u1 = (p2 − p′1)
2, χ′

i = kp′i, i = 1, 2; (2.6)

s + s1 + t + t1 + u + u1 = 0.

Here and further we imply

s ∼ s1 ∼ −t ∼ −t1 ∼ −u ∼ −u1 � m2. (2.7)

The cross section of the process (2.5) has the form [2]

dσe−e−→e−e−γ =
1
2

α3

π2s
Ree dΓ, (2.8)

with phase volume of ˇnal state

dΓ =
d3p′1
E′

1

d3p′2
E′

2

d3k

ω
δ4(p1 + p2 − p′1 − p′2 − k), (2.9)
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and

Ree =
W

16
1

tt1uu1

[
ss1(s2 + s2

1) + tt1(t2 + t21) + uu1(u2 + u2
1)

]
−

− m2

χ′2
1

(
t1
u

+
u

t1
+ 1

)2

− m2

χ′2
2

(
t

u1
+

u1

t
+ 1

)2

−

− m2

χ2
2

(
t

u
+

u

t
+ 1

)2

− m2

χ2
1

(
t1
u1

+
u1

t1
+ 1

)2

, (2.10)

W =
s(tu + t1u1) + s1(t1u + u1t) + 2uu1(t + t1) + 2tt1(u + u1)

χ1χ2χ′
1χ

′
2

.

The vacuum polarization factor 1/(1 − Π) has contributions from leptons,
heavy vector meson (W±) and hadrons. The contribution of light charged leptons
(electronÄpositron) is

Πt =
α

3π

(
Lt −

5
3

)
, Πu =

α

3π

(
Lu − 5

3

)
, Lt = ln

−t

m2
, Lu = ln

−u

m2
.(2.11)

The differential cross section with radiative corrections coming from emission
of virtual and real soft photons in leading logarithm approximation (the ones
containing αL/π) can be written as

dσe−e−→e−e−

dO1
=

dσ̄e−e−→e−e−

B

dO1

[
1 +

α

2π
(L − 1)

(
2 ln

ΔE

E
+

3
2

)]4

. (2.12)

Let us note that the last term in the square brackets is the so-called Δ-part of the
kernel of the evolution equation of twist-two operators PΔ (see below).

This observation permits us (using the general factorization theorem) to gen-
eralize the result obtained in lowest order of perturbation theory to one valid in
the leading and next-to-leading approximation in all orders of perturbation theory:

dσe−e−→e−e−(γ)

dO1 dy1 dy2
=

1∫
0

D(x1, β) dx1

1∫
0

D(x2, β) dx2 ×

× dσ̄B

dO1
(x1p1, x2p2)

1
x′

1

D

(
y1

x′
1

, β

)
1
x′

2

D

(
y2

x′
2

, β

) (
1 +

α

π
K

)
, (2.13)

where

β =
α

π
(L − 1), x′

1 =
2x1x2

a
, x′

2 =
x2

1 + x2
2 + c2(x2

2 − x2
1)

a
,

(2.14)
a = x1(1 − c) + x2(1 + c), c = cos θ,
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and the structure function D(x, β) = DNS(x, β) is the nonsinglet lepton structure
function considered in [36]:

D(x, β) = δ(1 − x) + βP (1)(x) +
1
2!

β2P (2)(x) + . . . ,

P (n)(x) = P (1) ⊗ P (n−1)(x) =

1∫
x

dy

y
P (1)(x)P (n−1)

(
x

y

)
, n = 2, 3, . . . ,

(2.15)
P (1)(x) = P (x) = lim

ε→0
[PΔδ(1 − x) + Θ(1 − x − ε)PΘ(x)],

PΔ = 2 ln ε +
3
2
, PΘ(x) =

1 + x2

1 − x
.

The values y1, y2 are the energy fractions of the detected electrons in the ˇnal
state, y1 < x′

1, y2 < x′
2. The value of k-factor K is the sum of nonleading terms

(of order α/π not enhanced by the large logarithmic factor L) arising from taking
into account emission of both virtual and real photons.

Distinguishing the emission of soft and hard real photons, we put it in the
form

K = KSV + KH , (2.16)

with

KSV = −1 + 4 ln (χ(1 − χ)) ln
ΔE

E
+

2F (χ)
FB

. (2.17)

The hard-photon emission contribution can be written as

KH =
π

α

[
α3

2π2s

∫
R̃eedΓ̃ + Kcomp

](
dσ̄B

dO1
(p1, p2)

)−1

, (2.18)

with

R̃ee = Ree

∣∣
m=0

,
(2.19)

dΓ̃ = dΓθ(θ1 − θ0) θ(θ2 − θ0) θ(θ′1 − θ0) θ(θ′2 − θ0) θ(ω − ΔE), θ0 � 1;

here θ1, θ2, θ
′
1, θ

′
2 are angles between the photon momentum k and the momenta

of leptons p1, p2, p′
1, p′

2, correspondingly.
The compensation term Kcomp is

Kcomp =

1∫
ΔE/E

dx

[
dW0

dx

[
dσ̄B((1 − x)p1, p2)

dO1
+

dσ̄B(p1, (1 − x)p2)
dO1

]
+

+ 2
dW̄0

dx

dσ̄B(p1, p2)
dO1

]
,
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with

dW0

dx
=

α

2πx

[
2(1 + (1 − x)2) ln

θ0

2
+ x2

]
,

(2.20)
dW̄0

dx
=

α

2πx

[
2(1 + (1 − x)2)

(
ln

θ0

2
+ ln (1 − x)

)
+ x2

]
,

and

dσ̄B(x1p1, x2p2)
dO1

=
4α2

sa2

[
a2 + Y 2

2X2

1
(1 − Π(t1))2

+
a2 + X2

2Y 2

1
(1 − Π(u1))2

+

+
a2

Y X

1
(1 − Π(t1))(1 − Π(u1))

]
,

−t1
s

=
x2

1x2(1 − c)
a

,
−u1

s
=

x1x
2
2(1 + c)
a

, X = x1(1−c), Y = x2(1+c).

Analytical or numerical analysis shows that the KH value does not depend
on the auxiliary parameter θ0 at sufˇcient small values of θ0. Moreover, the
whole K value does not depend on the other auxiliary parameter ΔE/E.

The value of k-factor depends in general on the experimental setup Å details
of detection of the scattered electrons. The relevant cuts can be included as
additional restrictions on the phase volume of ˇnal particles.
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