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We consider several applications of the simplest nonlinear QED phenomena described by the
light-by-light (LBL) scattering tensor. Among the relevant processes we present the splitting of high
energy photon in a Coulomb field, calculate the asymptotics of differential photon—photon elastic
scattering. We show that the LBL mechanism of the four-photon mode of neutral-pion decay have
a dominant role compared, for instance, with the quark-loop Feynman amplitude contribution. The
mechanisms of creation of two and three gluon jets at colliding electron—positron beams is analyzed.
We calculate also the contribution of the LBL mechanism to the orthopositronium decay width. One
of the important applications is the analytic calculation of the QED contribution to the anomalous
magnetic moment of the muon arising from the LBL mechanism realized through electron—positron
loops, which is enhanced by the logarithm of the ratio of muon to electron masses. The modification
of the QED kernel, which takes into account the QED polarization operator, is used to extract the pure
strong-interaction contribution. We consider the problem of the Coulomb law modification as well.
In the second part of the review we consider the Moller scattering process and radiation corrections
(RC) to it. We show that RC are in agreement with the renormalization-group approach and could be
taken into account in the form of Drell-Yan process cross section.

P ccmorpen npocreiimmii HenuHelHslil npouecc B KBDJI, onMChIB eMblii TEH30pOM P CCEsHUS
cBeT H cBere. M3ydeHo p ciuerienue (poTOH B mone siAp H OB (DOTOH , T KXK€ CHMITOTHK
¢oton-poronHOro MudepeHun npHoro ceyeHus. [Iok 3 HO, UTO MEX HU3M P CCEdHHS CBET H CBETE
B IIpoliecce p CH [ HEUTp JBHOTO MHOH H dYeThIpe (POTOH JOMHHHPYET H 1 OCT JIbHBIMH BKJI I MH,
B U CTHOCTH, H [l BKJI IOM OT KB PKOBOW HETIH. P ccMOTpeH BKJI I OT TeH30p p ccesHus CBeT H
cBeTe B 00p 30B HHUE ABYX H TPeX CTPYHHBIX DIIOOHBIX JKETOB IPU dJIEKTPOH-MO3UTPOHHOM CTOJKHO-
BEHMH, T KX HOIp BKU K INMPUHE D CII [ OPTOHO3UTPOHMSA. P ccuuT H B H JUTUYECKOM BUIE
BKJI T MEX HU3M D CCESHHS CBET H CBeTe, pe JIN30B HHBI 4epe3 2JIeKTPOH-NIO3UTPOHHYIO IETIIO, B
HOM JIbHBIH M THHTHBIH MOMEHT MI0OH . [ToK 3 HO, YTO JI HHBIH BKJI J yCHJIEH GOJIBIINM JIOT PU(PMOM
OTHOLIEHHs] MIOOHHOM U 2/1eKTPOHHOU M cc. DheKThI NONIPU3 LHU B KyyM JIENITOH MU HPHHATHI BO
BHUM HHe IIDH BBIIEJICHUH BKJI J CHJIBHBIX B3 MMONEHCTBUII B HOM JIbHBIH M THHTHBIH MOMEHT MIO-
oH . P ccmMoTpen 3 1 4 MomuuK LMY KyIOHOBCKHMX CHJI IIPH B3 MMOJEHCTBUM 3 PSXKEHHBIX Y CTHIL
3 CYeT MeX HH3M P CCeIHHS CBeT H cBeTe. Bo BTOpOIl 4 cTM p ccM TpUB I0TCS p O LHOHHBIE
IoIp BKU K P ccesHuio Mémnep . IlpousBesieH SBHBI p CYET MONOIHUTEIBLHOIO BKJI 1 B CEUEHHE
IpoIlecC  OT M3ITydeHUsd JOMOIHUTEIBHOIO XecTKoro ¢oToH . ITok 3 HO, 4TO CyMM BKII JIOB B cede-
HHE OT BUPTY JIBHBIX IIONp BOK, W3TyYEHUs NOMOTHUTEIBHOTO MATKOTO M XECTKOrO (hOTOHOB MOXET
OBITh MPEJCT BIIEH B BHIe cedeHus mporecc [pemn —SH . B sBHOM Buie mpeicT BjI€H BKJI I OT He-
JIUIUPYIOIHX CII T eMbIX (B TOM YHCJIEe U OT HEKOJUTHHE PHOTO HM3ITydeHHS JOMOTHHTEIBHOrO (OTOH ).

PACS: 12.15.Lk; 12.20.-m; 12.20.Ds; 13.66.-a
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To the blessed memory of Teachers Alexandr Ilich
Akhiezer, Sergej Semenovich Sannikov, and Vladimir
Naumovich Gribov

INTRODUCTION

Some applications of the LBL scattering tensor which contributes from elect-
ron—positron closed loop are considered. Among them are the total cross section
of LBL scattering at high energies [4] (and references therein), contribution to
muon anomalous magnetic moment [5—7], four-photon channel of neutral-pion
decay [8], splitting of photon to two photons in Coulomb field [9], and the
crossing process of photons fusion [10]. In modern experiments the contribution
of LBL mechanisms to orthopositronium total width [11] becomes important.
Creation of two and three gluon jets in electron—positron collisions [12] can be
investigated. We also mention the Delbriick process — scattering of photon on
Coulomb field started from [13] with further development in [7,32]. In spite of
rather cumbersome form of LBL tensor, the processes considered in this section
are described in a compact form.

At small photon energies, where high-intensity sources can be applied,
the cross section of photon on photon elastic scattering is very small
o0y ~ (0.1a%r3/m)(w/m)®, with m,ro,w being respectively mass, classical
radii of electron and center-of-mass photon energy. So for w = 1 MeV the
cross section has an order 0., ~ 1075 cm?. The cross section is maximal
Oy ~ 1.2ma%r ~ 1.6 - 1073% cm? for w ~ m. For large values of photon ener-
gies w > m, the cross section (in lowest order of perturbation theory) decreases
as 0y ~ (200273 /m)(m/w)?.

Additional process of annihilation of e*e™ pair through one virtual photon to
three real photons cannot be directly measured due to large background of direct
annihilation to three photons. Nevertheless, its contribution to the width of or-
thopositronium can in principle be measured. A similar process in the framework
of QCD annihilation to three gluons in the region of energies without narrow
resonances can also be used to investigate nonlinear effects. The problem of
calculation of anomalous magnetic moment of muon also requires the knowl-
edge of LBL scattering tensor in 6 and 8 orders of PT due to the fact that the
corresponding contribution is now within experimental accuracy.

A lot of attention was paid to calculations of LBL tensor and investigation
of manifestations of nonlinear phenomena. We send the reader to the paper
by Costantini, De Tollis and Pistoni [4] with almost complete list of relevant
literature. We do not pretend to the complete description of this problem. Some
applications to the questions mentioned above are given below.

In the second part of the rewiew we consider the Moller scattering process
and radiative corrections (RC) to it. In Sec.2 we calculate the contribution of
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additional hard-photon emission and, by using the well-known result for RC from
soft-photon emission and virtual RC, we show that all corrections are in agreement
with the renormalization-group approach and could be taken into account in the
form of Drell-Yan process. Also, we put the explicit form of nonleading terms
(including the compensation term from additional hard-photon emission) in the
form of the so-called K factor.

Throughout our paper we use the following designations: FD — Feynman
diagram; LBL — light by light; QCD — quantum chromodynamics; QED —
quantum electrodynamics; RC — radiative corrections; SM — Standard Model.

1. LIGHT-BY-LIGHT SCATTERING TENSOR
AND VACUUM POLARIZATION

1.1. Photon Splitting in a Coulomb Field. Photon—-Photon Elastic Scatter-
ing. Consider first the splitting of photon on an atomic electron [9]:

Yk, M) + Y (p) = Y () +v(kz, As) +v(ka, M) (1.1)
The cross section in Weizsacker—Williams approximation will be

adr
do—’y%'y’y = ;TL dO'ry»yA.ry»y, (12)

with differential photon—photon elastic scattering cross section

a?

d3ks B3k
A0y gy = Q_W\M|2w—;w—4454(k1 + ko — ks — ky), (1.3)
and
qﬁmxd
z
L= / ?(1—F(z))2, ko =p—7p, (1.4)
q?nin

where g2, .. are minimal and maximal transverse momenta squared to the
nuclei, which are determined by experiment; F'(z) is the atomic form factor. The
kinematical invariants are defined as

k3

e )

Y 1
= Wf9§mv § = —kiks = —§wf9§y7

(1.5)
y2
t=—hiki = oo,
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where w3 = ywi, ws = (1 — y)wy, 03 = kg, ks, and w; are the energies of
corresponding photons. We use here the normalization accepted in [4].
The cross section for the case of unpolarized photons can be written in the

form
doy_ny 422051 —y) L -
= M2|. 1.6
dws dQ3 yms w303 M7 (16)

The total photon splitting cross section in the case of full screening is (we

oo
use the numerical estimation of the integral { (dr/r)atot . (r) =5-107% cm?)

oo

272 dr
Oyyy = ——n (1832'/%) —Oyr—ry =

0

Z2
= 2 018327131072 em?. (1.7)
Vs

For the large-invariant case 7 ~ —t ~ —s > m? and unpolarized photons,
we have
IM> = [M[? = S[|My i P+ [ My P+ My P+

My P+ A M- P], (1.8)

N =

with

My ii4(e) = 14 2 = DI+ e + (1 - 0)?)(E3 + ),

2 . 1 .
M+,+7(£L') = ]_ + (1 — E) (L] — Z’]T) —+ ﬁ[l —+ (]. — 1’)2](.[/% — 2277.[/1),
Myy - =Myy =My =My =M 1 =-1, (1.9)
My i (x) =My (1-2),
1 1-— t
L;i=1In , Lo=1In x, r=—-.
1—2 x r

Using these asymptotic expressions for chiral amplitudes, one has a possibility to
calculate the high center-of-mass energy limit of the cross section of photon on
photon (w is the photon energy in center-of-mass reference frame):

1

. 2 tot ot 712

Jim Wit (W) = o [ de|M P (z) =
0

ot 108 13 , o, 148
= | =2 2n2 —pt 248 =~ 1.4-1078. (1.1
27r{ 5t 8T Gt o & 0. (L10)
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Taking into account the contribution from muon in fermion loop, this result must
be multiplied by a factor of 4.

We do not consider here the contribution of hadrons in the intermediate state
(the last one was considered in papers [14,15].

Using the asymptotic for chiral amplitudes of LBL tensor, given above, we
can calculate the ratio of cross sections with equal and different chiral state of
initial photons in the limit of large center-of-mass photon energies compared with
loop fermion mass:

1
J da[|Myyii? + 3]

= "LLi"RR =2 . (1.11)
g g
PR Tdaf2I My 242
0
Using
1
1 224
/dx\M++++\2 =zt 28 + 2—555,

0

(1.12)

1
96
[ oty P =215 — 86060 + 65 + 3560+ 19
0

one obtains
R = 1.0480707.

1.2. Four-Photon Decay Mode of the Neutral Pion. Next application of
LBL tensor is connected with experimental looking for the four-photon decay of
the neutral pion [8]. It was recently shown [16] that hadronic mechanisms of
this channel contribute too little and lead to branching at the level of 10716, It
turns out that the main contribution arises from the QED mechanism with decay
to one real and another virtual photons and the latter one decays through the LBL
mechanism to three real photons:

Br (1o — 47)1L ~ (2.6 £0.1) - 1071, (1.13)

The main contribution arises from the electron (positron) as a fermion in the
fermion loop amplitude.

The purpose of experiments is measuring the C-violating decay mo — 37,
which may be a signal of «new physics». The allowed decay channel my — 4~
is a potential background for 7y — 3v. Keeping in mind the Bose statistics of
photons, the matrix element can be described by four types of diagrams:

mo(q) = [v(k1) + (7" = (k) +(ks) +v(ka)) ]+
+ (k1 < k2) + (k1 < k3) + (k1 < k4).
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Using the dimensionless version of Kumar’s variables [17]:

1 1
(q—k1)?, s2= W(q — k1 — ko)?,

R
1 1
U= _2((] - k2)27 Uz = _2((] — k3)2,
m m
(1.14)
1
=5 lp— (=)’ + (1 -w)’], p=VA(Ls2,1+s2—us —
5 2(1_u1)p[p ( 51) +( Ul) ], p \/ ( , 82,1+ 89 Uy 81),
¢ =m? k=0, i=1,234, Ma,bc)=a’+b"+c* = 2(ab+ ac+b),

where m is the pion mass, the branching ratio can be written in the form

[(mo — 47) 1 sa\4
B v ——= = — [ — 1.15
r(mo — 47) [(mg — 2y) 67 (871') R, (1.15)
with
1 S1 1—‘91+82d 1 d
R:/dsl/dSQ / ﬂ/ 15 2P (s, s 06 (116
0 0 s2/51 r 2

The function F'(s1, s2,u1,us,&) stands for half sum of the squared helicity am-
plitudes:

F(517527ulvu2v£) = Z |M+/\2>\3>\4|2'
A

For evaluating these helicity amplitudes, we use the asymptotic form of LBL
tensor found in [4] with electron as a fermion in a loop. The main contribu-
tion arises from the region where the intermediate (virtual) photon 4-momentum
squared k2 ~ m? > m? is large compared with electron mass squared. These
contributions do not have any problems with infrared divergences.

The contribution of muons in fermion loop is suppressed compared with
electron contribution by a factor (m./(4M,))* and can be neglected.

The numerical estimation gives the result (1.13). This value is about three or-
ders of magnitude below the present experimental limits. Note, however, that this
value is dominant compared with contributions arising from hadronic mechanisms
ones and exceed them by at least 3 orders of magnitude [16].

1.3. Explanation of 1973 Year Experiment on Photon Splitting in Coulomb
Field. In the experiment on the elastic and inelastic photon scatterings in a
Coulomb field of nuclei (performed in experiment [18]), the excess in number
of photon with energy 0.87wy was observed for different values of initial photon
energy wo = 1,7;3,4;6.1 GeV/e.
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The authors of the experiment believe that they measure the photon splitting
process. In paper [19] it was shown that really the process

Y(wo) +Y(Z) = et + e +4(0,w) +Y(Z)

was measured. Also, in the experiment the magnetic field was used which ex-
cludes the possibility to tag the pair component. As was shown in Subsec. 1.1,
the real photon splitting process has the cross section of two orders of magnitude
lower than the radiative pair production process. Inclusive on photon, the cross

section of radiative pair production process has the form
wdo Z2atx k2
= L|A(z)In =
e AW

€

+ B(z)| , (1.17)

with k| = x0wg,z = w/wp, L is given in (1.4) and

1
A(z) = 5[20 + 562 — 5627 — 202°] + 162(1 4 2) Inz,
L 2 3, 1 2 3
B(z) = 5[32 — 96z + 962° — 322°] + 5[—48x + 162° + 40z°] In z—
2 32x
—16z(1 —2)In(1 —x) + [ —162° + 162 + 1o (Inz)(In (1 —z))+
-z

16z

2
+ |—162® — 24z + . } In®z — {16:02 — 16z + i—ﬂ Lio(1 — ). (1.18)

— 22

It was shown in [19] that formulae (1.17) and (1.18) describe satisfactorily
the result of experiment [18].

1.4. Creation of Gluon and Quark Jets at Electron—Photon High-Energy
Collisions. QED results for LBL can also be used for describing QCD
processes with creation of two and three gluons [31]. The cross section of
jets caused by quark—antiquark pair creation by photon on electron differs only

by factor N = (3 Q2)*:

do_’ye—>jet,e — Ndo_’ye—>e+e_e’
(1.19)

dove—e+e—e 20(3 4 SA(I — A)
T 1 gan o) e () ).

where A = e, /w is positron energy fraction; s = 4Ew = 4E? is the square of
total energy in the center-of-mass frame.

It is interesting to consider the limit of photon-splitting differential cross
section for the case that the energy fraction of one of the photons is close to
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unity. In this case the kinematics is similar to elastic scattering of photon on a
Coulomb field of nuclei (Delbriick scattering limit).

In the main logarithmic approximation (Weizsicker—Williams approxima-
tion), the cross sections of processes ye — Fe, F' = ete™7;gqg (quark—anti-
quark gluon state) can be expressed in terms of convergent integral:

S

/ ﬂaW%F(sl).

S1
Sth

The lower value of two-photon mass squared s; in  — 1 limit is s¢, = (p? +
m?)/(1 — x), where = and p are the energy fraction and transverse component
of 4-momentum of final state F'. It results in nonvanishing limit of the photon-
splitting cross section due to the massless nature of a gluon (m = 0).

As a result, the Delbriick limit of photon conversion to gluon jet is not zero:

do" 99 20302
—_— = ——n2(CrCy)?I. 1.20
dr dp2 . 7_(_2(p2)2nf( F V) ( )

For the qgg jet we obtain

do7— 749
drdp?
203, 20 . p? s(l—x
= 77T2(p2)2 (1 — m) |:§ In m—g - 32(111(1 - x) + 1)] ln(%)nfCFC’v,

with Cy = N, Cp = (N 2 _ 1)/2N being structure constants of color group; n !
is the number of light quarks, and

oOdz
I:/Z_[Il + I+ I3 + 72 (Iy + I5)),
0
z Z2 . A
Il = 1—2 + man—ng(l) +L12(1 —Z)’
22° 222(3_22) 2 [y - . 1
Iy = T2 =2 Inz+ 2z |:L12(1) — Liy (1 — ;)] , (1.21)
e 2 2 s Lis(1) - Lin(1 + 2)
ST (Ute2 2 2 )
I4:M+2Z2lnia I=——— —In(1+2).

(1+2)2 142 (1+2)2
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This expression can be inferred from the results of paper [4]. Calculation leads to

14
I= 37# — 1272 ~ 31. (1.22)

We note that the creation of gluon jets in this kinematics provides the independent
test of QCD predictions.

1.5. Three-Gluon Jet Production at High-Energy Electron—Positron Anni-
hilation. In the lowest order of PT the creation of three-gluon mechanism consists
in conversion of lepton pair to the virtual photon and subsequent conversion to
gluons through the LBL mechanism. The difference compared with QED consists
in the replacement of fermions by quarks, in the taking into account the gluon
color effects and replacement of the coupling constant factor as o® — a?a?. First
we note that only heavy quarks are relevant due to the fact that the contribution
of light quarks is cancelled as a consequence of zero sum of their charges:

> Qq=0. (1.23)

u,d,s

The color factor Tr (t%°t¢) = (1/4)[d®*° +i f**¢], with t* color group generators,
results in factor (d**¢)2/16 = (N? — 1)(N? — 4)/(16N) = 5/6 for color SU(3)
group. Really the structures connected with f2¢ are cancelled if one takes into
account both directions of lines in fermion loop. So we further will consider pure
QED process of annihilation, by means of the LBL mechanism, of eTe™ pair to
three photons. The differential cross section has the form (s = 4E?, E is the
energy of initial particles in c.m.f.)

ad 9
do = S (Z M| )dr, (1.24)
with phase volume
Py dPks dPky
o w2 w3 w4

dl’ 6 (py +p- — ko — k3 — ka),

and k;,w;, i = 2, 3,4 being real photons momenta and energies, and

Z |M[* = QZOM:]-Z--F‘Q + |M-Ti]-(-7‘r—|2 + |MT—+\2 + \MzcerQ)’
'I’]U

M7\ 5, = 00 )y ulp-) G, n = £

(1.25)

here \;,i = 2,3,4 are real photon chiralities. The current of heavy-photon
decay to three real photons G, (see [4] for designations of chiral amplitudes
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E/(\?/\S A (i11273%4)) could be expressed in terms of chiral amplitudes:

Graroh = L [E“) 1234 (k —ﬁk> =
/L /32A >\2>\3>\4( ) 3 Vs 2 .

2 , o
~ Bl ,,(1243) <k4 - V—2k2> +iBED, L (1230)eu0p,0°k5k] |, (1.26)
n
and ¢ = py +p-, ¢ =4F% vi = wi/E, A = E%(1 — v2)(1 — v3)(1 — va).
To obtain the distribution on the photon energy fractions, we average over
the angular variables and sum over photon polarization states the product of two
such currents. Due to gauge invariance it has the form

1 Wy X
GG = 5 <gw _ q/q;] ) GG (1.27)

The evident advantage of this averaging is the possibility to express the right-hand
side in terms of photon energy fractions. Expressing the phase volume as

/dF = 87T2E2 /dZ/Q dl/3 dI/4(5(2 — Vp — V3 — 1/4)7 (128)

the energy fractions distribution could be written in the form

d20€+€_é37 @ ! R(234 R(324 R(423 1.29
dndve 31 Tz g 1234) + R(324) + R(423)], (1.29)

where dimensionless quantities R(234) = R(243) could be found in Appendix
of [12]. The quantity R(z) (r.h.s. of Eq.(1.29)), which is defined as

m
R(%) =
= /dl/2 dvg dyy [R(234) + R(324) + R(423)}(5(2 — Vg — V3 — 1/4), (1.30)

can be approximated as a step function
R(z)~ 16, z<1l, R(z)=0, z>1. (1.31)

Now by using the changes which we discuss at the beginning of this subsec-
tion, we can consider the case of annihilation to the three gluons. The inclusive
distribution over the energy fraction of one of the gluons (we take into account
only one sort of quarks with charge e, = eQ),) has the form

do 5a2a’

% = mF(SL’), T = Vg, (132)
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the function F'(x) has a rather cumbersome analytic form. Its asymptotic expres-
sions are

F(z) ~4z(n*z —2Inz+3), z<1,
(1.33)
F(z) ~1.93In*(1 —2) +04In(1 —z)+ 16, 1-—z< 1.

Compare now the cross section of gluon-jet production with the cross section of
production of quark—antiquark and gluon state in annihilation channel:

do®" e ~19  a?,Q2 | 203 +12)
dvidv_ — 3E?2 |[(1—vy)(1—-v.)
m? 2(1—-v) 2 my 2
+_ — R
B T (—v) (= )f(1—v 2| 2890w 20 —v |

with conservation law restrictions

v=2—vy —v_,

, (1.34)

m
1-v)(1—-v)(1—-v_) > ﬁ(l - ).

It can be concluded that measuring the three-gluon jet production in annihilation

channel, at least three orders of magnitude are suppressed compared with quark—

antiquark gluon production.

1.6. Gluon-Jet Creation in the Scattering Channel at e™e¢~ High-Energy
Collisions. Within equivalent photons approximation applied to both electron and
positron, the cross section of two-gluon jet creation in ete™ scattering has the
form [12]

atag E?\* 2 5 dcos By dcos by
do = 8m3p2 (m W) ZZQq|M§1,\2,\3,\4‘ VCEYAY (1.35)
" ¢ Aoa sin 5

where p,, is the value of the component, transverse to beams axes, of gluon
momentum; 6 o are the polar angles of the gluons to the beam axes; Mf\ll Ao raa
are chiral amplitudes of LBL tensor with fermion mass m,. As well as these
amplitudes fall rapidly with increasing fermion mass, one can consider only light-
quark contribution,

16, -
ZZQi‘M§1A2A3A4|2 - §|M\27 (1.36)
A g
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with |M |2 given in Eq. (1.8), where we must substitute = = sin (61 /2) cos (62/2)/
sin ((61 + 62)/2). The ratio of this cross section to the cross section of quark—
antiquark production at the same conditions:

do* e =2 Q2 oM Pa(l — ) 22 @)
doete”—etem2a0 12 g2 (1 —2)? 303 QF)

(1.37)

shows that it is contrary to the case of three-gluon jet and it is the quantity of
order 0.1 and in principle could be measured.

1.7. LBL Contribution to Orthopositronium Width. In the last decade
before the year 2000 a lot of attention was paid to the problem of orthopositronium
width. It was realized that the result of QED calculations was in contradiction
with experimental data on the level of ten standard deviations. Namely, the most
accurate experimental rates

P = (7.0514 4+ 0.0014) ps—*,
(1.38)
[P = (7.0482 4+ 0.0016) ps™*

deviate by 9.40, 6.20 from the most accurate theoretical estimations (up to the
order of /7, see [20] and references therein). Great efforts to compute the next
correction (a/7)? of the perturbation theory

2
PAED(PS — 3y) = T |1+ (~10.2866 +0.0006) = + C (£) "+ .. } ,

Vs s
(1.39)

2 _
Ty = ot 2 =9)
97

were done. To eliminate this contradiction, the value of C' must be too large
(about C' = 400), which is unusual for perturbative QED.

The contribution to the width arising from the square of the matrix element
describing the conversion of orthopositronium state to a virtual photon with its
subsequent conversion to three real photons by the LBL mechanism could be
considered [11].

The corresponding matrix element has the form

Vira d*p m
" im? / @t T )] G (1.40)

here GE{\z’/\S”\“) are the same as in (1.26), and

U™ (p) = (27)3(po)V2mGyn @ (p), (1.41)
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where
G = (0,0¢€,,0,0), (1.42)
€, 1s the orthopositronium polarization vector and
3 81y mao
O(p) =1/ — , = —. 1.43
(p) Vmp“rv? 7= (1.43)

By integrating an averaging as in Subsec. 1.5 we obain the relevant contribution
to the width:

8
ATl = —m# /dZ/Q dl/3 dl/4 [R(234)+R(324)—|—R(423)](5(2—l/2—l/3—1/4) =
™

= 0.17021(10) (%)21“0. (1.44)

This kind of contributions of course do not solve the contradiction problem, but,
nevertheless, must be taken into account.

1.8. LBL Tensor and Anomalous Magnetic Moment of Muon. We consider
below the contribution to the anomalous magnetic moment of muon (amm) (Aa),
from the gauge-invariant set of Feynman amplitudes, containing LBL block [5].
It is one of contributions to amm in (a/7)® order of PT which turns out to be
the numerically largest. Really, it equals

(%)3 K?) In (%) + const} ~ 21.4(a/7)3, (1.45)

(here M, m are the muon and electron masses, respectively), whereas the total
contribution in this order is 24.07(a/7)3. Our result is in agreement with ones
obtained numerically [21] and analytically [22].

It can be shown [21] (and references therein) that relevant contribution to
amm has the form

1 R o1/
with
Ao d4]€1 d4k2 d4k3
Moo =~ Gamps / R ket k)

X TN Koy, ke, ks)ya (D + ks + M) 1y (p — ky + M) 1y, (147)

The current J}Y A is connected with the antisymmetric part of the derivative of
the LBL tensor GH**7 (A, ky, ko, k3):
0

T = Jim <W> GV (A, kg, ). (1.48)
P
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Building the current J2*(ky, ko, ks) = Jhr*(123), we follow the logical
scheme of the famous paper by Karplus and Neuman [23], imposing the Bose-
symmetry and gauge-invariance requirements

JHN(123) = M (231) = SR (312) = ..., ki, JiN(123) =0.  (1.49)
As a result, we obtain such a general expression in terms of Maxwell tensor

Fs(k1) = k1ol — k1gdl,  F"(ki)ki, =0,
(1.50)
Fop(k,€) = kaeg — kgea,

and six scalar functions dy, do, d3, ds, a, A1 («heads» in terms of [23]):
JHN123) = a(123)[12] o (F* (k1) F" (k2) F* (ks))+

+ Y [(FV(@)FM@)) EFgﬁ,(klkgAl(SQI) — dy(132))—

perm

— GBI () 1)) | -

- mdz(123)(le)‘(kg)kg)(F"(kﬂF"(@)),m[777]M+

+ dy(123)[(F* (ky) F* (k3) F¥ (K2)) ey [ por k1 b+

2k ks
+ (k1) po FY (ko) F* (k1 ) F (k3 )kea) — (ko) po F* (k1) F” (ko) F* (k3)k1) |,

with -
(K)o = kip6l — kigdh,  [VN]po = 0400 — 6467

a“p>
and conversion on lower indices implied

(F¥ (ko) F* (k1)) = F5(ko) Fli (K1), (aF*b) = a®FlLgb%, ... (1.51)

This form is general and does not depend on theoretical model. We now can
identify the six functions by comparing the characteristic terms in Feynman am-
plitudes and fermion loop diagrams describing the LBL scattering.

Let us now discuss the details of integration over virtual photons momenta.
M

The main contribution leading to «large logarithm» [ (dk/k) arises from such a
m
region of 3-momenta of virtual photons variation (muon rest frame implied):

k2
m < kil < M, |koi| ~ MZ < k|, i=1,2,3. (1.52)
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It corresponds to almost real muon intermediate states. Besides, the main con-
tribution arises from «nearest singularities» — small values of y; = ko;/m,
y1 + y2 + y3 = 0. To provide the convergence of y; integrations, we must use
the symmetrization procedure. It consists in using the relation

1
/J y17y27y3 d y(s (Zyz) |: 1+10y3+20

. 1 1 1 1 n 1 1 n
—y1 +10ys +i0 —y2 + 0y +¢0  —y2 + 10 y3 + 20

Lo 1 1 1
—y3 + 10 y1 + 10 —y3 + 10 y2 + 10

} = —472J(0,0,0). (1.53)

Further manipulations are straightforward but tedious. After that we arrive at an
expression valid in logarithmic approximation

IS8
IS

t

[arctan (zt) — xt] x

8
N

2z(1 —4z(1—-2)) (1-2)(1—21)
xt? +1 (xt? 4+ 1)2

X {590— 222 +

Analytic calculation of I gives the value —/2, reproducing Eq. (1.45).

As a check of our calculations we consider the case of small photons virtu-
alities |k?| < m?2. In this case we have A1 = a = 0, d; = dp = d3 = 8a?%/9,
dy = 28a2/(45m*) and explicit expression for current .J is in agreement with
Heisenberg—Euler result for the LBL tensor [24].

1.9. New Formulation of (¢ — 2),, Hadronic Contribution. 1.9./. Motiva-
tion. Anomalous magnetic moment of muon a, is very sensitive laboratory to
search for new physics beyond the Standard Model (SM) (see [25] and refe-
rences therein). However, before deriving any premature conclusions about
new physics, careful calculations of hadronic uncertainties in amm should be
done [26]. The estimation of theoretical and experimental ones becomes very
important.

Here we suggest a new, more natural form of inclusion of hadronic vac-
uum polarization effects. The theoretical as well as the systematic experimental
uncertainties are expected to be considerably reduced.

The SM contributions are usually split into three parts: a,, = a2*" +af;
apdT. The part of af*d" takes into account only vacuum polanzatlon effects
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(we do not consider hadronic contributions of light-by-light type) and usually is
presented in the form (see, for instance, [27] and references therein)

adr 1 a2 i ds a

o =3 (2) [ SR [KO@ + 2K (1.54)
4m?2

with
1 a )
1 - -5
K ) /dxx2 +p(1—2x)’ p_W’ (1.55)

0

where M is the muon mass and

et 2

90
gete —ptp~ (S)

o - Ao

e~ —hadr
B tormml(s), o ¢ o (5) = :
S

R(s) = . (1.56)

The quantity o ¢ —"2dr(s), which enters the quantity R(s), is rather unphysical
one and it does not take into account the effects of vacuum polarization of virtual
photon (eT 4+ e~ — ~* — hadr.). The physical one can be obtained by the
replacement

Im IT,(s) — Im (1 _H(IS&SQ - ﬁ?&fgp II(s) = I0(s) + Iy (s), (1.57)

where II;(s), IIj,(s) are leptonic and hadronic contributions to the vacuum polar-

ization operator. Namely, the quantity 0%, ¢ —~"*4"(s), defined as

0_8+ e~ Hhadr(s)

[1-T(s)]>

is more relevant to experiment, contrary to Born one of ¢ —hdr(s)  In the
region of narrow resonances the application of this formula must be performed
with some care [28].

1.9.2. Second-Order Kernel Modification. Keeping this definition in mind,
one must revise the formulae for ahadr, cited above. Really, one must replace

in integrands of ahadr USJrP _’hadr(s) — Ugigfﬁhadr(s). The kernel K (M (s)

ete” Hhadr(s) _

exp

(1.58)

g

remains the same, but the kernel K (?(s) must be modified to avoid the double
counting. The modification consists in eliminating of contributions of all Feynman
diagrams containing two kinds of polarization of vacuum insertions (hadronic,
leptonic sort and the mixed ones). It results in omitting the contributions of
K (%2 (5) in terminology of [27]. As for K(?®)(s), it must be modified in
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M
Fig. 1. Subtracting Feynman diagram
such a way as to extract the contribution of the Feynman diagram (see Fig.1)

that contains polarization operator for the muon case with hadronic one. So, our
result consists in replacement of K (%) (s) [29,30]:

1
gy 2 {0 10 (10T B L)

Tt e T

LA s, 28 N (95, 2

1/ 4 127 115 0 S5 1, 2

A3 367 T T )MV TG T 2 T )
5 ,, 1( 1 17T, 7 4

— L — —= _

T +A< LY R

+ §+53 2 —i+ 2 Vmy+
18”7 96" Y
(p)

with L = In (s/M?), A = \/p(p — 4), & = 72/6 and

VP—Vp—4
Vo+ V=4

. 1
Dp(p) =Lia(y) +ny (1 —y) - In’y — &,

y:
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) 1 1
Dp(p) = Lis(—y) + ~In’y + 752

4

T(p) = —6Li3(y) — 3Lis(—y) + In*y In (1 — y) +

+ %(1112 Y+ 6&) In(1+y) +21n y(Liz(—y) + 2Lia(y)),

Yy
. dx_ .
Lis(y) :/?ng(x), (1.60)
0
by the new one:
K@ (s) = K@ (5) — K2V (5) o (1.61)
mf:

with

1—33
K@) (s _2/d (1
mg=M x$2+p1—x) (,Jf),

(1.62)

8 b 1 0\, b-1 2
M(l,z)= o+~ — 1 - .
Lo)==5+3 b(z 6>nb+1’ b=

The quantity K% (s),, ;=M can be calculated analytically:

218 35
K<2b>(s>mf_M:;[§p2+%p 26— <L Pile )~ Ly Palas)] -

1 . .
— Z[LI_PQ(J?_) — L1+P2(JZ+)] , (163)
with z+ = (p + A)/2 and
Ly—=1In—2% Lix = Liy(1 — z3),
rxe —1°
5 4 4 1 4 (169
Pi(z) = —§z4 - §z3 + §z2, Py(z) = 524 —22% 4 3%
For expansion into series by powers of p~!, we have

_ 1 - 1 - 1 -
K@ (s) = 2; a1+ b L+ ;(zm +boL + & L?) + F(ag +bsL +3L?) +

1 _ 1 _
+ E(@ +b4L + ¢4 L?) + ?(ds +bsL+esL?)| +0(p™%), (1.65)
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with
50 2 _ 23
] = — — = by = — ==
ay 27 3527 1 367
g, — 2241 103 b, — 387 ——1
27 1152 24 % 27 7916 SR VVE
15256601 803 _ 29279 221
Qg = — — —— = —— Cya = — 1.66
= 135000 40 o bs 3600 =80 (1.66)
. 66452261 10829 o 57917 .. _ 3763
47 7432000 120 % 4 1800 ’ 1T 40
L 18433084450 13877, . 34443349 47651
>~ T 27783000 35 > TP T 964600 1 0 630

So, our final result for the hadronic contribution to the anomalous magnetic

moment of muon is

o)
ahadrzl(g)Q / @Rh
" 3\ s
4m?2

where RE(s) = o6.¢ —hadr(s) /e e =10 (s)
and K (s) is given above (see (1.61), (1.65)).

The set of Feynman diagrams contribution
with lepton and hadron vacuum polarization as-
sociated with different virtual photon lines cannot
be considered with the method discussed above.
Their contribution (see Fig.2) enhanced by log-
arithmic factor can be estimated as Jaj*d"
(a/m)2(1/3)In M?/m? ~ 2 -10"%a;*¥".  Fortu-
nately, this is beyond the modern experimental pos-
sibilities.

1.10. LBL Modification of Coulomb Force.
The LBL mechanism provides a correction to the
Coulomb force of the charged target [33] (see
also [1, Ch.5]). Really, for large distances mr ~ 1,
using the effective Heisenberg—Euler Lagrangian,
one obtains

~

27203

_ Ze
2251

T dar

o(r)

Lo (5) [KV() + SE(s)]

(1.67)

Fig. 2. Typical contribution
with lepton and hadron vac-
uum polarization associated
with different virtual photon
lines enhanced by logarithmic
factor

(1.68)

_ )
mr
with m-electron mass. For example, for Z = 20, » = 10 fm the expression in the
square brackets is negative. It is some kind of antiscreening effect.
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It is interesting to estimate the contribution of the light quarks as a fermion in
the loop of the LBL-type Feynman amplitude. Keeping in mind the interaction of
three gluons with the quarks in the nuclei of a charge Z with the atomic number
N > Z, we obtain for the ratio of the QCD and QED corrections:

A NOMN *73N\?
qop _ ((as(0) m EARNN (1.69)
AQED « Mu A
where M, ~ My ~ 200 MeV is the constituent light-quark mass; «(0) ~ 2 [34]
is the gluon—quark coupling constant; the color factor Cy is

2
Cq = (Qu + Qa) Gd“bc> = %, (1.70)
with Q, = 2/3,Q4 = —1/3 being the quark charges in units e. We see that
the QCD contribution is at least two orders of magnitude suppressed compared
with light-fermion ones. The situation can be changed if the critical charge
as(0) = 20 [35]. In this case the antiscreening effect can take place already at
r = 15—20 fm and, in principle, can be measured experimentally — by carefully

searching for the energy levels of heavy ions.

2. MOLLER SCATTERING

We put below the results of calculations of the high-energy electron—electron
quasi-elastic scattering in ultrarelativistic approximation (Moller scattering):

e (p1) + e (p2) — e (p}) +e (pa),
Pla=pila=m?, s=(p1+p2)? =4E2, 2.1)
u=(p1—ph)* = —s(1—x), t=(pr—p))*~—sx,

where x = sin®(6/2), @ is the angle between the three momenta of the initial
electron p; (the direction of z axis) and the scattered electron p}. Here and
below we imply the center-of-mass reference frame of initial particles.

Taking into account the lowest-order RC, due to emission of virtual and soft
real photons, one obtains [3]

e e —e e ~e e —e e
do dog

dO; B dO;

x [H%{(4111%+3>L—4+4(1n(x(1—x))—1)1nA7E}+

X

2c0 s
—F L=In— 2.2
+oE (X)} n—s, (22



SOME QED PROCESSES: LIGHT-BY-LIGHT AND MOLLER SCATTERING 165

with the Born cross section, corrected by vacuum polarization of virtual photon:

da.%’e*—mfef _ 0(2 P
Aoy 2s(1-x2 7
1
_ _ 2 _ 2
9 9 1 1
+x“(1+x )m+2){(1—x)(1_nt)(l_nu). 2.3)

Here AF < F is the energy of soft photons, escaping the detectors.
The expression for F'(x), which contains the nonleading terms, is

2

() = (14 P 1= X)) [~ 2o x(1 =20+ 5x(1L =3y + 1) I (1 - ) +

1
+ 1X(—s +8x — 4% +3x%)In? x +

(=8 +19x(1—x) = 8x*(1 —x))InxIn(1—x)|, (24

] =

+

with P(x, 1 — x) being the exchange operator P(x,1 — x)f(x) = f(1 — x).
Emission of hard photon with c.m. energy w > AE

e (p1) e (p2) = e (p1) +e” (py) + (k) (2.5)
is described in terms of kinematic invariants:
s=(p1+p2)?* t=(p1—p)° uw=(—-ph)? xi=kpi, i=12
s1= (P + )%t = (p2 —p2)? wi = (p2 —p1)% Xi = kol i =1,2; (2.6)
s+s1+t+t1+u+u =0.

Here and further we imply
s~81~—t~—t1~—u~—u1>>m2. 2.7)

The cross section of the process (2.5) has the form [2]

- 1 a3
do* 7T = SR, (2.8)
with phase volume of final state
d3p/ d3p/ d3k‘
AU = 22— 0" (pr +p2 = P = ph — k), 2.9)
1 2
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and

w 1
16 ttluul

2 2 2 2
m t U m t U
——,2<—1+—+1) ——,2<—+—1+1> -
XT \u h X \u1 ¢t

m2(t wu 2 om? [t (I ?
——2<—+—+1> ——2<—1+—1+1> , (2.10)
x5 \u ¢ X1 \u1 b

s(tu + t1u1) + S1(t1U + u1t) + 2’LL’LL1(t + t1) + 2tt1(u + Ul)
X1X2X1 X2 '

The vacuum polarization factor 1/(1 — IT) has contributions from leptons,
heavy vector meson (W) and hadrons. The contribution of light charged leptons
(electron—positron) is

I, = L—2) =2 (0, -2), L=t L, —wm @1
37r m2 m2

Ree =

|:881(82 + 87) 4 tt (12 + 12) + uug (u? + u%)} -

W:

3 3m 3

The differential cross section with radiative corrections coming from emission
of virtual and real soft photons in leading logarithm approximation (the ones
containing oL /7) can be written as

do.e’ef—wfe dO’ e —e e |:
B

a AE  3\1*
o o 1+2—(L—1) (21n——|—§>} . (2.12)

T E
Let us note that the last term in the square brackets is the so-called A-part of the
kernel of the evolution equation of twist-two operators Pa (see below).

This observation permits us (using the general factorization theorem) to gen-
eralize the result obtained in lowest order of perturbation theory to one valid in
the leading and next-to-leading approximation in all orders of perturbation theory:

do¢ ¢ —e e “(v) i ;
— [ D@18 dor [ Dz, 5)daz x
0

~dOydyi dys

dop 1 Y1 1 Yo Q

x 298 (1 p1, —p (%L 5) =D (2, (1 —K), 2.13
dO (xlpl prQ)x/l (x/l > 37/2 (mé + . ( )

where
9 2 2 20,2 .2
ﬂ:g(L—l), xllz xle’ xé:xl +$2+C (xQ xl)’

T a a

(2.14)
=x1(1—¢)+22(1 +¢), c=cosb,
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and the structure function D(x, 3) = DV5(z, ) is the nonsinglet lepton structure
function considered in [36]:

1
D(z,8) = 6(1 —z) + BPW () + 55219@) () +...,
1
P™(z) = PW g PV (g) = / B p(1) () ptn-1) <5> . n=2,3,...,

y y
(2.15)
PY(z) = P(x) = lim [Pad(1 — o) + O(1 — 2z — €) Po (),
3 1+ 22
Pr =21 S, Po(z) = .
A ne+ 5 o () T

The values y;,y- are the energy fractions of the detected electrons in the final
state, y1 < @}, y2 < xb. The value of k-factor K is the sum of nonleading terms
(of order «v/m not enhanced by the large logarithmic factor L) arising from taking
into account emission of both virtual and real photons.

Distinguishing the emission of soft and hard real photons, we put it in the
form

K =Ksv + Ky, (2.16)
with
AE 2F
Ksy=—1+4In(x(1 —x))In — + (X) (2.17)
E Fp
The hard-photon emission contribution can be written as
[ o ~ ~ dop -1
Ky =— R(’edr Kcom A ) ) 2.18
H== {27&9/ edl + p] (dOl (p1 p2)) (2.18)
with
Ree = Ree|m:07
(2.19)

dL = dT0(6; — 00) 0(02 — 00) 0(6, — 00) 0(6), — 00) O(w — AE), 6y < 1;

here 61, 65,0/, 0% are angles between the photon momentum k and the momenta
of leptons pi, p2, P}, Py, correspondingly.
The compensation term Kcomyp 1S

Keomp = /1 dx[dWo {daB((l —2)p1.pa) | dop(py (1 - x)pg)]+

dx d01 dOl
AE/E

+2—2

dWo dog(p1, p2)
dx d01 ’
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with
W, « o O,
dr  2rnx {2(1+(1 x) )1n2—|—x )
7 (2.20)
W, « ) 2
dv  2mx {2(1”1 x))<ln2 +1n(1 fﬂ)>+x :
and
dop(@ipraopy) _40?[a®+Y> 1 a4 X* 1
dO; T osa? | 2X2 (1—TI(ty))? 22 (1—Ti(uy))?
L9 L }
VX (1= 10(t1))(1 = M(u1)) |
_ 2 o _ 2
“h_mel-o  —w_ wmlrd v 0oy = ay(i40).
S a s a

Analytical or numerical analysis shows that the Kz value does not depend
on the auxiliary parameter 6y at sufficient small values of 6y. Moreover, the
whole K value does not depend on the other auxiliary parameter AE/E.

The value of k-factor depends in general on the experimental setup — details
of detection of the scattered electrons. The relevant cuts can be included as
additional restrictions on the phase volume of final particles.
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