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We study the behavior of the QCD effective coupling cs in the low-energy region by exploiting
the conventional meson spectrum within a relativistic quantum-field model based on analytical con-
finement of quarks and gluons. The spectra of quark—antiquark and two-gluon bound states are defined
by using a master equation similar to the ladder Bethe—Salpeter equation. A new, independent and
specific infrared-finite behavior of QCD coupling is found below energy scale ~ 1 GeV. Particularly,
an infrared-fixed point is extracted at as(0) ~ 0.757 for confinement scale A = 345 MeV. We
provide a new analytic estimate of the lowest-state glueball mass. As applications, we also estimate
masses of some intermediate and heavy mesons as well as the weak-decay constants of light mesons.
By introducing only a minimal set of parameters (the quark masses m; and A) we obtain results in
reasonable agreement with recent experimental data in a wide range of energy scale ~ 0.1-10 GeV.
We demonstrate that global properties of some low-energy phenomena may be explained reasonably in
the framework of a simple relativistic quantum-field model if one guesses correct symmetry structure
of the quark—gluon interaction in the confinement region and uses simple forms of propagators in the
hadronization regime. The model may serve as a reasonable framework to describe simultaneously
different sectors in low-energy particle physics.
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INTRODUCTION

At the present time, QCD is commonly regarded as true theory of strong
interactions describing all processes in the hadron world [1]. Confinement
and dynamical symmetry breaking are two crucial features of QCD, although
they correspond to different energy scales [2,3]. Confinement is an explana-
tion of the physics phenomenon that color charged particles are not observed;
the quarks are confined with other quarks by the strong interaction to form
bound states so that the net color is neutral. However, there is no analytic
proof that QCD should be color confining and the reasons for quark confine-
ment may be somewhat complicated. There exist different suggestions about
the origin of confinement, some dating back to the early 1980s (e.g., [4, 5])
and some more recent based on the Wilson loop techniques [6], string the-
ory quantized in higher dimensions [7], and lattice Monte Carlo simulations
(e.g., [8]), etc. It may be supposed that the confinement is not obligatory
connected with the strong-coupling regime, but it may be induced by the non-
trivial background fields. One of the earliest suggestions in this direction is
the analytic confinement (AC) based on the assumption that the QCD vacuum
is realized by the self-dual vacuum gluon fields which are stable versus lo-
cal quantum fluctuations and related to the confinement and chiral symmetry
breaking [4]. This vacuum gluon field could serve as the true minimum of the
QCD effective potential [9]. Particularly, it has been shown that the vacuum of
the quark—gluon system has the minimum at the nonzero self-dual homogenous
background field with constant strength, and the quark and gluon propagators
in the background gluon field represent entire analytic functions on the com-
plex momentum plan p? [10]. However, direct use of these propagators for
low-energy particle physics problems encounters complex formulae and cum-
bersome calculations. Thus, the self-dual homogeneous gluon field leading to
the AC can be considered a good candidate to realize the QCD vacuum. One
can say that existing models with AC describe satisfactorily the experimental
evidence.

Nowadays, the study of QCD behavior at large distances is an active field
of research in particle physics because many interesting and novel behavior is
expected in the infrared (IR) region at low energies below 1-2 GeV [11,12]. Un-
derstanding of a number of phenomena such as quark confinement, hadronization
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processes, the QCD effective coupling, and nonvanishing vacuum expectation
values, etc., requires a correct description of hadron dynamics in the IR domain.
However, we are far from understanding how QCD works at longer distances.
Being a nonlinear theory with local color gauge symmetry, QCD is quite com-
plicated from the computational point of view, and the conventional methods of
calculations require great efforts in making additional assumptions and ideas. In
contrast to QED, simple and reliable methods of calculations are still missing
in QCD. The well-established conventional perturbation theory cannot be used
effectively in the IR region and it is required either to supply with some addi-
tional phenomenological parameters (e.g., «effective masses», anomalous vacuum
averages, etc.), or to use some nonperturbative methods.

Different nonperturbative approaches have been proposed to deal with the
long distance properties of QCD, such as chiral perturbation theory [13], QCD
sum rule [14], heavy quark effective theory [15], lattice simulations [16], power
correction [17], string-fragmentation [18], Schwinger-Dyson equations, etc. Along
outstanding advantages, these approaches have obvious shortcomings. Partic-
ularly, rigorous lattice QCD simulations [19] suffer from lattice artifacts and
uncertainties and cannot yet give a reliable result in the low-energy hadronization
region. The coupled Schwinger—Dyson equation is a continuum method without
IR and ultraviolet cutoffs and describes successfully the QCD vacuum and the
long distance properties of strong interactions such as confinement and chiral
symmetry breaking (e.g., [20]). However, an infinite series of equations requires
to make truncations which are gauge-dependent.

Nowadays, the calculations of hadron mass characteristics on the level of
experimental data precision still remain among the unsolved problems in QCD
due to some technical and conceptual difficulties related with the color confine-
ment and spontaneous chiral symmetry breaking. In such a case, it is useful
to investigate the corresponding low-energy effective theories instead of tack-
ling the fundamental theory itself. Although lattice gauge theories are the
way to describe effects in the strong-coupling regime, other methods can be
applied for some problems not yet feasible with lattice techniques. So data
interpretations and calculations of hadron characteristics are frequently carried
out with the help of phenomenological models. One of the effective and im-
portant tools for studying the relativistic two-particle bound state problem in
a field-theory framework is the Bethe—Salpeter Equation (BSE) method [21].
The BS amplitude in Minkowski space is singular, and therefore, it is usu-
ally solved in Euclidean space to find the binding energy. The solution of
the BSE allows one to obtain useful information about the under-structure of
the hadrons and thus serves as a powerful test for the quark theory of the
mesons. Numerical calculations indicate that the ladder BSE with phenomeno-
logical potential models can give satisfactory results (for a review, see [22])
in the IR domain. Moreover, there exist phenomenological indications in fa-
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vor of a smooth transition from short distance to long distance physics (see,
e.g., [17]).

Therefore, it represents a certain interest to investigate some low-energy
physics problems, such as hadronization, glueball states, QCD effective (running)
charge, etc., by combining the conception of the AC and the BSE method within
simple relativistic models based on physically transparent hypotheses, which can
be treated by simple analytic methods.

In the present paper we study the behavior of the QCD running coupling as
in the low-energy region by exploiting the conventional meson spectrum within
a relativistic quantum-field model based on AC of quarks and gluons. The ladder
BSE is solved for the spectra of two-quark and two-gluon bound states. A new,
independent and specific IR-finite behavior of QCD coupling is found below
energy scale ~ 1 GeV. We provide also a new analytic estimate of the lowest-
state glueball mass. As an application, we estimate masses of some intermediate
and heavy mesons as well as the weak decay constants of light mesons. By
introducing only a minimal set of parameters (the quark masses my and A), we
obtain results in reasonable agreement with recent experimental data in a wide
range of energy scale ~ 0.1-10 GeV. The model may serve as a reasonable
framework to describe simultaneously different sectors in low-energy particle
physics.

In doing so, first, we demonstrate that a simple model of interacting scalar
«quarks» and«gluons» provided with an AC can explain qualitatively the physical
evidences: free «quarks» and «gluons» are confined, but they may couple into
observable bound states, the Regge trajectories of these «hadronic» excitations
are asymptotically linear and massless «gluons» may form massive bound states.
Then, we take into account the spin, flavor, and color degrees of freedom, and
investigate the basic dynamic properties of two-particle bound states of quarks
and gluons as well as the QCD effective (running) coupling within relativistic
quantum-field models based on AC. For the spectra of two-gluon and quark—
antiquark bound states we solve the ladder BSE. The conventional meson masses
and the weak decay constants are estimated to extend the consideration. By using
a minimal set of model parameters (the quark masses, the coupling constant, and
the AC scale) we obtain numerical results which are in reasonable agreement
with experimental evidence in the wide range of energy scale from pion mass
up to 9.6 GeV. We provide a new, independent, and analytic estimate of the
lowest glueball mass, and found it at 1661 MeV. Moreover, we estimate the QCD
effective charge a in the low-energy region by exploiting the conventional meson
spectrum. We also found a new, independent and specific infrared-finite behavior
of QCD coupling below energy scale 1 GeV. Particularly, an infrared-fixed point
is extracted at a5(0) ~ 0.757 for confinement scale A = 345 MeV. The model
serves as a reasonable framework to describe simultaneously different sectors in
low-energy particle physics.
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1. CONFINEMENT, HADRONIZATION AND GREEN FUNCTIONS

First of all, we would like to clarify the role of the AC in properties of
hadrons, the bound states of quarks and gluons by considering a simple relativistic
quantum field model. Particularly, we explain qualitatively and semiquantitatively
the basic features of experimentally observed meson spectra analyzed in [23].

The hadron spectroscopy as the theory of bound states of quarks, and the
phenomenology of the Regge Trajectories (RTs) are important and interdependent
subjects of investigation in particle physics (see, e.g., [24-26]). The basic char-
acteristics of mesons considered as bound states of quarks and gluons (in contrast
to the relations of the SU;3 flavor symmetry) can be roughly listed as follows:

— Quarks and gluons are confined (nonobservable).

— Glueballs are bound states of massless gluons and completely relativistic
systems.

— The RTs of different families of mesonic orbital excitations are asymp-
totically linear and their slopes differ insignificantly. Therefore, the slope of
RTs may be a universal parameter dictated by the general nature of quark—gluon
interaction.

Obviously, these characteristics are hardly obtained in the framework of
any local quantum field theory, where the constituent particles, the quarks and
gluons are described by the standard Dirac and Klein—Gordon equations. From
common point of view, the confinement plays the main role in understanding
and explaining this picture. The problem is how to realize mathematically the
conception of confinement within a specific theoretical formalism?

The standard QCD calculations leading to linear RTs of hadrons are based
on: i) a nonlinear QCD gluon dynamics with a particular infrared behavior of
the gluon propagator and ii) a three-dimensional reduction of the relativistic BSE.
This results in a linear increasing potential between quarks in three-dimensional
space (see, e.g., [27]). This infrared singular behavior is commonly interpreted
as quark confinement.

In reality, the modern picture is more complicated (see, for example, [28,29]),
but we do not discuss the details here. Note only, it is necessary to overcome
some mathematical problems caused by the singularity of the gluon kernel and
an ambiguously defined choice of particular reduction of the relativistic two-body
BSE (see, e.g., [30]).

In the present paper we show that there exists another possible mechanism ex-
plaining the above-mentioned characteristics of meson spectrum, particularly, the
properties of RTs. In doing so, we use a simple relativistic quantum-field model
of two scalar particles (the prototypes of constituent «quarks» and intermediate
«gluons») with the AC. Our approach is based on the following assumptions:

— The AC takes place.

— The interaction is described by a Yukawa-type Lagrangian.
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— The coupling constant binding the «quarks» with «gluons» is small.

— Final bound «hadron» states of «quarks» are described by the relativistic
ladder BSE without using any 3D-reduction.

In addition we demonstrate a mathematical sketch of calculations of two-body
bound-state spectrum within the BSE in the weak-coupling regime. In doing so,
we use simple relativistic models based on physically transparent hypotheses,
which can be treated by simple analytic methods. We believe that the AC is
the basic underlying principle leading to a qualitatively correct description of
main characteristics of meson spectra. In any case our models represent certain
theoretical interest because they clarify the underlying physical principles of the
meson spectrum.

1.1. Analytic Confinement. In particle physics there exist several models
based on the idea of AC. According to Leutwyler [4], this gluon configuration
is stable over local quantum fluctuations, and can lead to the quark and gluon
confinement as well as a necessary chiral symmetry breaking. Hereby, propagators
of quarks and gluons in this field are entire analytic functions in the p?-complex
plane, i.e., the AC takes place. An approach, based on the assumption that QCD
vacuum is realized by the self-dual homogeneous vacuum gluon field which is
the classical solution of the Yang-Mills equations, was developed in [10,31].
This approach contains a minimal set of parameters: the gauge coupling constant,
the strength of the vacuum field and the quark masses. The Quark Confinement
Model [32] treats light hadrons as collective colorless excitations of quark—gluon
interactions while the analytic quark confinement is provided by averaging over
gluon backgrounds. The analytic form of the form factor providing the quark
confinement is a phenomenological function unique for all processes in the low-
energy physics. This model reproduces the low-energy relations of chiral theory
in the case of zero momentum and allows one to obtain more sophisticated hadron
characteristics such as slope parameters and form factors.

Generally, one may expect that a theoretical description of colorless hadrons
considered as bound states of quarks and gluons, when the confinement is taken
into account and an averaging over all nonobservable color degrees of freedom
is performed, can lead to a physical picture, where the quarks and gluons are
realized in the form of some phenomenological «bricks». We suppose that a
successful guess of the structure of these «bricks» in the confinement region can
result, particularly, in a qualitatively correct description of the basic features of
the meson spectrum. Our guess is that the AC realizes these «bricks».

However, real calculations of different amplitudes in particle physics require
to take into account simultaneously the confinement as well as some quantum
characteristics associated with color, flavor, and spin within a chiral symmetry
breaking. Besides, analytic calculations within these approaches are quite cum-
bersome. In addition, it is necessary to note that there exists a prejudice to
the idea of the AC (see, for example, [33]). Therefore, it seems reasonable to
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consider simple quantum field models in order to investigate qualitatively just
«pure» effects due to AC.

Particularly, within a quantum-field model, the quark confinement may be
explained as the absence of quark poles and thresholds in Green’s function. Fol-
lowing this idea, the conception of AC assumes that the QCD vacuum is realized
by the self-dual vacuum gluon fields which are stable versus local quantum fluc-
tuations and related to the confinement and chiral symmetry breaking [4]. This
vacuum gluon field serves as the true minimum of the QCD effective poten-
tial [9]. The vacuum of the quark—gluon system has the minimum at the nonzero
self-dual homogenous background field with constant strength. Then, the quark
and gluon propagators in the background gluon field represent entire analytic
functions in Euclidean space [10]. In previous papers [34,35] we developed
relativistic quantum field models with AC. Similar ideas have been realized in
infrared confinement by introducing an IR cutoff within a Nambu—Jona-Lasino
model [36,37].

1.2. Green Functions in Hadronization Region. The effective charge is
strongly governed by the detailed dynamics of the strong interaction and may
depend on some of the most fundamental Green functions of QCD, such as the
gluon and quark propagators [38]. Green functions in QCD are tightly connected
to confinement and are ingredients for hadron phenomenology. However, any
widely accepted and rigorous analytic solutions to these propagators are still
missing. One may encounter difficulties by defining the explicit quark and gluon
propagator at the confinement scale. Nowadays, IR behaviors of the quark and
gluon propagators are not well-established and need to be more specified [39].

From our point of view, any acceptable description of quarks and gluons
and their hadronization on large distances, where the confinement of quarks and
gluons takes place, directly depends on the structure of QCD vacuum, and this
structure is not well established yet. In other words, the propagators of quarks
and gluons on large distances are quite far from those given by standard Dirac
and Klein—Gordon equations.

The matrix elements of hadron processes at large distance are integrated
characteristics of the vertices, quark, and gluon propagators and the solution of
the BS equation should not be too sensitive to the details of propagators. Taking
into account the correct global symmetry properties and their breaking, also
by introducing additional physical parameters, may be more important than the
detailed working out of propagators (e.g., [40]). In previous papers we exploited
simple forms of quark and gluon propagators [34,35] which were entire analytic
functions in Euclidean space and behaved similar to the explicit propagators
dictated by AC [10].

The structure of the QCD vacuum is not well established and one may
encounter difficulties by defining the explicit quark and gluon propagator at the
confinement scale. Obviously, the conventional Dirac and Klein—-Gordon forms
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of the propagators cannot adequately describe confined quarks and gluons in the
hadronization region. Besides, the currents and vertices used to describe the
connection of quarks (and gluons) within hadrons cannot be purely local.
Because of the complexity of explicit Green functions derived in [10], we
examine simpler propagators exhibiting similar characteristics.
Following [41] we introduce the quark propagator as follows:

b/ w0+ mp[l 95 wlimye/A p? + m?
Gob(p) = gDl o (my/ )Jexp{_TQf W

where p = p,y,, and w(z) = (14 2%/4)~!. The sign «+» in the quark propagator
corresponds to the self- and antiself-dual modes of the background gluon fields.
Note, the interaction of the quark spin with the background gluon field generates a
singular behavior S4 (p) ~ 1/m in the massless limit m; — 0. This corresponds
to the zero-mode solution (the lowest Landau level) of the massless Dirac equation
in the presence of external gluon background field and generates a nontrivial quark
condensate

4 N 3 m2
(2 (©)as (0)) = —/(;lT’}lﬂ[si(ﬁ)} = —%exp {_2_Af2} #0

indicating the broken chiral symmetry as m; — 0. A mass splitting appears
between vector and pseudoscalar mesons (My > Mp) consisting of the same
quark content.

For the gluon propagator we choose the following form (in Feynman
gauge) [35]:

D7 (p) = 6/*3%—; exp (—p?/4A%) . )

Remember, that within the model the quark and gluon propagators 5‘(]3)
and D(p) in (33) are entire analytic functions in the Euclidean space.

Both propagators in (1) and (2) are entire analytic functions in Euclidean
space and may serve simple and reasonable approximations to the explicit prop-
agators under the AC (see, e.g., [35,41]).

In the next section we investigate the pure role of the AC in formation of
two-particle bound states by omitting quantum degrees of freedom such as the
spin, color, and flavor.

2. SCALAR «TOY» MODELS WITH ANALYTIC CONFINEMENT

Let us consider a simple system, a Yukawa model of two interacting scalar
fields ®(z) and ¢(x) described by the following Lagrangian in the Euclidean
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domain:
- 1 -
L(w) = =27 () $7HB) (2)—5¢(z) D™H(D) p(z)—g®" () () p(x), (3)
where coupling constant g is supposed sufficiently small.

We postulate that the AC takes place here. It means that the Fourier trans-
forms of propagators of confined particles ® and ¢ are entire analytic functions
in the complex p?-plane, so S~1(p?) and D~!(p?) have no zero at any finite
complex p?. Hence, the equations for the free fields

S7HO)®(z) =0, D H(D)e(z) =0 4)

result only in the trivial solutions ®(x) = 0 and p(z) = 0. We call this property
AC, i.e., the corresponding particles exist only in virtual states [32,33]. One can
say that these fields describe constituent particles, i.e., ®(z) and ¢(x) represent
scalar «quarks» and scalar «gluons», respectively.

«Two-quark» bound states can be found in the following way. Let us consider
the partition function

1
7 = ///54» §dT ¢ exp {—(fIﬁS_l(b) — a(goD_lga) —g(‘1>+<1>ga):| G
This partition function is written in the quark and gluon variables. Our aim is
to rewrite Z in terms of «hadron» fields in order to realize the so-called quark—

hadron duality.
Integration over ¢ results in

2
- / / 5B6DT exp [—(q>+5—1<1>) + %(qﬁ@pqﬁ@)} . ©)
Let us introduce a complete orthonormal system {Uqg(y)}:

/dyUQ( Weo (y) = dqar, ZUQ Wa(y') =y —y), (7

where @ = {n,l,{u}} is a set of radial n, orbital [ and magnetic {u} =
(g1, ..., ;) quantum numbers. Then, the term Lo[®] = (PT®DPTP) can
be rewritten

Ly[®] = g//dxl dry ®F(21)®(z1)D (21 — 22)0 (22)P(22) =
2
=9 [ [ [ v dye /Dl 5005(0n ~ 1)/ D) (5,10 =
2
_ %%:/deQ(x) Jo(z), ®)
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with 1 =z +y/2, 2 = 2 — y/2 and
J(z,y) = d" (a: + %y) o (a: - %y) =dT(z) e%g@(m),
T (@,y) = J(@,—y),  Jo(x) = ®F(2)V(0)@(x), ©

J5(@) = Ja(@), Va(d) =i / dyv/ Dl Ug(y) ¢4 9,

>

where V() is a nonlocal vertex.
By using the Gaussian functional representation we write

el2[®] — exp [% z@: / dx JQ(J?) Jag (37)] =

= /HaBQ exp [—%Z(BQ Bq) +9) (Bq JQ)]-
Q

Q Q

Substituting this representation into (6) and by integrating over ¢ we obtain

Z = /HaBQ exp {—% > (BqBg) — Tr In(1 — gBg VQS)} =
Q

Q

1
:/H5BQ eXP{‘g > (Boldge _O‘HQQ’]BQ’)‘FWI[QB]} (10)
Q

QQ’

where
2
WilgB] = —Tr |:1n (1 —gBqoVpS) + %BQ Vo SBQIVQ/S]
is a functional describing interactions of fields Bg.

2.1. The Bethe-Salpeter Kernel. Polarization kernel allgg: in the one-loop
approximation reads

aHQQ’(Z)://d?Jl dy2 Uq(y1)aIl(z; 91, y2)Uqgr (y2),

(e ) = VDTS =+ 252 ) 5 (= - £52 ) VBl

2

where z = 21 — 22 and a = (g/47A)?. Its Fourier transform reads

allgq (p) ://dm dy> Uq (y1)od, (y1, y2)Ugr (y2), (11)
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all, (y1, y2) =

= VD) [ e S (ke §) 8 (k- 5) VD)

Suppose, the orthonormal system {Uqg(y)} diagonalizes the kernel in (11). It
means that we solve the eigenvalue problem

/ dy' ol (y, 4"\ U (y) = Eo(—p?) Ug(y), (12)

where Eq(—p?) = En(—p?), ie., the eigenvalues are degenerated over the
magnetic quantum numbers {x}. We stress that the Bethe—Salpeter kernel in (12)
is real and symmetric, therefore, variational methods can be applied for its further
evaluation.

Then, the polarization operator in (11) reads:

allgq (p) = Eq(—p?)dqqr- (13)

Note that diagonalization (13) is nothing else but the solution of the ladder
BSE. The standard form of the BSE may be obtained, if one introduces in (12)
new functions Ug(y) = /D(y)¥q(y) and goes to the momentum space.

By introducing a Gaussian measure defined by

Gg' (21— x2) = [1 = BQ(D)] 8(z1 — 22), p*=-0

we rewrite the partition function (10) in the final form

- 1
Z:/HaBQ exp —EZ(BQGE;BQ)‘FWI[QB] . (14)
Q Q

We stress that this representation is completely equivalent to the initial
one (5). It is a mathematical realization of the quark-hadron duality in the
model under consideration. From physical point of view, we pass on from
the world containing fields ® and ¢ to the world of bound states {Bg}. The
field variables { Bg} can be interpreted as fields of particles with quantum num-

~ 1
bers Q = {nl} and masses M, if the Green function G (p®) = ————
1—Eq(-p?)
has a simple pole in the Minkowski space (p> = —Mg). The masses of two-

particle bound states are defined by the equation:

1= Eq(M3). (15)
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Formally, Gc_gl (—DO) defines the kinetic term of the field Bg. To go to its standard
form, we expand it in the vicinity of p? = —Mé as follows:

1= Eq(—p%) = Zo(p* + M) + O[(p* + M3)’], Zq = —Eg(-Mg) > 0.

The positive constant Zg provides the renormalization of the wave function
of the field Bg. We rewrite the kinetic and interaction parts in terms of the

renormalized fields Bg(p) = Zél/ng’Q (p) as follows:

(35 (p) [1 — Eq(—p?)] BQ(p)) =

= (B4(0) [ + M3) + O + MB))] Ba(p))
(16)

WrlgB] = Wr[ges B, ggf = gZél/2 -9 <.
B (- M3)

The functional W;[gesB] describes all «strong interactions» of the «mesons» By.
In addition, it should be stressed that the effective coupling constant ggf in (16),
defining the strength of boson interactions does not explicitly depend on the initial
coupling constant g because of relation Eb(—Mé) ~g.

Below we consider with two specific versions of the AC. Note, both these
models realize the «quark» and «gluon» confinement only. Other important
quantum characteristics as color, flavor, and spin with an appropriate chiral broken
symmetry are not taken into account yet.

2.2. The Virton Model. In the first simplest model we consider two massless
particles and pure Gaussian exponents for the propagators:

2

S(x1 —x2) = S(Og,) 6(x1 — 22) = im)e exp [—EAQ(xl — $2)2:| ,

where the only parameter A represents the scale of confinement. Consequently,
1/A implies the characteristic «radius» of AC. From a physical point of view this
model is important because the eigenfunctions and eigenvalues of the relativistic
BSE within one-particle exchange approximation can be found explicitly and the
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obtained RTs are purely linear. In some sense, this model can be considered a
«relativistic oscillator» because the exact solution possesses equidistant spectra
resulting in pure linear RTs. We call this case the Virton Model.

Due to the pure Gaussian character of the propagators in this model, the
polarization kernel (11) becomes quite simple [42]:

~ A2\ 2 »?
/ /
oAl (y,y') = « (87) exp (——2A2) K(y,y),

(18)
/ A2 2 / 12
K(y,y') = exp {——4 W —yy' +y )}

Explicit diagonalization of kernel K (y,y’) on {Ug(y)} results in the eigenvalues:

1 2n+l1 871’ 2
“Q‘“nl‘“(m) ’“°‘<m>' 1%

Corresponding eigenfunctions Ug(y) are given in Appendix A.
Therefore, the mass spectrum of two-particle bound states can be found
explicitly

2
M3 = M2 =2A%In % F@2n+ D222+ V3), a. = (2 + \/5) . (20)

Thus, a pure Gaussian form of AC (17) leads to the linear and parallel
RTs. The slope of RTs is defined only by the scale of the confinement region A
and does not depend on « and other dynamic constants. Bound states exist for
a < .. If a < ag, the size of the confinement region is remarkably larger than
the Compton length of any bound state

1 1 ;
Tconf ™~ A > MQ ~ Q.
In other words, all physical particles described by the fields B¢ (x) and all physical
transformations involving them take place inside the confinement region.

2.3. The Scalar Confinement Model. The second model implies that there
exists a certain dynamical mechanism generating AC of standard particles with
initial masses m and 0. So, we introduce the second parameter, a «quark» mass m.
The propagators are given in more realistic forms [43]:

1
S(z2) = AN? [ da am? A?22?
=\ oz P A2 4o )’
0
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~ 1 p2—|—m2
SO = {“exp (‘T)]
(21)

= (45). o= oo ()]

In the deconfinement limit A — 0 this model allows one to obtain the
conventional propagators of massive and massless scalar particles. Within this
model we can analyze the influence of the mass parameter v = m/A on the
behavior of the meson spectrum. We call this case the Scalar Confinement Model.
We show that this model describes qualitatively well dynamic characteristics of
meson spectra.

In order to solve the eigenvalue problem (12) we will use the variational prin-
ciple because the kernel T1,(y,’) is real and symmetric. For further simplicity,
we consider only the orbital excitations, i.e., n = 0 and @ = {0,1, {u}}.

According to (15), the mass of the bound state is determined by the following
variational equation:

M; m
1 =aq <2_Al’X> maXZ//dm dy2¥ o (y1)ally(y1,y2)Vo(y2),

(22)

Note, the variational optimization gives an upper bound to the mass M} because

for M12 >0
Ml m
ozel(QA A) Ej(M?).

Let us introduce a normalized trial wave function:

A2
\I/l{p,} (l’, a) =C Tl{u} ((E) V D({E) exXp <_Iax2> )

1 [+ 2a)H
Cr=A"" 211+1|’ Z dx|\:[ll{u}xa‘ =1

where a is a variational parameter. The four-dimensional spherical orthogonal
harmonics Tj¢,) () are defined in Appendix A. We suppose that the test function
in (23) should be a good guess to the exact one because the kernel (11) is
proportional to y/D(y) and S(y) is of the Gaussian type [42].

(23)
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Further we use the following relation:

él{u}(k,a) = /da: e_ikx\/D(a:)\I/l{M}(a:,a) =

G 4420y, —iKY —aY?
= T () [ a2y e D e,
where K,Y € R**2 k? = K? and the rotational symmetry D(y?) = D(Y?)
has been taken into account. Then, one obtains [43]

uo 2

- _ o2 K21+ 1 e
Z(I)l{u}(k’a)q)l{u}(kva) = % /duule AL =1,
" 0
24
B 4 (24)
O R a)

Substituting (21), (23), and (24) into (22) and after some calculations we
arrive at

dk < - - . ~
1= g2 mgx/ & %@l{u}(m)s (k+2) 5 (k=2) Bugykia) =

1
= %max [4c(1 — ¢t //dt ds e(M%ﬂ)(HS)Rl(t,s,Xl) , (25)
' 0

where p = (iM;,0,0,0) and

1
Rl(tv‘Sle) ://dU’dUe_Xlz/b(uw)lE(val)v
0

1
1 . . L
Fi(b,x1) = = eX?/b/d“k k2l ok b—kp(t—s) _ oxi/b <_%> [6_2 exf/b] ,

M

2—Al, XP=M?(t—8)? b=t+s+2c(u+w).

Variational equation (25) defines the relation between parameters M;, «, v, and [.
In the deconfinement limit A — 0 our variational estimation results in a

qualitatively correct behavior (for details see Appendix B) of the final bound-

state mass

M; =

2

« g \2
My = 2m — Lm K + O(a), aoz(%), K =0.6403 .. .,

i.e., we get the standard nonrelativistic (the coupling constant ay is small) behavior
for a bound state under the Coulomb potential.
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2.3.1. The Ground State. Let us consider the lowest state with [ = 0. The
equation of the bound state becomes

1 1
€0 (Mo, V) = max 4c(1—c)//dtds//dudv X
0 0

exp | =3 (t + s) + MG ((t +s)— 3 + s(i;j()jJr ’U)ﬂ

[t + s+ 2c(u+v)]?

X

(26)

We have analyzed (26) at different regimes of parameters a, m, and A and
have solved it numerically for M. Some of obtained results are represented
in Fig. 1.

By analyzing our results we can conclude the following remarks:

1. There exists a critical coupling constant a. = 1.9149... obeying the
equation
1
€(0,0) = —. 27)
Qe

It means that there may exist a bound state with m = 0, My = 0, i.e., massless
«gluons» are able to produce a massless «hadron» bound state.

My/A

9

Y e NN | [ee]

N W

—_

0 1 2 3 4 5
m/A
Fig. 1. The mass Mo = My/A of the two-particle ground state (I = 0) as a function of
the mass v = m/A of the «constituent» particle. Dashed line corresponds to the case,
when My = 2m. The physical picture takes place only for relative weak coupling constant
a < oa.=1.9149...
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2. If a < a., the mass of the «hadron» bound state obeys the inequality
My = 2m for Ym > 0. Particularly, for a < a there exist states with My > 0 for
m = 0, i.e., massless «gluons» can produce massive «hadron» bound states — the
«glueballs». For heavy «quarks» (m > A) one obtains an asymptotical behavior

A2
M2 =4m®+ = In (T) +0(1). (28)
2 A
3. If the coupling strength exceeds the critical value o > «., the physical
condition Mg > 0 results in the requirement m > m., where

o(0.0) =1 < (29)
A o o

In other words, for a fixed a > «, the mass of the «quark» should exceed

the critical value m. in order to constitute physically meaningful bound states.

Particularly, there exist massless «hadrons» My = O constituted of two massive

«quarks» with m = m.. This kind of «mass annihilation» does not coincide with

conventional physical conception.

Thus, we conclude that the value of the coupling constant a = (g/4wA)’
plays a crucial role in formulation of the final two-particle bound states and there
exist two physically different pictures:

o If o < «, there exist physically allowed bound states with masses
My > 2m. Particularly, glueballs exist as massive bound states of massless
constituent particles.

o If a > a., there exists a critical mass of the constituent particle m., so
that bound states can exist only for m > m.. Therefore, a massless meson as a
bound state of two massive quarks can exist. But, any glueballs cannot exist at
all because 0 # m > me.

Therefore, we can conclude that a physically reasonable picture can be real-
ized within our model only for relatively small coupling constant o < .

2.3.2. Orbital Excitations and Regge Trajectories. In general case, for-
mula (25) defines the mass of an orbital excitation M; as a function of input
parameters: the coupling constant «, the mass of constituent «quark» m and the
confinement scale A at any given orbital quantum number /.

As mentioned above, we believe that the Scalar Confinement Model grasps
the basic characteristics of meson spectrum, it especially should be effective in
describing the orbital excitations which are determined mainly by interactions on
large distances, where detailing of the quark—gluon interaction are not so impor-
tant. Therefore, we are able to evaluate the confinement scale A and the coupling
constant « by applying (25) to a set of experimental data on the RTs. Note, the
pion RT is not suitable for our consideration because the lowest 7 meson has
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anomalously small mass caused by the mechanism of the broken chiral symme-
try, which is absent in the model under consideration. So, we choose the K-
meson family of orbital excitations {K(0.495), K (1.270)/K (1.400), K (1.770)}
with [ = {0, 1, 2}. Here and below all masses are given in GeV. Since K mesons
consist of u(d) and s quarks with different masses m, and m,, we modify
formula (25) as follows:

1
1= %max [4c(1 — ¢t //dt ds e~ WattiH ) Mi R (¢ s ) b
. c
0

(30)

Thus, we solve the problem by finding « and A for given m, and mg
and M; by using data on the K-meson family. For each member of this family
we have obtained the dependence A = A(«) at fixed «constituent quark» masses
m, = 0.010 and ms; = 0.100. The obtained curves A = A(«a) are plotted
in Fig.2. We see that our input parameters o and A should be localized in
relative short intervals to fit the kaon Regge trajectory, namely

A =0.4-0.5 GeV, a=15-109. 31)

Our preliminary analyses performed for other meson families (7, K™, p) indicate
that this choice of our fundamental parameters is able to fit satisfactorily the

(g/4m\)?
(3]
S

M,(1.770)

M,(1.270)

M,(0.495)

Y S
(NS R e N S NN A N
Low o b b ba o a baa o by a baa o buaa by

N

L e L e

T T T T T T T
02 03 04 05 06 07 08 09 1.0
A

Fig. 2. The dependence A = A(«) evaluated from the mass equation for three different
two-particle bound states with [ = 0, My = 0.495 GeV;l = 1, M; = 1.270 GeV
and | = 2, M2 = 1.770 GeV. Here we use quark masses m, = 0.010 GeV and
ms = 0.100 GeV
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Mass square
EN
I

K(1.270)

Y'K(0.495)

— T T T T
0 1 2 3 4 5 6
Orbital momenta

Fig. 3. The Regge trajectories of the two-particle bound states calculated for o = 1.7
at different values of A to compare with experimental evidence (triangles) of the K-
meson family. Hereby, we plot both K (1.270) and K(1.400) at [ = 1 because the RPP
assignment table lists K15 as a mixture of these states

experimentally observed mesonic Regge trajectories. Note, these curves deform
slightly when the initial «quark» masses vary in wide ranges: m, € (0.010,0.100)
and m, € (0.100,0.450).

Further, the RTs or the dependence of M7 = MPZ(l) on [ for the K-
meson family for « = 1.7, m, = 0.010, and m, = 0.100 at different values
of A € (0.400,0.500) are plotted in Fig.3. One can see that the RTs are far not
linear for lower values of [ = 0-4, although the linearity occurs asymptotically for
sufficiently large [. Besides, the curvature of these RTs and their slopes depend
on A considerably. The asymptotical behavior of the RTs for large ! can be ob-
tained analytically and coincides with the exact solution of the Virton Model (20)
as follows:

MZ ~1-2A%In(24V3) for [ — oo. (32)

A recent analysis of experimental data shows (see [23]) that the RTs of
different meson and baryon families are approximately linear and their slopes
slightly deviate around a constant value, although the quark configurations and
quantum numbers of these hadronic families are considerably different. Note,
the analyzed experimental data in [23] are available for low orbital momenta
Il =0-3 only. Nevertheless, one can conclude that the slope of RTs weakly
depends on specific details of hadron internal dynamics and may be considered
as a universal characteristic which is dictated by the general properties of quark—
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gluon interactions. Precisely this qualitative picture takes place in our models with
AC. Thus, we have sufficient grounds to claim that the AC realizes these general
properties and leads to the approximate linearity of RTs for meson families.

In conclusion, the analytic confinement in the weak coupling regime explains
qualitatively the main features of meson spectra. Note, these simple models do not
contain the real quantum degrees of freedom of quarks and gluons (color, flavor,
spin) as well as the mechanism of the chiral symmetry breaking and, therefore,
cannot pretend to describe quantitatively all details of the meson spectroscopy.
The last remark: the obtained value of the coupling constant « in (31) is not
relatively weak; however, our qualitative analysis shows that the introduction
of N additional quark degrees of freedom leads to the substitution o — Na
so that the «effective» value of the input coupling constant oy decreases almost
in N times. More careful consideration in this direction is the object of our next
investigations.

3. MESONS AND GLUEBALLS

Above, it is shown that a «toy» model of interacting scalar «quarks» and
«gluons» with AC could result in qualitatively reasonable description of the two-
and three-particle bound states [44], and obtained analytic solutions to the ladder
BSE lead to the known Regge behaviors of meson spectra [45].

Now we consider a more realistic model introduced in [46] by taking into
account the spin, color, and flavor degrees of constituents. This model was
further modified in [47], applied to leptonic decay constants in [48], and used to
simultaneously compute meson masses and estimate the mass of the lowest-lying
glueball in [34,49]. Here the aim is to collect all necessary formulae, explain the
method in detail, and show that the correct symmetry structure of the quark—gluon
interaction in the confinement region reflected in simple forms of the quark and
gluon propagators can result in quantitatively reasonable estimates of physical
characteristics in low-energy particle physics. In doing so, we build a model
describing hadrons as relativistic bound states of quarks and gluons and calculate
with reasonable accuracy the hadron important characteristics such as the lowest
glueball mass, mass spectra of conventional mesons, and the decay constants of
light mesons.

3.1. Two-Particle Bound States. Because of the complexity of QCD, it is
often prudent to examine simpler systems exhibiting similar characteristics first.
Consider a simple relativistic quantum-field model of quark—gluon interaction
assuming that the AC takes place. The model Lagrangian reads [49]:

1
L= (Fh = gfPOARAS) + 37 (@F (100" —my +gTeAT) " }).
f

(33)
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where AS — gluon adjoint representation (o = {1,...,4}); F;ﬁj = OHAD —
d" Aty fABC — the SU.(3) group structure constant ({A, B,C} = {1,...,8});
q§ — quark spinor of flavor f with color a = {1,2,3} and mass my; g — the
coupling strength, T'¢, = iv,t¢; and t© — the Gell-Mann matrices.

Consider the partition function

Z(g)://Dqu/DAeXp{—/dmﬁ[q,q,f\]}, Z20)=1. (34

We allow that the coupling remains of order 1 (i.e., ay = g?/4mw ~ 1) in the
hadronization region. Then, the consideration may be restricted within the ladder
approximation sufficient to estimate the spectra of two-quark and two-gluon bound
states with reasonable accuracy [47,49]. The path integrals defining the leading-
order contributions to the two-quark and two-gluon bound states read:

Zgg = //Dfﬂ?lep{—(riSl(J)Jr g—; <((7FAQ)((7F~AQ)>D}7 (35)

Zaa= (exp {5 (AAP)}) |
(36)

(o= [Dac [—%(AD*A)] (o).

Our model has a minimal number of parameters, namely, the coupling con-
stant «, the scale of confinement A, and the quark masses {mq, ms, mq, mp}.
Hereby, we do not make a distinction of the masses of the lightest quarks,
SO My, = Mg = Myd-

3.1.1. Quark-Antiquark Pairs. Below we shortly introduce the basic steps
entering into our model on the example of the quark—antiquark bound states [35]
defined by Z,4 in (36).

First, we allocate the one-gluon exchange between colored biquark currents

2
g _ .
Ly = 5 E //da:l dxo (qf1 (xl)Z'y“tAqfl (a:l)) X

f1fe
x DI (1, m2) (qr, (w2)intP g, (22)) . (37)

The color-singlet combination is isolated:
(tA)”(SAB(tB)] i 5511 8§ — g(tA)“ (tA)jj )
We perform a Fierz transformation

(90" (i) = > C105 Oy, J={S,P,V,A,T},
J
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where Cy = {1,1,1/2,-1/2,0} and Oy = {1,475, 9V, V5 Vs *[Yu> Vo/2}-
For systems consisting of quarks with different masses it is important to pass
to the relative co-ordinates (z,y) in the center-of-masses system:

o =r4&y, m=x—by, &=—DL— =12
mf1+mf2

Then, we rewrite (37)

2 2
Ly = % Z CJ//dl‘dyjjflfQ(J?,y)D(y)j}flfz(x7y), (38)
Jf1f2

where
Tipif2(2,9) = (@r, (2 +&1y) O qp, (= &29)) -

Introduce a system of orthonormalized basis functions {Uq(x)}, where =
{nr,l, u} — the radial, orbital, and magnetic quantum numbers as follows:

[ 2o Ve () =599, 3 Ug(2) Ualw) = 6= ~ )
Q

Expand the biquark nonlocal current on the basis

DT}, 1 (@ y) = v/D(y) / dz0(z = y)/D(2) T}, 1, (@, 2) =
=Y [ & VDo)V DEIa(:) Ty, :2).
Q

We define a vertex function Vg s(x,y)

an (2)Vau(z,y)ay, (v) = %\/C_J VDY) Uq(y)qr, (x + §1y)Osqs, (2 — &ay)

and a colorless biquark current localized at the center of masses:

Tn(z) = / dy (@ (2) Vas (@) ap(@),  Th) = Tn(a),
N: {QaJ7f17f2}'

Diagonalize Ly on basis {Ug(z)}, and then (38) can be rewritten as follows:

92
=2 %:/dxjj\/(a:) Iv(@).
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We use a Gaussian path-integral representation for the exponential

N
. 1
(o0 = [TIPBx e |50 (). (), =1
N
by introducing auxiliary meson fields Bas(z). Then,

Zog = </ /Dquexp {—(@57'g) + g(BNJN)}>
Now we can take explicit path integration over quark variables and obtain
Zgg — Z = (exp {TrIn[1 + g(BxyVnr)S]}) 5,

where Tr = Tr. Try > ; Tr. and Tr, are traces taken on color and spinor indices,
X

B

correspondingly, while > implies the sum over self-dual and antiself-dual modes.
+

3.2. Meson Ground-State Spectrum. In particle accelerators, scientists see
«jets» of many color-neutral particles in detectors instead of seeing the individual
quarks. This process is commonly called hadronization and is one of the least
understood processes in particle physics.

We introduce a hadronization Ansatz and will identify B (z) fields with
mesons carrying quantum numbers A. We isolate all quadratic field config-
urations (~ B%) in the «kinetic» term and rewrite the partition function for
mesons [47]:

1 /
Z= /];[DBN eXP{_gA%;(BN[(SNN + vnr]Bar) = Wres[BN]}, (39)

where the interaction between mesons is described by the residual part Wies[Bar] ~
0(B%).
The leading-order term of the polarization operator is

s (2) = / / d dy Une (@)as oy (2, 5)Unr (9), (40)

and the Fourier transform of its kernel reads

ashyy(p,z,y) = as/dzeipz)\y/(z,x,y) =

4¢%\/C; Cy A
:%4/1)(3;)1)@)/@6 k(z—y)

« Tr [OJSml (k + &9)0s Sy (k — Ep)] . (41



HADRON SPECTRUM AND INFRARED-FINITE BEHAVIOR 179

The Bethe—Salpeter (BS) equation is an important tool for studying the rel-
ativistic two-particle bound states in a field theory framework [21]. Numerical
calculations indicate that the ladder BS equation with a phenomenological model
can give satisfactory results (for a review, see [22]). Particularly, a BS formal-
ism adjusted for QCD was developed to extract values of as below 1 GeV by
comparison with known meson masses [50].

We diagonalize the polarization kernel on the orthonormal basis {Ups}:

/ / i dy U () )10 (9, 2, ) Uny (9) = 68N A (—p?)

that is equivalent to the solution of the corresponding ladder BSE. We rewrite:

8C
M) = 53 [k Va B k),
Vi(k) = / d*x Uj(x)\/D(x)e (42)

Hn (k,p) = iTr {OJS'ml (if + 51}3) O/ Spm, (if - 5223)} )

where, V; (k) is a vertex and IIxr(k, p) is the kernel of the polarization operator.

In relativistic quantum-field theory, a stable bound state of 7 massive particles
shows up as a pole in the S matrix with a center-of-mass energy. Accordingly,
the physical mass of meson may be derived from the equation:

L+ a v (MR) =0, —p* = MZ. (43)

Then, with a renormalization

(B[l + asAv (=p?)|By) =
= (BNl + asAv (M) + asdw (MR,) [p* + MR By) =
= (Bgr[p® + M¥|Br), (44)

M (z) = d/\?l;(Z)’ Br(@) = \/ ashw (MZ) By (x)

the partition function takes the conventional form:

1
7= [DB e {_5 (Br [v* + MZ] Br) — Wres[BR]} RO

The use of the path-integral technique leads to the following practical advan-
tages over simply solving a BSE with one-boson exchange:
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(i) The vacuum functional may be written in alternative representations, either
through original variables of quarks and gluons, or in terms of bound states,
i.e., we obtain the so-called «quark—hadron duality».

(i) The BS kernel (41) is natively obtained in a symmetric form.

(iii) The normalization of the operators of bound states is performed in the
most simple way by keeping the condition )\(M J) > 0 evident.

(iv) After renormalization (44) the partition function of the system of Bxs
fields takes the conventional form with a kinetic term and interaction parts.

3.2.1. Pseudoscalar and Vector Mesons. In the quark model (gy, Gf,) bound
states are classified in J©¢ multiplets. For a pair with spin s = {0, 1} and angular
momentum /, the parity is P = (—1)***, and the total spin is [/ —s| < J < |¢(+s5].

Below we consider the most established sectors of hadron spectroscopy, the
meson ground states (/ = 0,n, = 0), namely, the pseudoscalar P(O_+) and
vector V(1~7) mesons.

We should derive the meson masses from (42). The polarization kernel
A (—p?) is real and symmetric that allows us to find a simple variational solution
to this problem. For the ground-state trial function Uy(z) we choose [35]:

al?z? 9
Uoi(z,a) ~ /D(z) exp{— 1 }, /dx|U01(x,a)| =1, a>0. (46)

After substituting (46) into (42), the variational equation defining the masses
of P and V mesons is as follows:

1= _aSAJ(A7MJ7m1)m2) =

0o (VB ) i i
3mmims 2A2

2
S {[(6(1—1)(1—2(1)] y
1/4<a<1/2 a

aM3 (& —52)2] [ M3

X exp | — A2 dapy + A—QI (162 + a(2 = apy) (& — &)%) +

mimeso
A2

where Cy = {1,1/2}, p; = {1,1/2} and x5 = {1, -1} for J = {P,V}.

Localization of the meson field at the center of masses of two quarks results
in the following asymptotic properties. For mesons consisting of two very heavy
quarks (m; = mgo = m > 1) we solve (47) and obtain the correct asymptotic
behavior

+ 1+ xsw (m1)w (mg)]} } @7

3
M?=4m?+¢e;, ¢ ;4ln< )
/ s 32(7 — 4v/3) Cra,
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Note, the next-to-leading value £; does not depend on any masses. Moreover,
ey > ep, because the corresponding Fierz coefficients obey Cp = 1 > Cy =
1/2. The mass splitting My > Mp remains for «heavy-heavy» quarkonia.

For a «heavy-light» quarkonium (m; > 1, mo ~ 1) we estimate the mass

Mf-:mf—eJ, EJ#EJ(MJ).

To calculate the meson masses we need to fix the model parameters. We de-
termine the quark mass m,q and the coupling constant s from equations:

14+aAp(A, 138 MeV, myg, mud) =0,  14+a v (A, 770, myd, myq) = 0 (48)

by fitting the well-established mesons 7(138) and p(770) at different values of A.
The remaining constituent quark masses mg, m., and m;, are determined by fitting
the known mesons K (495), J/¥(3097), and T (9460) as follows:

1+oz3/\p(A,495,mud,ms) 0,
1+ asAv (A, 3097, me,m.) =0,
1+ Oés>\v (A, 9460, my, mb) =0.

The dependencies of the constituent quark masses m, and estimated meson
masses M on A are plotted in Figs.4 and 5, correspondingly.

The sharp drop of all quark mass curves in Fig.4 may be shortly explained
as follows. Note, two equations in (48) mostly differ by meson masses in
exponentials along different numerical factors C'y, ps, and x ;. They have general

I v~ e ——
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%
2 40342879
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E 14841316
4 3
g E
S 5459815 -
E —— s
2008554  —a—c
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A, MeV

Fig. 4. Solutions for constituent quark masses vers. the confinement scale value A
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Fig. 5. Solutions for some meson masses in dependence on the confinement scale value A

solutions {m,q , s} not for any A. Suppose, at fixed A = Ag they are solvable.
Then, for finite coupling «, the solution m,g is obviously finite to obey both
equations. However, for vanishing oy — 0 the equations take the form

aSCJ

1~ - const (Ag, My, py),
ud

and the solution for quark mass behaves m,q ~ \/as — 0. Exactly this behavior
is observed in Fig. 4.

By using these quark masses and coupling constant we can estimate other
meson masses in dependence on A, and some results are shown in Fig. 6.

To fix the value of parameter A we calculate the weak decay constants f
and fx to compare with experimental data. Note, these constants considerably
depend on A (see Fig.7) that allow us to fix it unambiguously at A = 416.4 MeV.

The final set of model parameters are fixed as follows:

as = 1.5023, A =416.4 MeV, myq = 206.9 MeV,

49
mg = 323.6 MeV, m. = 1453.8 MeV, m;p = 4698.9 MeV. )

With these parameters we have estimated the pseudoscalar and vector meson
masses shown in Fig.6 and compared with experimental data [12]. The relative
error of our estimate does not exceed 3.5 per cent in the whole range of mass
(from 0.14 up to 9.5 GeV).

There are mainly two schemes describing w — ® and n — ' mixing [12]. The
octet-singlet scheme uses the mixing angle 6 between states (ui + dd — 255)/v/6
and (ui 4 dd + s5)/+/3. We use the quark-flavor based mixing scheme between
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states (u@ 4 dd)/v/2 and s5 with mixing angle . These two schemes are
equivalent to each other by # = ¢ — /2 + arctan (1//2), when the SU(3)
symmetry is perfect. Particularly, for «ideal» vector mixing the angle is ¢l = 90°
or 9i¢ = 35.3°.
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With fixed parameters (49) we calculate a relatively heavy mass My (s35) =
1064 MeV of vector s5 state. To obtain correct masses of w(782) and ®(1019)
one needs a considerable mixing to the light quark—antiquark state with mixing
angle ¢y ~ 73.2° which differs significantly from the «ideal» value. By using the
same parameters (49) we obtain a pseudoscalar s5 state with mass Mp(s35) = 705
MeV. We cannot describe the physical mass of 7(958) by any mixing to the
light-quark pair and can only fit the correct mass Mp(n) = 547 MeV at angle
©p ~ 58.5°. Our model fails to describe simultaneously the n — ' mixing. This
problem obviously deserves a separate consideration.

Note, the infrared behavior of effective (mass-dependent) QCD coupling a is
not well defined and needs to be more specified [39,51,52]. In the region below
the 7-lepton mass (M, = 1.777 GeV), the strong-coupling value is expected
between (M) ~ 0.34 [12] and the infrared fix point as(0) = 2.972 [53]. Our
parameter o = 1.5023 does not contradict this expectation because it is estimated
to fit the m-meson mass, and so the corresponding energy scale is ~ 140 MeV.
We keep this value for further calculations.

3.3. Weak Decay Constants. An important quantity in the meson physics
is the weak decay constant. The precise knowledge of its value provides great
improvement in our understanding of various processes convolving meson decays.
For the pseudoscalar mesons, the weak decay constant fp is defined by the
following current-meson duality:

ifppu = (0[Ja(0)|Ur(p)),

where Jy4 is the axial vector part of the weak current and Ur(p) is the normalized
vector of state.
We estimate

2 dk "

oou= Y28 [ B [t Un(a) /D) »
x Tr [i'y5§ (/2: + 5113) Y5Y,S (]% - 5215)} =
. 32/\0&3 2/\(M123) (]. — 2ap)(6(lp - 1)
= Pu 3m3/2(my + ma) (14 2ap)?

_ 2
x |1+ ap (m1 mQ) X
14+2ap mime
M3 4+ €3) —mi —m3 ap 2 2
— M - 50
XGXP{ > 15 2ap 261 —&)7|, (50

where ap is the value of parameter a calculated for the given meson with
mass Mp.
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Particularly, for an «asymmetric» meson containing an infinitely heavy quark
(m1 > mag ~ 1) we obtain the correct asymptotic behavior

Jp ~ 1)y

due to the localization of the meson field at the center of two quark masses.

The weak decay constants of light mesons are well established data and many
groups (MILC [54], NPLQCD [55], HPQCD [56], etc.) have these with accuracy
at the 2 percent level. Therefore, these values are often used to test any model
in QCD. By substituting optimal values of {myq, ms, as, A} (49) into (50) we
calculate

fr=1288 MeV, fx = 157.7 MeV.

Our estimates are in agreement with the experimental data [12,57]:

fPPG — (130.4 £ 0.04 £0.2) MeV, fEPY = (155.5+0.2+0.8+0.2) MeV.
(5D

Our model represents a reasonable framework to describe the conventional
mesons, and the parameters are fixed. Below we can consider two-gluon bound
states.

3.4. Glueballs. Because of the confinement, gluons are not observed, they
may only come in bound states called glueballs. Glueballs are the most unusual
particles predicted by the QCD but not found experimentally yet [58]. There
are predictions expecting non-q¢ scalar objects, like glueballs, and multiquark
states in the mass range ~ 1500—1800 MeV [59,60]. Experimentally the closest
scalar resonances to this energy range are the fy(1500) and fo(1710) [61]. Some
references favor the f(1500) as the lightest scalar glueball [62], while others do
so for the fo(1710) [63,64]. Recent scalar hadron f,(1810) reported by the BES
Collaboration may also be a glueball candidate [65].

The study of glueballs currently deserves much interest from a theoreti-
cal point of view, either within the framework of effective models or lattice
QCD. The glueball spectrum has been studied by using effective approaches
like the QCD sum rules [66], Coulomb gauge QCD [67], and potential models
(e.g., [68,69]), etc. The potential models consider glueballs as bound states
of two or more constituent gluons interacting via a phenomenological poten-
tial [68,70,71]. It should be noted that potential models have difficulties in
reproducing all known lattice QCD data. Different string models are used for
describing glueballs [72,73], including combinations of string and potential ap-
proaches [69]. It has been shown that a proper inclusion of the helicity degrees
of freedom can improve the compatibility between lattice QCD and potential
models [74].

An important theoretical achievement in this field has been the prediction and
computation of the glueball spectrum in lattice QCD simulations [75,76]. Recent
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lattice calculations, QCD sum rules, «tube» and constituent glue models predict
that the lightest glueball has the quantum numbers of scalar (J©¢ = 0*) and
tensor (2%7) states [77]. Gluodynamics has been extensively investigated within
quenched lattice QCD simulations and the lightest glueball is found a scalar
object with a mass of ~ (1.66 £+ 0.05) GeV [78]. A use of much finer isotropic
lattices resulted in a value 1.475 GeV [76]. Recently, an improved quenched
lattice calculation of the glueball spectrum at the infinite volume and continuum
limits based on much larger and finer lattices have been carried out and the scalar
glueball mass is calculated to be (1710 £ 50 & 80) MeV [79].

Two-gluon bound states are the most studied purely gluonic systems in the
literature, because when the spin-orbital interaction is ignored (¢ = 0), only scalar
and tensor states are allowed. Particularly, the lightest glueballs with positive
charge parity can be successfully modeled by a two-gluon system in which the
constituent gluons are massless helicity-one particles [80].

Below we consider a two-gluon scalar bound state. We isolate the color-
singlet term in the bigluon current in Z44 (36) by using the known relations
NZ—1 .0 1
15 = TCNg syt — Etgt%,
fABEfA’B’E‘ _ % (5AA'5BB’ B 5AB’53A’) 1 JANBGBB'E _ JAB'E BA'E
The second-order matrix element containing a color-singlet two-gluon current

reads [49]

2
g
Laa=7 / / dx dy (JA8 (@, y) TEE (2,y) — T4, y) JBE (2,y)) x
X (07 W () = 6 Wow (,9) = 07 Wy (@,9) + 8 Wi (2,)|

where

T (2,y) = A (2) AT (y),

L0 0 )
w v
1 .
W(z) = o) e %,

This part consists of spin-zero (scalar) and spin-two (tensor) components. Below
we consider the scalar component:

2
LiA = % //d.l?l dJ?QJ(J,‘l, J)Q)W(J?l — J?Q)J(J)l, 1‘2),

J(l’l,(IJg) = JMBMB(JJ,{EQ).
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By introducing the relative coordinates (z1 = x + y/2, z2 =x — y/2) we
rewrite

2
=% [ [y swowia) (52)

One can see that the matrix element (52) is similar to (38) by the very
construction. By omitting details of intermediate calculations (similar to those
represented in the previous section) we rewrite the partition function in terms of
auxiliary field B(x) as follows:

Zaa — Zg = /DBeXp{—% (BG™'B) —|—LI[B]} ,
where L;[B] ~ O(B?) and the BS kernel is
G-y =0 —y) - L),
TI(z) = //dtdsUn(t)\/W—(t)D (“;5 +z> D <t;‘9 _ z) S (S) Un(s).

3.4.1. Lowest-State Glueball. The hadronization Ansatz allows us to iden-
tify B with scalar glueball field. To find the glueball mass we should diagonalize
the Bethe—Salpeter kernel TI(2). The glueball mass M¢ is defined from equa-
tion [34]:

8¢* izp _ 2 2
1- 5 dzePII(z) =0, p°=—M¢:. (53)

For the lightest ground-state scalar glueball choose a Gaussian wave function:
2c —cx? 2
Ulx) = —e ", dx|U(x)] =1, ¢>0.
™

Then, we derive (53) as follows:

Qs ME . 3m(3 4+ 2v/2)?
1= exp y  Qerit = - .
4A2 4

Qlerit
The final analytic result for the lowest-state glueball mass reads
s 1/2
Mg = 2A [m (_t )} | (54)
Qs

The solution MC% > 0 exists for any oy < Qi &~ 80.041.
Note, the scalar glueball mass depends linearly on the confinement scale A,
and the scaled mass M¢ /A depends only on coupling o, (see Fig. 8). Particularly,
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Fig. 8. Evolution of the lowest-state glueball mass scaled to A with the coupling o

if we take values A ~ Aqcp ~ 360 MeV and a; ~ as(M;) = 0.343, then we
estimate Mg ~ 1710 MeV.

However, our purpose is to describe simultaneously different sectors of
low-energy particle physics. Accordingly, with values a; = 1.5023 and A =
416.4 MeV determined by fitting the meson masses and weak decay constants,
we calculate the scalar glueball mass as follows:

Mg = 1661 MeV. (55)

Our estimate (55) is in reasonable agreement with other predictions expecting
the lightest glueball located in the scalar channel in the mass range ~ 1500—
1800 MeV [59,66,76,81]. The often referred quenched QCD calculations predict
(1750 + 50 4+ 80) MeV for the mass of the lightest glueball [75]. The recent
quenched lattice estimate with improved lattice spacing favors a scalar glueball
mass Mg = (1710 £ 50 + 58) MeV [79].

Another important property of the scalar glueball is its size, the «radius» which
should depend somehow on the glueball mass. We estimate the glueball size by
using the «effective potential» W (y) (52) connecting two scalar gluon currents.
The glueball radius may be roughly estimated as follows

diz 22 W(x V2 1
J _ V2
e TdizW(z) A 295 MeV

~ 0.67 fm. (56)
This means that the dominant forces responsible for binding gluons must be
provided by medium-sized vacuum fluctuations of correlation length ~ 0.7 fm.
Consequently, typical energy-momentum transfers inside a scalar glueball occur
at the QCD scale ~ 360 MeV, rather than at the chiral symmetry breaking scale
Ay ~ 1 GeV (or ~ 5 fm).
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From (54) and (56) we deduce that

Qg

\q1/2
ra - Mo = 2v/2 [m <&)] ~ 5.64.

This value may be compared with the prediction (rg - Mg = 4.16 £ 0.15) of
quenched QCD calculations [75,79]. A study of the glueball properties at finite
temperature using SU (3) lattice QCD at the quenched level with the anisotropic
lattice, imposes restrictions on the glueball parameters at zero temperature: 0.37 <
rg < 0.57 fm and Mg ~ 1.49 GeV [82]. The nonprincipal differences of
quenched lattice QCD data from our estimates may be explained by the presence
of quarks (our parameters have been fixed by fitting two-quark bound states) in
our model.

A method of analysis of correlation functions in QCD is to calculate the
corresponding condensates. The value of the correlation function dictates the
values of the condensates. We calculate the lowest nonvanishing gluon condensate
in the leading-order (ladder) approximation:

> T (Fi Fi) = 8Nma,A* /d4z W(z) = 6rasA* ~ 0.8 GeV*

which is the same order of magnitude with the reference value [83]
> Tr (G, G") ~ 0.5 GeV*,

In conclusion, the suggested model in its simple form is far from real QCD.
However, our aim is to demonstrate that global properties of the lowest glueball
state and conventional mesons may be explained in a simple way in the framework
of a simple relativistic quantum-field model of quark—gluon interaction based
on AC. Our guess about the symmetry structure of the quark—gluon interaction in
the confinement region has been tested and the use of simple forms of propagators
has resulted in quantitatively reasonable estimates in different sectors of the low-
energy particle physics. The consideration can be extended to other problems in
hadron physics.

4. QCD RUNNING COUPLING IN LOW-ENERGY REGION

One of the fundamental parameters of nature, the QCD effective coupling o,
can provide a continuous interpolation between the asymptotical free state, where
perturbation theory works well, and the hadronization regime, where nonpertur-
bative techniques must be employed.
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QCD predicts the functional form of the energy dependence of o on energy
scale (), but its actual value at a given () must be obtained from experiment. This
dependence is described theoretically by the renormalization group equations and
measured at relatively high energies [84, 85]. A self-consistent and physically
meaningful prediction of the QCD effective charge in the IR regime remains one
of the actual problems in particle physics.

The present paper is aimed to determine the QCD effective charge in the
low-energy region by exploiting the hadron spectrum. In doing so we extend
our previous investigations [35, 44,45], where we provided new, independent,
analytic and numerical estimates on the lowest glueball mass, conventional meson
spectrum and the weak decay constants by using a fixed («frozen») value of «.
The obtained results were in reasonable agreement with experimental evidence.

Below we take into account the dependence of a on mass scale M and
develop a phenomenological model to describe the IR behavior of ;. We deter-
mine the meson masses by solving the ladder Bethe—Salpeter (BS) equations for
two-quark bound states. The consideration is based on a relativistic quantum-field
model with AC and has a minimal number of parameters, namely, the confine-
ment scale A and the constituent quark masses my (f = {ud, s,c,b}). First, we
derive meson mass formula and adjust the model parameters by fitting heavy me-
son masses (M > 2 GeV). Hereby, we determine corresponding values of « (M)
from a smooth interpolation of the newest experimental data on the QCD coupling
constant. Having adjusted model parameters, we estimate a (M) in the low-
energy domain by exploiting meson masses below ~ 1 GeV. As an application,
we estimate some intermediate and heavy meson masses (1 < M < 9.5 GeV).
Finally, we extract a specific IR-finite behavior of the QCD coupling and conclude
briefly recalling the comparison with often quoted results and recent experimen-
tal data.

4.1. Effective Coupling of QCD. The polarization of QCD vacuum causes
two opposite effects: the color charge g is screened by the virtual quark—antiquark
pairs and antiscreened by the polarization of virtual gluons. The competition of
these effects results in a variation of the physical coupling under changes of
distance ~ 1/Q, so QCD predicts a dependence o = g2/(47) = as(Q). This
dependence is described theoretically by the renormalization group equations and
determined experimentally at relatively high energies [84,85].

Nowadays, determinations of «, remain at the forefront of experimental
studies and tests of QCD. Recent developments on this way were summarized in a
number of articles [12,86,87]. Summary of the recent experimental measurements
of o (Fig.9) and particular values of a; at intermediate energies (see Table 1)
are given by referring to [85, 86].

Note, there are two separate ¢ scale regions in which a running coupling
may be considered. The spacelike region (¢> = —Q? < 0 with relativistic
momentum transfer Q?) is related to scattering processes while timelike domain
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Fig. 9. Measurements of «s as a function of the respective energy scale @) vers. QCD
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Table 1. Some measurements of o; at intermediate energies

Process | @, GeV as(Q) Ref.
T-decays 1.78 0.330+0.014 [86]
QQ states | 4.1 0.23940.012 | [92]
T decays 4.75 0.217+0.021 [93]
QQ states 7.5 0.1923+0.0024 | [86]
T decays 9.46 0.18440.015 | [86]
ete  jets | 14.0 0.170+0.021 [94]

(4> = M? > 0, where M is the hadron mass) is often used for annihilation
and decay processes. The consistent description of QCD effective coupling o
in these domains remains the goal of many studies because only asymptotically
the two definitions can be identified, but at low momentum they can be very
different (see, e.g., [88]). Particularly, the behavior of one-loop analytic running
coupling [89] in timelike and spacelike domains is plotted in Fig. 10.
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Fig. 10. The one-loop massless analytic running coupling in the spacelike and timelike
domains (taken from [89])

Many quantities in hadron physics are affected by the IR behavior of the
coupling in different amounts. Nevertheless, the long-distance behavior of a; is
not well defined, it needs to be more specified [39,51,52], and correct description
of QCD effective coupling in the IR regime remains one of the actual problems in
particle physics. Particularly, one of the most precise determinations of a near
low-energy region is done by studying 7-lepton decays reporting central values
ranging from 0.318 to 0.344 [90,91].

An attempt to extrapolate the perturbative approach to the long-distance QCD
has been made, it has been suggested that «, freezes at a finite and moderate
value [95], and this behavior could be the reason for the soft transition between
short and long distance behaviors.

Different nonperturbative approaches have been proposed to deal with the
IR properties of «. Particularly, methods, based on gauge-invariant SDE, con-
cluded that an IR-finite coupling constant may be obtained from first princi-
ples [96]. New solutions for the gluon and ghost SDE have been obtained with
better approximations which led to a new value for the IR coupling constant
at the origin [97,98]. Many works within the lattice simulations have been
devoted in the last years to the study of the QCD running coupling constant
either in perturbative regime [99, 100] or in the deep IR domain [101]. Note,
the results of various nonperturbative methods for the QCD invariant coupling
may differ among themselves in the IR region due to the specifications of the
used methods and approximations. Particularly, the results obtained by lattice
simulations and SDE methods demonstrate a considerable variety of IR behav-
iors of as.

An extraction of experimental data of aS*P(Q?) below 1 GeV compared
with the meson spectrum within analytic perturbation theory has been performed
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in [50]. The earliest attempts to obtain « in the IR region were made in
the framework of the quark—antiquark potential models by using Wilson loop
method [27,102-105]. Convenient interpolation formulas between the large mo-
mentum perturbative expression and a finite IR-fix point have been used in hadron
spectrum studies with a2 /7 ~ 0.19-0.25 [27]. Within a fully relativistic treatment
it was shown that a p-meson mass much heavier than the m mass could be ob-
tained with o /7 ~ 0.265 [106] while a similar result within a one-loop analytic
coupling method predicted o /7 ~ 0.44 [107]. A phenomenological hypothesis
was adopted that the gluon acquires an effective dynamical mass mg ~ 370 MeV
(at Aqcp ~ 300 MeV) that resulted in ag/ﬂ ~ (.26 [108]. Various event shape
in eTe~ annihilation can be reproduced with an averaged value (a2/7) ~ 0.2 on
interval < 1 GeV [17].

4.2. Conventional Meson Spectrum and Running Coupling. We use the
meson mass M as the appropriate characteristic parameter, so the coupling & (M)
is defined in a timelike domain. On the other hand, the most of known data
on «as(Q) are possible in spacelike region. The continuation of the invariant
charge from the spacelike to the timelike region (and vice versa) was elaborated
by making use of the integral relationships between the QCD running coupling
in Euclidean and Minkowskian domains (see, e.g., [51, 109]).

Recent theoretical results predict an IR behavior of the gluon propagator.
A gluon propagator identical to zero at the momentum origin was considered
in [110, 111] while another propagator was of order 1/m§ [4], where my is
the dynamical gluon mass [112]. A renormalization group analysis [113] and
numerical lattice studies simulating the gluon propagator are consistent with an
IR finite behavior [114]. We consider a gluon propagator:

1—exp (—pQ/AQ)

Dﬁf (p) = 5AB§W P2

1/A2
= 6485, / dse="".  (57)
0

It represents a modification of gluon propagator defined in [35] and exhibits an
explicit IR-finite behavior D(0) ~ 1/A2. For simplicity D(p) in (57) is given in
Feynman gauge.

Note, the propagators in (1) and (57) do not have any singularities in the
finite p? plane in Euclidean space, thus indicating the absence of a single quark
(gluon) in the asymptotic space of states. In fact, an IR parametrization is hidden
in the confinement scale A.

The dependence of meson masses on &, and other parameters is defined
by (43). Note, the polarization kernel Ax-(—p?) is natively obtained real and
symmetric that allows us to find a simple variational solution to this problem.
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Choosing a trial Gaussian function for the ground state [35]
2
U(x):—aexp{—aAQxQ}, A4/d4x|U(x)|2:1, a>0 (58)
T
we obtain a variational form of equation (43) for meson masses as follows:

1= _OA[S(MJ) ' )\J(AvMJvmlamQ) =

. 8a;Cy M3 (mq + mg)
= 32 (my /A)(m2 Ay P { 972 (& + 52)}
du dw M3(& — &)?
XOIE% //\/1/u—1 )(1/w—1) Q2 eXp{_ J4A2Q }X
et

s () (2]}
where @ = 1 + c(u + w).

Further, we exploit (59) in different ways, by solving either for & at given
masses, or for M ; at known values of coupling. In doing so, we adjust the model
parameters by fitting available experimental data.

Note, any physical observable must be independent of the particular scheme
and mass by definition, but in (59) we obtain s depending on scaled masses
{M;/A, mi/A and my/A}, where A is the scale of confinement. This kind of
scale dependence is most pronounced in leading-order QCD and often used to
test and specify uncertainties of theoretical calculations for physical observables.
Conventionally, the central value of a(u) is determined or taken for 4 equalling
the typical energy of the underlying scattering reaction. There is no common
agreement of how to fix the choice of scales. Particularly, in [35] we fixed the
parameter A by fitting light meson weak decay constants.

Below we solve (59) for different values of confinement scale. As a particular
case, first we choose A1 = 345 MeV.

1) We can extract intermediate values of o (My ) in the interval 2-10 GeV
from a smooth interpolation of known data from Table 1. Particularly,

+(9460) = 0.1817,

+(3097) = 0.2619,

L(2112) = 0.3074, (60)
(

s(2010) = 0.3138.

QO O O O

Hereafter, masses are given in units of MeV.
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Then, we derive meson mass formula and adjust the constituent quark masses
{mud, ms, me,my} by fitting heavy meson masses Y(9460), J/¥(3097),
D*(2112) and D*(2010):

1+ s (9460) Ay (A1, 9460, mp, m3) = 0,

1+ 65(3097) Ay (A1, 3097, me, me) = 0, 1)

1+ G5(2112)Ay (A1, 2112, my, me) = 0
( Av (

1+ 6,5(2010)Ay (A1, 2010, myq, me) = 0

with known masses of mesons Y(9460), J/¥(3097), D%(2112) and D*(2010).
We fix a particular set of model parameters as follows:

A=A; =345 MeV, myqg = 192.56 MeV,
ms = 293.45 MeV, m, = 1447.59 MeV, my = 4692.51 MeV.

(62)

Note, the masses of light constituent quarks in (62) are obtained relatively low.
The reason is the singular behavior S,,(p) ~ 1/m; of the quark propagator
for my — 0. On the other hand, this allows us to describe correctly light meson
masses including 7(138) and K (495) [35].

2) Having fixed quark masses, we solve an inverse problem, to estimate
és(M) in the region below 1 GeV by exploiting masses of mesons 7, K, p,

and K* as follows:

G5(138) = —Ap" (A1, 138, mya, muq) = 0.7131,

65(495) = —Ap* (A1, 495, myq, ms) = 0.6086, 63)
as(770) = =\ (A1, 770, Mg, M) = 0.4390,

05(892) = =\, (A1, 892, myq, ms) = 0.4214.

In Fig.11 we plot our low-energy estimates (63) in comparison with the
three-loop analytic coupling, its perturbative counterpart (both normalized at the
Z-boson mass) and the massive one-loop analytic coupling [50].

3) As an application, with particular choice of parameters (62) we calculate
masses of other mesons: D(1870), D4(1970), 1.(2980), B(5279), B*(5325),
B;(5370), B.(6286), and 7,(9389). Hereby, the corresponding (M) are ex-
tracted from Fig. 9.

Our estimates of meson masses along experimental data [12] are shown
in Table 2. The relative error of our estimate does not exceed 3.5 per cent in a
wide range of mass.

4) By interpolating smoothly &4(M) results into intermediate-energy above
1 GeV region and taking into account correct asymptotical, we define &5 on a
wide interval 0.14-9.5 GeV.

5) To check the sensibility of the obtained results on the confinement scale
value we recalculated steps 1)-3) for A = 330 MeV and A = 360 MeV. We
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M,GeV T 0,Gev

Fig. 11. Our estimates of & (M) in the low-energy region at different values of confinement
scale (in plot a: dots for A = 330 MeV, rhombs for A = 345 MeV, squares for A =
360 MeV and dotted curves are the envelope lines) compared with the three-loop analytic
coupling as(Q), its perturbative counterpart and the massive one-loop analytic coupling
(in plot b: solid, dash-dotted and dashed curves, correspondingly [50])

Table 2. Masses M of conventional mesons (in units of MeV) corresponding to effective
coupling & (M) determined by (59) at A = 345 MeV

JPC =0T | Mp || JPC =0T | Mp ||JFC =177 | Mv [|JFC =177 | My
7(138) 138 || 7.(2980) |3039| p(770) | 770 | Di(2112) |2112
K(495) | 495 || B(5279) |5339| w(782) | 785 | J/W(3097) |3097
n(547) | 547 || Bs(5370) |5439| K*(892) | 892 || B*(5325) |5357
D(1870) |1941| B.(6286) |6489| ®(1019) |1022|| Y(9460) |9460
D.(1970) |2039|| n,(9389) |9442|| D*(2010) |2010

revealed that the estimated meson masses shown in Table 2 do not change con-
siderably (less than 0.5 per cent). The variation of &, under changes of A is
shown in Fig. 11.

6) We perform global evaluation of G;(M) at the mass scale of conventional
mesons (shown in Table 2) by using formula

Gas(My) = —=1/A;(Mj, A, m1,m3)

and plot the resulting curves at different A in Fig. 13 in comparison with recent
low- and high-energy data of as(Q) [50].
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4.2.1. IR-Finite Behavior of Effective Coupling. The possibility that the QCD
coupling constant features an IR-finite behavior has been extensively studied in
recent years (e.g., [115,116]). There are theoretical arguments in favor of a
nontrivial IR-fixed point, particularly, the analytical coupling freezes at the value
of 47/ By within one-loop approximation [117]. The phenomenological evidence
for a; finite in the IR region is much more numerous.

We note that the agreement of our estimates of & (M) with other predictions
(e.g., [85,88]) turns out to be reasonable from 2 GeV down to the 1 GeV scale.
Below this scale, different behaviors of (M) may be expected as M appro-
aches zero.

Below we consider the IR-fixed point & = @,(0) by evaluating (59) for
Mp:Oandmlzmgzm:
do _ 37r2m2 6“2

s 8A2

1
_ o2 du dw
«qoums 2= o] | / Ve D{ijw -1+ c(u+w)? |
2 2 2 !
(e VAR ) RN

The dependence of &2 on p = m/A is plotted in Fig. 12.

T T T T T T T T T T T T T T T T
0 0.1 02 03 04 05 06 07 08 09 1.0

2

Fig. 12. The dependence of the IR-fixed point &2 on p? = (m/A)? at A = 345 MeV [41].
Obviously, &% ~ p? for < 1 and &2 ~ exp {u?} for > 1
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Note, a value of &Y of order 2 or larger would be definitely out of line with
many other phenomena, such as nonrelativistic potentials for charmonium [118]
and analytic perturbation theory [117]. Obviously, this constraint implies an upper
limit to the value of constituent quark mass: p? < 0.8, or m < 0.9A.

Since we are searching for the IR fix point, it is reasonable to choose the
lightest quark mass. Particularly, for m = m,q = 192.56 MeV and A = 345 MeV
we obtain

a2 =0.757, or &%/m =0.241. (65)

To compare our result with known data on «,(Q) we exploit the integral
relationships between the QCD running coupling in Euclidean and Minkowskian
domains. Particularly, there exists a relation [51]:

T4
as(g?) = ¢ / Pt 66)
0

valid for the case of massless pion. By substituting s = tg? into (66) one rewrites

oo

as(¢?) = / (1%)2‘5‘5“‘12)' (67)
0

Then, for ¢> — 0 we obtain

dt
(1+1¢)2

0s(0) = és(0) / — 6.(0) - 1. 68)
0

Therefore, we may conclude that our result (65) is in a reasonable agreement
with often quoted estimates

al/m ~0.19-0.25 [27],

o/ ~ 0.265 [106],

o /7 =~ 0.26 [108], (69)
(/7)) oy =02 [17]

and phenomenological evidences [50, 107]. The obtained IR-fixed value of the
coupling constant is moderate, it depends on the mass of constituent quark (u, d),
so one can insert this value into perturbative expressions to be compatible with
the experimental data.

By interpolating smoothly obtained results in (65), (63), and (60) into interme-
diate-energy region we define & on a wide interval 0.14-9.5 GeV. Some particu-
lar cases of the dependence of oy on mass scale M at different model parameters
are plotted in Fig. 13.
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Fig. 13. Summary of estimates of &s(M) in the interval from O to 10 GeV at different
values of confinement scale: A = 330 MeV (dots), A = 345 MeV (rthombs) and A =
360 MeV (squares) compared with as(Q) defined in low- (diamonds) and high-energy
(circles) experiments. Also shown are the three-loop analytic coupling (solid curve), its
perturbative counterpart (dash-dotted curve) both normalized at the Z-boson mass and the
massive one-loop analytic coupling (dashed curve) (for details see in [50])

It is important to stress that we do not aim to obtain the behavior of the
coupling constant at all scales. At moderate M? = —p? we obtain « in coinci-
dence with the QCD predictions. However, at large mass scale (above 10 GeV)
& decreases much faster than expected by QCD prediction. The reason is the
use of confined propagators in the form of entire functions (1) and (57). Then,
the convolution of entire functions leads to a rapid decreasing (or, a rapid growth
in Minkowski space) of physical matrix elements once the hadron masses and
energies of the reaction have been fixed. Consequently, the numerical results
become sensitive to changes of model parameters at large masses and energies.

To conclude, we provide an estimate of QCD effective charge in the low en-
ergy region (below 1 GeV) by exploiting the conventional meson spectrum within
a relativistic quantum-field model based on analytic (or, infrared) confinement.
The new results obtained in the previous section are summarized in Figs. 11, 12,13
and Table 2.

Despite its pure model origin, used approximations and questionings about
the very definition of the coupling in the IR region, our approach demonstrates a
new, independent and specific IR-finite behavior of QCD coupling and we extract
a particular IR-fixed point at é,;(0) ~ 0.757 for confinement scale A = 345 MeV.
As an application, we performed estimates on intermediate and heavy meson
masses and the result was in reasonable agreement with experimental data. Our
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estimates may be improved further by using iterative schemes, but the aim is to
obtain a qualitative understanding of QCD effective coupling in the IR region.

Note, further improvements of measurements of g will be difficult while
it is unlikely that QCD perturbation theory will considerably improve existing
predictions. Therefore, further developments of theoretical predictions within
nonperturbative methods and reapplication of improved models may have suc-
cesses in this field.

CONCLUSION

In the present review, we demonstrate that global properties of the low-
energy phenomena such as QCD running coupling, the lowest-state glueball, the
weak decay constants of light mesons, and the conventional meson spectrum may
be explained reasonably in the framework of a simple relativistic quantum-field
model of quark-gluon interaction based on analytic (or, infrared) confinement.

In doing so, first we considered simple scalar («toy») models of Yukawa-
type interaction which explained qualitatively the experimental evidences: the
constituent particles are confined, their final bound-states are stable, massless
«gluons» constitute the «glueballs», and the Regge trajectories of «meson» orbital
excitations are asymptotically linear.

Then, we provided a new, independent, and analytic estimate of the lowest
glueball mass, and we found it at 1661 MeV within a relativistic quantum-field
model based on AC. The conventional mesons and the weak decay constants are
described to extend the consideration. For the spectra of two-gluon and two-
quark bound states we solve the ladder BSE. By using a minimal set of model
parameters (the quark masses, the coupling constant, and the confinement scale)
we obtain numerical results which are in reasonable agreement with experimental
evidence in the wide range of energy scale.

Finally, we estimate the QCD effective charge o in the low-energy region.
Despite its pure model origin, used approximations and questionings about the
very definition of the coupling in the IR region, our approach demonstrates a
new, independent and specific IR-finite behavior of QCD coupling and we extract
a particular IR-fixed point at é,5(0) ~ 0.757 for confinement scale A = 345 MeV.
As an application, we estimate masses of some intermediate and heavy mesons
and obtain results in reasonable agreement with recent experimental data.

The suggested models in their simple forms are far from real QCD but we
can conclude that the AC conception combined with BSE method serves a reason-
able framework to describe simultaneously different sectors in low-energy particle
physics and may provide us with a rather satisfactory correlated understanding of
low and intermediate energy phenomena in a wide range from few hundreds MeV
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to few GeV. Our guess about the symmetry structure of the quark—gluon inter-
action in the confinement region has been tested and the use of simple forms of
propagators has resulted in quantitatively reasonable estimates in different sectors
of the low-energy particle physics. The consideration can be extended to other
problems in hadron physics.

The author thanks G.V.Efimov, M. A.Ivanov, E.Klempt, H.Leschke,
V. Mathiew, A.V.Nesterenko, and D. V. Shirkov for useful discussions and valu-
able remarks.

APPENDIX A
Consider the kernel
K =K(z,y) = e_“”2+2bxy_ay2, a>b (70)
with
2
Tt K= [dyK = [dye et = T
/ y K(y,y) / ye Ta—p2 =™

The eigenvalues with quantum numbers Q = {ni{p}} = {nl{p1,...,m}} and
eigenfunctions of the problem

/ dy K (2, 9) Ug(y) = nUq(x)

can be solved explicitly. The eigenvalues are

b 2n+l1 71'2
KQ = knl = ko | ——— , K= ——. 71
9 : 0<a+\/a2—b2> 0 (a4 va? —b?)? b

The eigenfunctions are
2
Ug = Unl{u} (y) = Nu Tl{p,} (y)nglJrl) (253/2) e PV (72)

Here Lgllﬂ)(x) are the Laguerre polynomials and

! ! n

The functions

Yy
Tigy(y) = Tl{u}(ny)|y|la Ny = Ma lyl = vy?
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satisfy the conditions

Ttz (M) = Tigpinpin ooy (1) Tifpps,..pnr (n) =0,

1
>~ Ty (M) Ty (n2) = 51 ((mam2), - G (1) = 1+,
{n}

where C} (t) are the Gegenbauer polynomials and

272

/ dn Ty (n) Ty gy (n) = 5”/5@}{“’}%'

Besides, the following relation takes place
N
[T FeR e = (3) T 076,
(73)
J(k?) = /dY Y F(Y?), K)YeRY™! E=K?

APPENDIX B

Let us consider the variational problem (25) for the lowest state (n = = 0)
in the deconfinement limit A — 0. We have

1
my 2 m? Mg
4oy (K) Jnax e(l— c)//dt ds exp [— <F - W) (t+ s)} X
0

. M} (t — 5)?
P CANZ t+ s+ 2c(u + )
x//dudv
0

[t + s+ 2c(u + v)]? =109

Here M) is the mass of the lowest bound state and the effective coupling constant
is supposed small

g \2
Qg = (—) < 1.
4mm

Going to the new variables
A? A? A?

t:2—,rng(x+y)’ SZW@—ZJ), c=—
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one can rewrite (74) in the limit A — 0 (which exists if My < 2m) as follows:

o Jan (- 28] [t

Mo Z/2
_ -1
Xexp{ dm? :c+2£(u+v>”

If ap < 1, then 1—Mjy/2m < 1 and the main contribution to the integral over dx
comes from large z, so that the inner integral over dy can be explicitly taken on
the extended interval {—oo,c0}. Thus, we get

dmag T
1/ c=1
M() 1—M§/4m2 ’

1

du dv
C= d =0.31923...
oinfzgio /xe //x+2§u+v)]3/2
0

(75)

By solving (75) one obtains the mass of the lowest two-particle bound state in
the deconfinement limit A — 0 as follows

My =2m — Tth +0(ag), K =2rC*=0.6403...
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