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The existence of K-instantons on a cylinder M7 = Rτ × K/H over a homogeneous nearly
Kéahler 6-manifold K/H requires a conformally parallel or a cocalibrated G2-structure on M7. The
generalized anti-self-duality on M7 implies a ChernÄSimons �ow on K/H which runs between
instantons on the coset. For K-equivariant connections, the torsionful YangÄMills equation reduces
to a particular quartic dynamics for a Newtonian particle on C. When the torsion corresponds to one of
the G2-structures, this dynamics follows from a gradient or Hamiltonian �ow equation, respectively.
We present the analytic (kink-type) solutions and plot numerical non-BPS solutions for general torsion
values interpolating between the instantonic ones.

PACS: 11.10.Kk

INTRODUCTION

YangÄMills instantons exist in dimensions d larger than four only when there
is additional geometric structure on the manifold Md (besides the Riemannian
one). In order to formulate generalized ˇrst-order anti-self-duality conditions
which imply the second-order YangÄMills equations (possibly with torsion), Md

must be equipped with a so-called G-structure, which is a globally deˇned but
not necessarily closed (d−4)-form Σ, so that the weak holonomy group of Md

gets reduced.
Instanton solutions in higher dimensions are rare in the literature. In the mid-

eighties, Fairlie and Nuyts, and also Fubini and Nicolai discovered the Spin(7)-
instanton on R8. Eight years later, a similar G2-instanton on R7 was found by
Ivanova and Popov, and also by Géunaydin and Nicolai. Our recent work shows
that these so-called octonionic instantons are not isolated but embedded into a
whole family living on a class of conical non-compact manifolds [1].

The string vacua in heterotic �ux compactiˇcations contain non-Abelian
gauge ˇelds which in the supergravity limit are subject to YangÄMills equations
with torsion H determined by the three-form �ux. Prominent cases admitting
instantons are AdS10−d ×Md, where Md is equipped with a G-structure, with G
being SU(3), G2 or Spin(7) for d = 6, 7 or 8, respectively. Homogeneous nearly
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Kéahler 6-manifolds K/H and (iterated) cylinders and (sine-)cones over them pro-
vide simple examples, for which all K-equivariant YangÄMills connections can
be constructed [2,3]. Natural choices for the gauge group are K or G.

Clearly, the YangÄMills instantons discussed here serve to construct he-
terotic string solitons, as was ˇrst done in 1990 by Strominger for the gauge
ˇve-brane. It is therefore of interest to extend our new instantons to solu-
tions of (string-corrected) heterotic supergravity and obtain novel string/brane
vacua [4Ä6].

In this talk, I present the construction for the simplest case of a cylinder
over a compact homogeneous nearly Kéahler coset K/H , which allows for a
conformally parallel or a cocalibrated G2-structure. I display a family of non-BPS
YangÄMills connections, which contain two instantons at distinguished parameter
values corresponding to those G2-structures. In these two cases, anti-self-duality
implies a ChernÄSimons �ow on K/H .

Finally, I must apologize for the omission Å due to page limitation Å of all
relevant literature besides my own papers on which this talk is based. The reader
can ˇnd all references therein.

1. SELF-DUALITY IN HIGHER DIMENSIONS

The familiar four-dimensional anti-self-duality condition for YangÄMills
ˇelds F may be generalized to suitable d-dimensional Riemannian manifolds M ,

∗F = −Σ ∧ F for F = dA + A ∧ A and Σ ∈ Λd−4(M), (1)

if there exists a geometrically natural (d−4)-form Σ on M . Applying the gauge-
covariant derivative D = d + [A, ·], it follows that

D∗F + dΣ ∧ F = 0 ⇐⇒ YangÄMills with torsion H = ∗dΣ ∈ Λ3(M). (2)

This torsionful YangÄMills equation extremizes the action

SYM + SCS =
∫
M

tr
{
F ∧ ∗F + (−)d−3Σ ∧ F ∧ F

}
=

=
∫
M

tr
{

F ∧ ∗F +
1
2
dΣ ∧

(
AdA +

2
3
A3

)}
. (3)

Related to this generalized anti-self-duality is the gradient ChernÄSimons �ow
on M ,

dA

dτ
=

δ

δA
SCS = ∗

(
dΣ ∧ F

)
∼ ∗dΣ � F. (4)

In fact, this equation follows from generalized anti-self-duality on the cylinder
M̃ = Rτ × M over M (in the Aτ = 0 gauge).
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The question is therefore: Which manifolds admit a global (d−4)-form?
And the answer is: G-structure manifolds, i.e., manifolds with a weak special
holonomy. The key cases we shall encounter in this talk are given in Table 1.

Table 1. Examples of G-structure manifolds in d = 6, 7, 8

d G Σ Cases Example Structure

6 SU(3) ω Kéahler CP 3 dω = 0

6 SU(3) ω Nearly Kéahler S6 =
G2

SU(3)
dω ∼ Im Ω, dRe Ω ∼ ω2

7 G2 ψ Conf. parallel G2 Rτ× nearly Kéahler dψ ∼ ψ∧dτ , d∗ψ ∼ −∗ψ∧dτ

7 G2 ψ Nearly parallel G2 Xk,� =
SU(3)

U(1)k,�
dψ ∼ ∗ψ ⇒ d∗ψ = 0

7 G2 ψ Parallel G2 Cone (nearly Kéahler) dψ = 0 = d∗ψ
8 Spin(7) Σ Parallel Spin(7) Rτ×parallel G2 dΣ = 0, ∗Σ = Σ

Fig. 1. Iterated cylinders, cones and sine-cones over nearly Kéahler 6-manifolds

Some of those cases are related via the scheme shown in Fig. 1, with examples
in square brackets.

For this talk I shall consider (reductive nonsymmetric) coset spaces M =
K/H in d = 6 as well as cylinders and cones over them. In all these cases, the
gauge group is chosen to be K .

2. SIX DIMENSIONS: NEARLY KéAHLER COSET SPACES

All known compact nearly Kéahler 6-manifolds M6 are nonsymmetric coset
spaces K/H :

S6 =
G2

SU(3)
,

Sp(2)
Sp(1)×U(1)

,
SU(3)

U(1)×U(1)
,

(5)

S3×S3 =
SU(2)×SU(2)×SU(2)

SU(2)
.
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The coset structure H � K implies the decomposition

Lie(K) ≡ k = h ⊕ m with h ≡ Lie(H) and [h, m] ⊂ m. (6)

Interestingly, the re�ection automorphism of symmetric spaces gets generalized
to a so-called tri-symmetry automorphism S : K → K with S3 = id implying

s : k → k with s|h = 1l and s|m = −1
2

+
√

3
2

J = exp
{

2π

3
J

}
, (7)

effecting a 2π/3 rotation on TM6. I pick a Lie-algebra basis

{Ia=1,...,6, Ii=7,...,dim G} with [Ia, Ib] = f i
abIi + f c

abIc, (8)

involving the structure constants f•
ab. The CartanÄKilling form then reads

〈·, ·〉k = −trk(ad(·) ◦ ad(·)) = 3 〈·, ·〉h = 3 〈·, ·〉m = 1l. (9)

Expanding all structures in a basis of canonical one-forms ea framing T ∗(G/H),

g = δab eaeb, ω =
1
2
Jab ea ∧ eb, Ω = − 1√

3
(f + iJf)abc ea ∧ eb ∧ ec, (10)

we see that the almost complex structure (Jab) and the structure constants fabc

rule everything.
Nearly Kéahler 6-manifolds are special in that the torsion term in (2) vanishes

by itself! What is more, this property is actually equivalent to the generalized
anti-self-duality condition (1):

∗F = −ω ∧ F ⇐⇒ 0 = dω ∧ F ∼ Im Ω ∧ F ⇐⇒ DUY equations, (11)

where the DonaldsonÄUhlenbeckÄYau (DUY) equations∗ state that

F 2,0 = F 0,2 = 0 and ω�F = 0. (12)

Another interpretation of this anti-self-duality condition is that it projects F to
the 8-dimensional eigenspace of the endomorphism ∗(ω ∧ ·) with eigenvalue −1,
which contains the part of F 1,1 orthogonal to ω. Equations (11) imply also
Re Ω ∧ F = 0 and the (torsion-free) YangÄMills equations D∗F = 0. Clearly,
they separately extremize both SYM and SCS in (3), but of course yield only
BPS-type classical solutions. In components the above relations take the form

1
2
εabcdefFef = −J[abFcd] ⇐⇒ 0 = fabcFbc, (13)

=⇒ ωabFab = 0, (Jf)abcFbc = 0, DaFab = 0. (14)

I notice that each ChernÄSimons �ow Ȧa ∼ fabcFbc on M6 ends in an instanton.

∗Also known as ®Hermitian YangÄMills equations¯.
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Let me look for K-equivariant connections A on M6. If I restrict their value
to h, the answer is unique: the only ®H-instanton¯ is the so-called canonical
connection

Acan = ei Ii −→ F can = −1
2
f i

ab ea∧eb Ii, (15)

where ei = ei
aea. Generalizing to ®K-instantons¯, I extend to

A = ei Ii + ea Φab Ib with ansatz (Φab) =: Φ = φ11l + φ2J, (16)

which is in fact general for G2 invariance on S6. Its curvature is readily com-
puted to

Fab = F 1,1
ab + F 2,0⊕0,2

ab = (|Φ|2−1) f i
ab Ii + [(Φ̄2−Φ) f ]abc Ic (17)

and displays the tri-symmetry invariance under Φ → exp (−2π/3J)Φ. The solu-
tions to the BPS conditions (11) are

Φ̄2 = Φ =⇒ Φ = 0 or Φ = exp
{

2πk

3
J

}
for k = 0, 1, 2, (18)

which yields three �at K-instanton connections besides the canonical curved one,

A(k) = ei Ii + ea (skI)a and Acan = ei Ii. (19)

3. SEVEN DIMENSIONS:
CYLINDER OVER NEARLY KéAHLER COSETS

Let me step up one dimension and consider 7-manifolds M7 with weak G2

holonomy associated with a G2-structure three-form ψ. Here, the 7 generalized
anti-self-duality equations project F onto the −1 eigenspace of ∗(ψ ∧ ·), which
is 14-dimensional and isomorphic to the Lie algebra of G2,

∗F = −ψ ∧ F ⇐⇒ ∗ψ ∧ F = 0 ⇐⇒ ψ�F = 0, (20)

providing an alternative form of the condition. In components, it reads

1
2
εabcdefgFfg = −ψ[abcFde] ⇐⇒ 0 = ψabcFbc. (21)

For the parallel and nearly parallel G2 cases, the previous accident (11) recurs,

dψ ∼ ∗ψ =⇒ dψ ∧ F = 0 =⇒ D ∗ F = 0, (22)

and the torsion decouples. Note that on a general weak G2-manifold there are
two different �ows,

dA(σ)
dσ

= ∗dψ � F (σ) and
dA(σ)

dσ
= ψ � F (σ) for σ ∈ R, (23)
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which coincide in the nearly parallel case. The second �ow ends in an instanton
on M7.

In this talk I focus on cylinders M7 = Rτ ×K/H over nearly Kéahler cosets,
with a metric g = (dτ)2 + δab eaeb, on which I study the YangÄMills equation
with a torsion given by

∗H =
1
3
κ dω ∧ dτ ⇐⇒ Tabc = κfabc (24)

with a real parameter κ. We shall see that for special values of κ my torsionful
YangÄMills equation

D∗F +
1
3
κ dω ∧ dτ ∧ F = 0 (25)

descends from an anti-self-duality condition (20).
Taking the A0 = 0 gauge and borrowing the ansatz (16) from the nearly

Kéahler base, I write

Aa = ei
aIi + [Φ(τ) I]a ⇒ F0a = [Φ̇ I]a,

(26)
Fab = (|Φ|2−1) f i

ab Ii + [(Φ̄2−Φ) f ]abc Ic

which depends on a complex function Φ(τ) (values in the (1l, J) plane). Sticking
this into (25) and computing for a while, one arrives at

Φ̈ = (κ − 1)Φ − (κ+3)Φ̄2 + 4Φ̄Φ2 =:
1
3

∂V

∂Φ̄
. (27)

Nice enough, I have obtained a φ4 model with an action

S[Φ] ∼
∫
R

dτ
{
3|Φ̇|2 + V (Φ)

}
for

(28)
V (Φ) = (3−κ) + 3(κ−1)|Φ|2 − (3+κ)(Φ3+Φ̄3) + 6|Φ|4

devoid of rotational symmetry (for κ �=−3) but enjoying tri-symmetry in the
complex plane. It leads me to a mechanical analog problem of a Newtonian
particle on C in a potential −V . I obtain the same action by plugging (26)
directly into (3) with dΣ = ∗H from (24).

For the case of K/H = S6 = G2/SU(3), equation (27) produces in fact all
G-equivariant YangÄMills connections on Rτ ×K/H . On Sp(2)/(Sp(1)×U(1))
and SU(3)/(U(1)×U(1)), however, the most general G-equivariant connections
involve two respective three complex functions of τ . The corresponding New-
tonian dynamics on C2 respective C3 is of similar type but constrained by the
conservation of Noether charges related to relative phase rotations of the complex
functions.
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4. SEVEN DIMENSIONS: SOLUTIONS

Finite-action solutions require Newtonian trajectories between zero-potential
critical points Φ̂. With two exotic exceptions, dV (Φ̂) = 0 = V (Φ̂) yields
precisely the BPS conˇgurations on K/H :

• Φ̂ = e2πik/3 with V (Φ̂) = 0 for all values of κ and k = 0, 1, 2;
• Φ̂ = 0 with V (Φ̂) = 3−κ vanishing only at κ = 3.

Kink solutions will interpolate between two different critical points, while bounces
will return to the critical starting point. Thus for generic κ values one may
have kinks of ®transversal¯ type, connecting two third roots of unity, as well
as bounces. For κ = 3 ®radial¯ kinks, reaching such a root from the origin,
may occur as well. Numerical analysis reveals the domains of existence in κ
(see Table 2).

Table 2. Existence domains of kink and bounce solutions

κ interval (−∞,−3] (−3, +3) +3 (+3, +5) [+5, +∞)

Types of Radial Transversal Radial Radial
Å

trajectory bounce kink kink bounce

In Fig. 2 I display contour plots of the potential and ˇnite-action trajectories
for eight choices of κ. They reveal three special values of κ: At κ = −3 rotational
symmetry emerges; this is a degenerate situation. At κ = −1 and at κ = +3, the
trajectories are straight, indicating integrability. Indeed, behind each of these two
cases lurks a ˇrst-order �ow equation, which originates from anti-self-duality and
hence a particular G2-structure ψ.

Let me ˇrst discuss κ = +3. For this value I ˇnd that

3Φ̈ =
∂V

∂Φ̄
⇐=

√
2Φ̇ = ±∂W

∂Φ̄
with W =

1
3
(Φ3+Φ̄3) − |Φ|2, (29)

which is a gradient �ow with a real superpotential W , as

V = 6
∣∣∣∣∂W

∂Φ̄

∣∣∣∣2 for κ = +3. (30)

It admits the obvious analytic radial kink solution,

Φ(τ) = exp
(

2πik
3

) (
1
2
± 1

2
tanh

τ

2
√

3

)
. (31)

What is the interpretation of this gradient �ow in terms of the original YangÄ
Mills theory? Demanding that the torsion in (24) comes from a G2-structure,
∗H = dψ, I am led to

ψ =
1
3
κ ω ∧ dτ + α Im Ω =⇒ dψ ∼ κ ImΩ ∧ dτ ∼ ψ ∧ dτ, (32)
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Fig. 2. Contour plots of the potential and ˇnite-action trajectories for various κ values
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where α is undetermined. This is a conformally parallel G2-structure, and (20)
quantizes the coefˇcients to α = 1 and κ = 3, ˇxing

ψ = ω∧dτ +ImΩ = r−3(r2ω∧dr+r3 Im Ω) = r−3ψcone with eτ = r, (33)

where I displayed the conformal relation to the parallel G2-structure on the cone
over K/H .

Alternatively, with this G2-structure the 7 anti-self-duality equations (20) turn
into

ω�F ∼ Jab Fab = 0 and Ȧ ∼ dω�F ∼ ea fabc Fbc. (34)

With the ansatz (26), the ˇrst relation is automatic, and the second one indeed
reduces to (29). As a consistency check, one may verify that∫

K/H

tr {ω ∧ F ∧ F} ∝ W (Φ) +
1
3
. (35)

I now come to the other instance of straight trajectories, κ = −1. For this
value I ˇnd that

3Φ̈ =
∂V

∂Φ̄
⇐=

√
2Φ̇ = ±i

∂H

∂Φ̄
with H =

1
3
(Φ3+Φ̄3) − |Φ|2, (36)

which is a Hamiltonian �ow (note the imaginary multiplier!), running along the
level curves of the function H , that is identical to W . It has the obvious analytic
transverse kink solution,

Φ(τ) = −1
2
±

√
3

2
i
(
tanh

τ

2

)
(37)

and its images under the tri-symmetry action.
Have I discovered another hidden G2-structure here? Let me try the other

obvious choice,

ψ̃ =
1
3
κ̃ω ∧ dτ + α̃ Re Ω =⇒ dψ̃ ∼ κ̃ Im Ω ∧ dτ + 2α̃ ω ∧ ω, (38)

with coefˇcients κ̃ and α̃ to be determined. It has not appeared in Table 1, but
obeys d ∗ ψ̃ = 0, which is known as a cocalibrated G2-structure. But can it
produce the proper torsion,

dψ̃ ∧ F ∼ (κ̃ Im Ω ∧ dτ + 2α̃ω ∧ ω) ∧ F
!= −Im Ω ∧ dτ ∧ F? (39)

Employing the anti-self-duality with respect to ψ̃,

∗ψ̃ ∧ F = 0 =⇒ ω ∧ ω ∧ F = 2 ImΩ ∧ dτ ∧ F, (40)
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it works out, adjusting the coefˇcients to κ̃ = 3 and α̃ = −1. Hence, my
cocalibrated G2-structure

ψ̃ = ω ∧ dτ − Re Ω (41)

is responsible for the Hamiltonian �ow. To see this directly, I import (41)
into (20) and get

Jab Fab = 0 and Ȧa ∼ [J f ]abc Fbc. (42)

Again, the ansatz (26) fulˇlls the ˇrst relation, but the second one nicely turns
into (36).

Fig. 3. Contours of the superpotential/Hamiltonian

Fig. 4. Hamiltonian vector ˇeld Fig. 5. Gradient vector ˇeld
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The story has an eight-dimensional twist, which can be inferred from the
diagram in Sec. 1. There it is indicated that my cylinder is embedded into an
8-manifold M8 equipped with a parallel Spin(7)-structure Σ. It can be regarded
as the cylinder over the cone over K/H . The four-form Σ descends to the

cocalibrated G2-structure ψ̃, while ψ is obtained by reducing to the cone and
applying a conformal transformation.

The anti-self-duality condition on M8 represents 7 relations, which project F8

to the 21-dimensional −1 eigenspace of ∗(Σ∧·). Contrary to the G2 situation (34),
where 7 anti-self-duality equations split to 6 �ow equations and the supplementary
condition ω�F=0, for Spin(7) the count precisely matches, as I have also 7 �ow
equations. Indeed, there is equivalence:

∗8F8 = −Σ ∧ F8 ⇐⇒ ∂A7(σ)
∂σ

= ∗7(dψ ∧ F7(σ)). (43)

5. PARTIAL SUMMARY

Let me schematically sum up the construction.

+

+

x

+

+

x

Σ ∧ F8 = − ∗8 F8

↙ ↘

ψ ∧ F = − ∗7 F on R × K

H
ψ̃ ∧F = − ∗7 F

Ȧa ∼ fabc Fbc Ȧa ∼ [Jf ]abc Fbc⏐� ansatz A = ei Ii + ea[Φ I]a
⏐�

√
2Φ̇ = ±∂W

∂Φ̄

√
2Φ̇ = ±i

∂H

∂Φ̄⏐⏐� W =
1
3
(Φ3+ Φ̄3 ) − |Φ|2 = H

⏐⏐�
F (τ) = dτ ∧ ea[Φ̇ I]a + 1

2ea ∧ eb
{
(|Φ|2−1) f i

ab Ii + [(Φ̄2−Φ) f ]abc Ic

}
are G2-instantons for YangÄMills with torsion D ∗F + (∗H) ∧ F = 0 from
S[A] =

∫
R×K/H

tr {F ∧ ∗F + 1/3κω ∧ dτ ∧ F ∧ F} with κ = +3 or −1 and

obey gradient/Hamiltonian �ow equations for
∫

K/H

tr {ω∧F ∧F} ∝ W (Φ)+1/3.
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