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The existence of K-instantons on a cylinder M7 = R, x K/H over a homogeneous nearly
Kihler 6-manifold K/H requires a conformally parallel or a cocalibrated G'a-structure on M7. The
generalized anti-self-duality on M7 implies a Chern-Simons flow on K/H which runs between
instantons on the coset. For K -equivariant connections, the torsionful Yang—Mills equation reduces
to a particular quartic dynamics for a Newtonian particle on C. When the torsion corresponds to one of
the G2-structures, this dynamics follows from a gradient or Hamiltonian flow equation, respectively.
We present the analytic (kink-type) solutions and plot numerical non-BPS solutions for general torsion
values interpolating between the instantonic ones.

PACS: 11.10.Kk

INTRODUCTION

Yang-Mills instantons exist in dimensions d larger than four only when there
is additional geometric structure on the manifold M? (besides the Riemannian
one). In order to formulate generalized first-order anti-self-duality conditions
which imply the second-order Yang—Mills equations (possibly with torsion), M ¢
must be equipped with a so-called G-structure, which is a globally defined but
not necessarily closed (d—4)-form ¥, so that the weak holonomy group of M?
gets reduced.

Instanton solutions in higher dimensions are rare in the literature. In the mid-
eighties, Fairlie and Nuyts, and also Fubini and Nicolai discovered the Spin(7)-
instanton on R®. Eight years later, a similar G-instanton on R” was found by
Ivanova and Popov, and also by Giinaydin and Nicolai. Our recent work shows
that these so-called octonionic instantons are not isolated but embedded into a
whole family living on a class of conical non-compact manifolds [1].

The string vacua in heterotic flux compactifications contain non-Abelian
gauge fields which in the supergravity limit are subject to Yang—Mills equations
with torsion H determined by the three-form flux. Prominent cases admitting
instantons are AdS1g9_q X M9, where M? is equipped with a G-structure, with G
being SU(3), G2 or Spin(7) for d = 6, 7 or 8, respectively. Homogeneous nearly
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Kihler 6-manifolds K /H and (iterated) cylinders and (sine-)cones over them pro-
vide simple examples, for which all K-equivariant Yang—Mills connections can
be constructed [2,3]. Natural choices for the gauge group are K or G.

Clearly, the Yang-Mills instantons discussed here serve to construct he-
terotic string solitons, as was first done in 1990 by Strominger for the gauge
five-brane. It is therefore of interest to extend our new instantons to solu-
tions of (string-corrected) heterotic supergravity and obtain novel string/brane
vacua [4-6].

In this talk, I present the construction for the simplest case of a cylinder
over a compact homogeneous nearly Kihler coset K/H, which allows for a
conformally parallel or a cocalibrated Go-structure. I display a family of non-BPS
Yang—Mills connections, which contain two instantons at distinguished parameter
values corresponding to those Ga-structures. In these two cases, anti-self-duality
implies a Chern—Simons flow on K/H.

Finally, I must apologize for the omission — due to page limitation — of all
relevant literature besides my own papers on which this talk is based. The reader
can find all references therein.

1. SELF-DUALITY IN HIGHER DIMENSIONS

The familiar four-dimensional anti-self-duality condition for Yang—Mills
fields F' may be generalized to suitable d-dimensional Riemannian manifolds M,

«F=-SANF for F=dA+AANA and X e A“4M), (1)

if there exists a geometrically natural (d—4)-form ¥ on M. Applying the gauge-
covariant derivative D = d + [A4, -], it follows that

D+F +dX A F =0 <= Yang-Mills with torsion H = xdX € A3(M). (2)

This torsionful Yang—Mills equation extremizes the action

SyMm + Scs = /tr{F A*F + ()38 AF A F} =

M
:/tr{F/\*F+%dE/\ (AdA+§A3)}. (3)
M

Related to this generalized anti-self-duality is the gradient Chern—Simons flow

on M, JA 5

=== 575cs = #(dSAF) ~ xdS S F. )

In fact, this equation follows from generalized anti-self-duality on the cylinder
M =R, x M over M (in the A, = 0 gauge).
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The question is therefore: Which manifolds admit a global (d—4)-form?
And the answer is: G-structure manifolds, i.e., manifolds with a weak special
holonomy. The key cases we shall encounter in this talk are given in Table 1.

Table 1. Examples of G-structure manifolds in d = 6,7, 8

d G by Cases Example Structure
6| SU3) |w Kahler CcP? dw=0
6| SU(3) |w| Nearly Kihler S8 = 55(23) dw ~ImQ, dReQ ~ w?
7| G2 || Conf. parallel G2 | R, x nearly Kahler |dy ~ YAdT, dxip ~ —xipAdT
7| G2 |t |Nearly parallel Go| X = % dy ~ xp = dxp =0
k.t
7| G2 |¥ Parallel G2 Cone (nearly Kéhler) |dy = 0 = dxv
8|Spin(7) | X| Parallel Spin(7) R;xparallel G2 |[d¥ =0, xX =3

Nearly Kihler [S]

Cylinder Cylinder
Sine-cone Cone

Cocalibrated G2 <—Nearly parallel G, [S7] G, [R"]—= Conformally G,
Embedded wﬁ € YIV Embedded
Spin(7) [R¥]

Fig. 1. Iterated cylinders, cones and sine-cones over nearly Kihler 6-manifolds

Some of those cases are related via the scheme shown in Fig. 1, with examples
in square brackets.

For this talk I shall consider (reductive nonsymmetric) coset spaces M =
K/H in d = 6 as well as cylinders and cones over them. In all these cases, the
gauge group is chosen to be K.

2. SIX DIMENSIONS: NEARLY KAHLER COSET SPACES

All known compact nearly Kihler 6-manifolds M® are nonsymmetric coset
spaces K/H:

g _ G Sp(2) SU(3)
- SU@3)” Sp(1)xU(1)” U(1)xU(1)’ s
68y g3 — SU@)XSU(2)xSU(2) ©

SU(2)
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The coset structure H <1 K implies the decomposition
Lie(K)=t=hdm with h=Lie(H) and [h,m]Cm. (6)

Interestingly, the reflection automorphism of symmetric spaces gets generalized
to a so-called tri-symmetry automorphism S : K — K with S3 = id implying

s:t—t with s|p=1 and s|m——%+§J—exp{2§J}, @)

effecting a 27 /3 rotation on T'M. I pick a Lie-algebra basis

{Inz1...6, Liz7.. aimc} Wwith [l L)) = fi I + £S5, 1., (8)

involving the structure constants f3,. The Cartan—Killing form then reads
(e = —tre(ad() oad(-)) =3 (- )p =3 (, )m = 1. ©)
Expanding all structures in a basis of canonical one-forms e® framing T*(G/H),

1
V3
we see that the almost complex structure (J,;) and the structure constants fup.
rule everything.

Nearly Kihler 6-manifolds are special in that the torsion term in (2) vanishes
by itself! What is more, this property is actually equivalent to the generalized
anti-self-duality condition (1):

xF'=—wAF <= 0=dvANF ~ImQAF <= DUY equations, (11)

1
g =0y e, w=g weAeb, Q=— (f—l—iJf)abCe“/\eb/\ec, (10)

where the Donaldson—Uhlenbeck—Yau (DUY) equations* state that
F20=F% =0 and w.F=0. (12)

Another interpretation of this anti-self-duality condition is that it projects F' to
the 8-dimensional eigenspace of the endomorphism *(w A -) with eigenvalue —1,
which contains the part of F'''! orthogonal to w. Equations (11) imply also
ReQ A F = 0 and the (torsion-free) Yang—Mills equations D+F = (0. Clearly,
they separately extremize both Svyy and Scg in (3), but of course yield only
BPS-type classical solutions. In components the above relations take the form

1
§€abcdefFef = _J[achd] < 0= fabclbes (13)
= wapFup =0, (Jf)achbc =0, DgF, =0. (14)

I notice that each Chern—-Simons flow Aa ~ faveFpe on MO ends in an instanton.

*Also known as «Hermitian Yang-Mills equations».
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Let me look for K-equivariant connections A on M6, If I restrict their value
to b, the answer is unique: the only «H-instanton» is the so-called canonical
connection , 1
A = el L — PO = —C foy e e I, (15)

where e’ = el e®. Generalizing to «K-instantons», I extend to
A=e I+ ey I, withansatz (Pup) = ® = ¢+ 6o,  (16)

which is in fact general for G5 invariance on S°. Its curvature is readily com-
puted to

Fop = Fpgt + F309%2 = (10 =1) fiy I + [(2°=®) flae .~ (17)

and displays the tri-symmetry invariance under ® — exp (—27/3.J)®. The solu-
tions to the BPS conditions (11) are

_ P
P2=d—3=0 or @:exp{%k,]} for k=0,1,2, (18)

which yields three flat K-instanton connections besides the canonical curved one,

AR = ' [ 4 e (s¥ 1), and A =¢' I, (19)

3. SEVEN DIMENSIONS:
CYLINDER OVER NEARLY KAHLER COSETS

Let me step up one dimension and consider 7-manifolds M " with weak Go
holonomy associated with a Ga-structure three-form . Here, the 7 generalized
anti-self-duality equations project F' onto the —1 eigenspace of (¢ A -), which
is 14-dimensional and isomorphic to the Lie algebra of Go,

xF=—yYA\NF <= *xY\NF=0<= ¢iF =0, (20)

providing an alternative form of the condition. In components, it reads

1
§€abcdengfg = _w[achde] <= 0 = YapeFpe. (21

For the parallel and nearly parallel G5 cases, the previous accident (11) recurs,
dp ~xp = dYpNF=0= DxF =0, (22)

and the torsion decouples. Note that on a general weak G3-manifold there are
two different flows,
dA(o)
do

= xdip F(o) and dfl(a") —¢_F(o) for c€R, (23)
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which coincide in the nearly parallel case. The second flow ends in an instanton
on M7,

In this talk I focus on cylinders M7 = R, x K/H over nearly Kéhler cosets,
with a metric g = (d7)? + d4p €%e®, on which I study the Yang—Mills equation
with a torsion given by

1
*H = g/@ dw N d1 <= Tope = Efape 24)

with a real parameter . We shall see that for special values of x my torsionful
Yang-Mills equation

1
D*F—i—gmdu)/\dr/\F:O (25)

descends from an anti-self-duality condition (20).
Taking the Ay = 0 gauge and borrowing the ansatz (16) from the nearly
Kihler base, I write

Ay = e I+ [0(7) o = Foo = [® 1],
Fop = (|¢|2_1) ;b I; + [((52_‘1’) f]abc I

(26)

which depends on a complex function ®(7) (values in the (1, .J) plane). Sticking
this into (25) and computing for a while, one arrives at

. - . 10V
O =(k—1)® — (k+3)D* 4 40D? =: - —. 27
(k—1) (k+3)0° + 399 (27)
Nice enough, I have obtained a ¢* model with an action
S[®] ~ /dT (310 + V(@) for
R
(28)

V(®) = (3—k) + 3(k—1)|®|? — (3+k)(P>+D3) + 6|®[*

devoid of rotational symmetry (for x#—3) but enjoying tri-symmetry in the
complex plane. It leads me to a mechanical analog problem of a Newtonian
particle on C in a potential —V. 1 obtain the same action by plugging (26)
directly into (3) with d¥ = xH from (24).

For the case of K/H = S% = G»/SU(3), equation (27) produces in fact all
G-equivariant Yang—Mills connections on R, x K/H. On Sp(2)/(Sp(1) x U(1))
and SU(3)/(U(1)xU(1)), however, the most general G-equivariant connections
involve two respective three complex functions of 7. The corresponding New-
tonian dynamics on C? respective C? is of similar type but constrained by the
conservation of Noether charges related to relative phase rotations of the complex
functions.
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4. SEVEN DIMENSIONS: SOLUTIONS

Finite-action solutions require Newtonian trajectories between zero-potential
critical points ®. With two exotic exceptions, dV(®) = 0 = V(P) yields
precisely the BPS configurations on K/H:

o & =¢2mk/3  with V(®)=0 for all values of x and £ =0,1,2;
e =0 with V(@) =3—x  vanishing only at k = 3.

Kink solutions will interpolate between two different critical points, while bounces
will return to the critical starting point. Thus for generic x values one may
have kinks of «transversal» type, connecting two third roots of unity, as well
as bounces. For x = 3 «radial» kinks, reaching such a root from the origin,
may occur as well. Numerical analysis reveals the domains of existence in
(see Table 2).

Table 2. Existence domains of kink and bounce solutions

k interval | (—oo0,—3] | (—=3,+3) +3 (+3,45) | [+5,+00)
Types of Radial Transversal | Radial Radial
trajectory bounce kink kink bounce

In Fig.2 I display contour plots of the potential and finite-action trajectories
for eight choices of x. They reveal three special values of x: At k = —3 rotational
symmetry emerges; this is a degenerate situation. At k = —1 and at k = +3, the
trajectories are straight, indicating integrability. Indeed, behind each of these two
cases lurks a first-order flow equation, which originates from anti-self-duality and
hence a particular G-structure .

Let me first discuss k = +3. For this value I find that

. IV . ow 1 . -

d=— 20 = +—— with =~ (P3+03) — |®|? 2

3 aqf:f o With W= (0407 —[of, (29)
which is a gradient flow with a real superpotential W, as

ow |?
V=0615%

It admits the obvious analytic radial kink solution,
2mik 1.1
B(r)=exp [ 22 ) (= + = tanh —— | . G1)
3 272 23

What is the interpretation of this gradient flow in terms of the original Yang—
Mills theory? Demanding that the torsion in (24) comes from a Ga-structure,
«H = di, I am led to

for k= +3. (30)

1
Q/J:gl{w/\d7+aIInQ:>d2/JNHIIHQ/\dTNQ/J/\dT, (32)






INSTANTONS AND CHERN-SIMONS FLOWS IN 6, 7 AND 8 DIMENSIONS 1125

where « is undetermined. This is a conformally parallel G3-structure, and (20)
quantizes the coefficients to & = 1 and k = 3, fixing

Y =wAdr+ImQ = T*B(rQw/\dr—f—r?’ ImQ) = T Yeone  With €7 =7, (33)

where I displayed the conformal relation to the parallel Ga-structure on the cone
over K/H.
Alternatively, with this Go-structure the 7 anti-self-duality equations (20) turn
into
wWiF ~JuwFay=0 and A~ dwiF ~ e® fape Fpe. (34)

With the ansatz (26), the first relation is automatic, and the second one indeed
reduces to (29). As a consistency check, one may verify that

1
/tr{w/\F/\F}o< W(@)—i-g. (35)
K/H
I now come to the other instance of straight trajectories, x = —1. For this
value I find that

- OV . oH 1, . =
d=—— 20 = +i— with H = —(®*+0%) — |@|? 36
36 = o= = V20 = xiw wi S (@%+07) — @2, (36)

which is a Hamiltonian flow (note the imaginary multiplier!), running along the
level curves of the function H, that is identical to . It has the obvious analytic
transverse kink solution,

B(r) = —=+ ?z (tanh 3) 37)

1
2 2

and its images under the tri-symmetry action.

Have I discovered another hidden Gs-structure here? Let me try the other
obvious choice,

~ 1 ~
1/1:g/?;w/\dT—i—&ReQ:dwNEImQ/\dT—i—de/\w, (38)

with coefficients % and & to be determined. It has not appeared in Table 1, but
obeys d x ¢ = 0, which is known as a cocalibrated Go-structure. But can it
produce the proper torsion,

A AF ~ (RImQAdr + 26w Aw) AF = —ImQAdr AF?  (39)
Employing the anti-self-duality with respect to 1),

s YANF=0= wAwAF=2ImQAdr AF, (40)
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it works out, adjusting the coefficients to K = 3 and @ = —1. Hence, my
cocalibrated Go-structure _

Y =wAdr —ReQ 41)
is responsible for the Hamiltonian flow. To see this directly, I import (41)
into (20) and get

Ja Fap =0 and Ay ~ [J flape Fpe- (42)

Again, the ansatz (26) fulfills the first relation, but the second one nicely turns
into (36).

o
1_
O.
_1F
_p [ ; S |
-2 -1 0 1 2
Fig. 3. Contours of the superpotential/Hamiltonian
4
P
U
iy N
NN ey
REET AN //’/vr/,,,“,j//,//ﬁ \
\\\*\\.A.4 RSN - P = 2 N ,,':’/ / \i
AN T IR IAaaa B R R RN
%W:?? AR Esett IR
Wiy, EEE
h ;vv"'xkAl-‘v'*¢ e v \\\;\ /
BRSS! \\W\\‘.“\\\\‘ \\\
IR0 RN ";:Q\\\\\\ \
IR NN \\\§§
/}/;/"/:':::)’/'/(/(/(/'/l}{?‘.‘L \\/’,‘/‘\\‘\\\\
//;“.4/////// \) SRS
ZES 7 §p e
e \§ // l /
Fig. 4. Hamiltonian vector field Fig. 5. Gradient vector field
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The story has an eight-dimensional twist, which can be inferred from the
diagram in Sec. 1. There it is indicated that my cylinder is embedded into an
8-manifold M?® equipped with a parallel Spin(7)-structure ¥. It can be regarded
as the cylinder over the cone over K/H. The four-form ¥ descends to the
cocalibrated Ga-structure 1;, while 1 is obtained by reducing to the cone and
applying a conformal transformation.

The anti-self-duality condition on M?® represents 7 relations, which project Fx
to the 21-dimensional —1 eigenspace of x(XA-). Contrary to the G5 situation (34),
where 7 anti-self-duality equations split to 6 flow equations and the supplementary
condition w_F=0, for Spin(7) the count precisely matches, as I have also 7 flow
equations. Indeed, there is equivalence:

8147 (O’)

xgFy = =X N Fy <— 90

= *7(d’L/}/\F7(O')). (43)

5. PARTIAL SUMMARY

Let me schematically sum up the construction.

2/\Fg = _*SFS
7 N
K ~
YANF =—x F on RXE YAF =—x%x; F
AaNfachbc AaN[Jf]achbc
| ansatz A= e I; +e*[® ], !
. oW . OH
20 = +— 20 = +j ——
v 9% v ' 9%

| W:%(@% @) -jeP=n |
F(r) =dr Net[® I, + 2eo A et {(|®2=1) fi, I; + [(D2—D) flave I }

are Ga-instantons for Yang-Mills with torsion D «F + (xH) A F = 0 from
S[Al = [ w{FA«F+1/3kwAdr NFAF} with k = +3 or —1 and
RxK/H
obey gradient/Hamiltonian flow equations for [ tr {w AFAF} o W(®)+1/3.
K/H
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