
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2012. ’. 43. ‚›�. 5

SUPERSTRINGS IN AdS SUPERBACKGROUNDS
AND THEIR INTEGRABILITY

D. Sorokin

INFN, Sezione di Padova, Padova, Italia,

Department of Theoretical Physics, the University of the Basque Country UPV/EHU,

Bilbao, Spain, and

IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

This contribution is mainly based on results of [1,2]. We review the structure of GreenÄSchwarz
superstrings on AdS backgrounds with the emphasis on peculiarities of those cases which are not
maximally supersymmetric. In particular, we discuss complications which one encounters with the
proof of classical integrability of non-maximally supersymmetric string sigma-models and describe a
method of the construction of a Lax representation of the equations of motion which is capable of
providing evidence for the integrability of sigma-models whose target space is not a semi-symmetric
supercoset manifold.
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INTRODUCTION

Superstring theories in backgrounds with AdS geometry underlie various
instances of AdS/CFT correspondence [3]. Main examples include

• Type IIB string on AdS5 × S5 which is maximally supersymmetric. It is
invariant under 32 supersymmetries which generate the PSU(2, 2|4) isometry of
the bulk superspace and gives rise to the AdS5/CFT4 correspondence.

• Type IIA string on AdS4 × CP 3. Preserves 24 (of 32) supersymmetries
governed by the isometry group OSp(6|4) and is holographically dual to a D = 3,
N = 6 superconformal ChernÄSimons theory.

• Type IIB strings on AdS3 × S3 × T 4, which preserve 16 (of 32) su-
persymmetries generating PSU(1, 1|2) × PSU(1, 1|2) isometries, give rise to
AdS3/CFT2 dualities. They are still poorly understood in the cases in which the
background geometry is supported by RamondÄRamond �uxes.

• Type IIA and IIB strings on AdS2 × S2 × T 6 preserving 8 (of 32) su-
persymmetries. Their underlying symmetry is PSU(1, 1|2) × U(1)6, and they
are related to the theory of extremal 4d ReissnerÄNordstrom black holes and
AdS2/CFT1 correspondence, which still remains to be less studied and less
understood, especially from the CFT1 side.
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• Superstrings on other AdS × M backgrounds with less number of super-
symmetries.

To study these theories and, in particular, to make computation of AdS/CFT-
related quantities on the string theory side, one should know an explicit form
of the string sigma-model actions in the AdS superbackgrounds. Since most
of the cases mentioned above are backgrounds with RamondÄRamond �uxes, a
suitable formulation of corresponding superstring theories is the GreenÄSchwarz
(GS) formulation, because coupling of strings to RR ˇelds in the RamondÄNeveuÄ
Schwarz (RNS) formulation is problematic∗. The GS superstring action is known
in a general (on-shell) supergravity background [5] and has the following form:

S = −1
2

∫
Σ

∗EAηABEB(X, Θ) +
∫
Σ

B2(X, Θ), (1)

where the pull-back to the 2d worldsheet Σ of the target-superspace vielbein

EA(X, Θ) = dXMEM
A(X, Θ) + dΘμEμ

A(X Θ)

and the NeveuÄSchwarz (NS) two-form gauge ˇeld B2(X, Θ) is understood,
the star ∗ denotes the Hodge dual operation on the worldsheet, and the wedge
product of differential forms is implicit. XM (ξ) (M = 0, 1, . . . , 9) and Θα(ξ)
(α = 1, . . . , 32) are, respectively, bosonic and fermionic coordinates of a type IIA
(or IIB) D = 10 curved superspace into which the string worldsheet parametrized
by ξi (i = 0, 1) is embedded.

The action (1) is invariant under a local worldsheet fermionic symmetry
with 16 independent parameters, called kappa-symmetry, which allows one to
gauge away 16 of 32 string fermionic modes. Kappa-symmetry also requires the
superbackground ˇelds EA(X, Θ) and B2(X, Θ) to obey supergravity equations
of motion.

To know an explicit complete form of the D = 10 type II string action (1)
in a given superbackground means to know the explicit form of the expansion of
EA(X, Θ) and B2(X, Θ) in power series of Θ whose terms are (combinations of)
the supergravity ˇelds (graviton, gravitino, dilaton, dilatino and NSÄNS and RR
tensor gauge ˇelds) and their derivatives. The explicit form is known only for
very few backgrounds including �at superspace, a speciˇc 7-brane background
with a magnetic RR �ux [6], AdS5 × S5 superspace [7] and the AdS4 × CP 3

superspace [8]. Less supersymmetries are preserved by a background, it is more

∗There also exists a description of AdS superstrings in terms of a hybrid model [4], which
makes use of GS and RNS features. The relation of the hybrid model to the GS formulation is well
understood in the case of �at target superspace; however, in curved backgrounds this relation is still
to be established.
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difˇcult to reconstruct its full superspace structure. For instance, this is still an
open problem of AdS3 × S3 × T 4 and AdS2 × S2 × T 6 superstrings.

The knowledge of the explicit structure of the string action and its equations
of motion allows one to study such problems as its classical integrability. In what
follows we shall discuss certain cases in which integrability has been proven and
will show how the lack of certain amount of supersymmetry makes the search
for integrability much more complicated since it involves string fermionic modes
that are associated with broken supersymmetries in the bulk.

1. AdS5 × S5 SUPERSTRING

Let us start with the most studied example of the string propagating in
AdS5×S5 superspace. As we have already mentioned, this background possesses
the maximum number 32 of supersymmetries and has the SU(2, 2|4) isometry.
The unique superspace with this isometry, which has 32 fermionic directions and

whose bosonic subspace is AdS5×S5, is the supercoset K =
SU(2, 2|4)

SO(1, 4) × SO(5)
.

The geometry of this supercoset space satisˇes the type IIB supergravity con-
straints and hence is the proper superspace description of the AdS5 × S5 back-
ground. This geometry is characterized by the SU(2, 2|4) Cartan form pulled-back
on the supercoset K(X, Θ)

K−1dK(X, Θ) = ΩAB(X, Θ)MAB + EA(X, Θ)PA + Eα(X, Θ)Qα. (2)

The
SU(2, 2|4)

SO(1, 4) × SO(5)
supervielbeins EA(X, Θ), which enter the GS superstring

action (1), are components of the Cartan form along the bosonic directions of
the supercoset associated with the translation generators PA of the su(2, 2|4)
algebra. Eα(X, Θ) are the spinorial supervielbeins or Cartan form components
associated with the supersymmetry generators Qα of su(2, 2|4), and ΩAB(X, Θ)
is the spin connection of the supercoset taking values in the stability subalgebra
SO(1, 4) × SO(5) generated by MAB .

Explicit expressions for the components of (2) were constructed by using a
suitable realization of the coset element in [7]∗ and used for getting the following
explicit sigma-model form of the AdS5 × S5 superstring action:

S = −1
2

∫
(∗EAEBηAB − EαEβ Cαβ), (3)

∗The Cartan forms on supercosets of SU(2, 2|N) relevant to the construction of brane actions
on AdS superbackgrounds were ˇrst calculated in the early 80s [9].
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where Cαβ is an SO(1, 4) × SO(5)-invariant symmetric constant matrix. The
second term in (3) is a particular form of the B2-term of (1), which was ˇrst
constructed in [4].

2. AdS4 × CP 3 SUPERSTRING

The type IIA string on AdS4 × CP 3 preserves 24 (of 32) supersymmetries

and has OSp(6|4) isometry. The supercoset
OSp(6|4)

SO(1, 3) × U(3)
, which might be

associated with this background, has only 24 fermionic directions, while the
complete superspace has 32 Grassmann-odd coordinates. Therefore, to construct
a complete GS AdS4 × CP 3 superstring action, one should know the geometry

of the full corresponding superspace. One may expect that the
OSp(6|4)

SO(1, 3) × U(3)
supercoset should be a subspace of this superspace. If so, the complete GS action

can reduce to an
OSp(6|4)

SO(1, 3) × U(3)
sigma-model upon partial gauge ˇxing the

fermionic kappa-symmetry by putting 8 non-coset fermionic modes to zero. The
OSp(6|4)

SO(1, 3) × U(3)
sigma-model was constructed in [10, 11] by analogy with the

AdS5 × S5 one, and its action has the form similar to (3). However, in [10]
it was noticed that in this model there are classical string conˇgurations, for
instance, when the string moves only in AdS4 or forms a worldsheet instanton on
CP 3 [12], which are singular in the sense that for such conˇgurations the number
of independent kappa-symmetries gets increased from 8 to 12, which means that
in these regions there are only 12 fermionic physical degrees of freedom instead of
16 ones in the case of a general motion of the string in AdS4×CP 3. This in turn
indicates that for the singular regions the desired kappa-symmetry gauge ˇxing
of the complete GS action, which would lead to the supercoset sigma-model, is
not admissible.

To study these sectors of the theory, one should know the full GS action (1)
in this superbackground. To this end, one should know the geometry of the
complete AdS4 ×CP 3 superspace with 32 fermionic directions. This superspace
was constructed in [8], where it was shown that it is not a supercoset but rather

a kind of fermionic ˇber bundle over
OSp(6|4)

SO(1, 3) × U(3)
.

3. AdS2 × S2 × T 4 SUPERSTRINGS

As was mentioned in the introduction, AdS2 × S2 × T 4 backgrounds pre-
serve 8 (of 32) supersymmetries and have PSU(1, 1|2) × U(1)6 isometry. The
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associated supercoset
PSU(1, 1|2)

SO(1, 1) × U(1)
has only 8 fermionic directions and 4

bosonic coordinates. Moreover, this example also differs from the AdS4 × CP 3

case, since the 16-parameter kappa-symmetry is not enough to reduce the full
GS superstring action on AdS2 × S2 × T 4 to the supercoset model. Upon kappa
gauge ˇxing, there will always remain at least 8 string fermionic modes which
do not belong to the supercoset.

Another complication of the AdS2×S2×T 4 case is that neither the non-coset
fermionic modes nor the bosonic T 6-sector decouple from the supercoset model,
the latter being only a consistent truncation of the full theory [2].

As we have demonstrated on the examples of AdS4 × CP 3 and AdS2 ×
S2 × T 4 backgrounds, the presence of the non-coset fermions associated with
the supersymmetries broken by the AdS backgrounds makes the study of the
superstring theory in the non-maximally supersymmetric AdS backgrounds much
more complicated than, e.g., in the AdS5 × S5 case. In particular, the proof of
the integrability of these theories requires the development of more general (or
alternative) methods for the construction of a zero-curvature Lax connection than
those used in the case of the supercoset sigma-models. In what follows, we shall
brie�y discuss these issues.

4. CLASSICAL INTEGRABILITY OF 2d DYNAMICAL SYSTEMS

A 2d system is integrable if it has an inˇnite number of conserved charges
(integrals of motion) which are in involution. These charges are generated by the
Lax connection L(z), a 2d one-form which depends on a spectral parameter z,
takes values in a symmetry algebra and whose curvature vanishes:

dL + L ∧ L = 0 (4)

when the ˇelds describing the system satisfy the equations of motion. And vice
versa, the zero-curvature condition implies the equations of motion.

The integrability is proven if one manages to construct L(z). Though no
generic prescription exists how to do this, for certain classes of models one can
use one and the same techniques. The sigma-models on the supercosets with
Z4-grading called semi-symmetric superspaces (including the above examples)
are of this kind. The receipt for constructing the Lax connection of the string
sigma-models on such supercosets was proposed in [13].

A superalgebra has the Z4 automorphism if its elements (or generators) can be
endowed with Z4-grading, i.e., are eigenvectors of the Z4 group transformation Z:

Z−1M0Z = M0, Z−1P2Z = −P2, Z−1Q1Z = iQ1,
(5)

Z−1Q2Z = −iQ1, Z4 = 1.
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The above action of the Z4-automorphism leaves the superalgebra invariant, if its
generators satisfy the following schematic (anti)commutation relations:

[M0, M0] = M0, [M0, P2] = P2, [P2, P2] = M0,

[M0, Q1] = Q1, [M0, Q3] = Q3,
(6)

[P2, Q1] = Q3, [P2, Q3] = Q1, {Q1, Q1} = P2,

{Q3, Q3} = P2, {Q1, Q3} = M0.

The generators P2 and M0 are the same as in the deˇnition of the Cartan form
in (2), while Q1 and Q3 are the Z4-graded decomposition of supersymmetry
generators Qα. So, with respect to Z4 the Cartan form is decomposed as follows:

K−1dK(X, Θ) = Ω0(X, Θ)M0 + E2(X, Θ)P2 + E1(X, Θ)Q1 + E3(X, Θ)Q3.
(7)

The Lax connection is constructed by taking the components of (7) with arbitrary
numerical coefˇcients and adding to them the worldsheet dual ∗E2 of E2 [13].
The addition of the latter is prompted by the form of the ˇrst term of the super-
string action (3), which contains the Hodge dual of EA. Thus, the Lax connection
has the following form:

L(X, Θ) = Ω0M0 + l1E
2P2 + l2 ∗ E2P2 + l3E

1Q1 + l4E
3Q3. (8)

The curvature (4) of this connection, valued in the isometry superalgebra, vanishes
if the worldsheet ˇelds X(ξ) and Θ(ξ) satisfy the equations of motion which
follow from the action (3) and provided that the numerical coefˇcients li = fi(z)
(i = 1, 2, 3, 4) are certain functions of the single spectral parameter z.

The above construction of the Lax connection is only applicable to the cases
in which the target superspace is semi-symmetrice, i.e., has the structure of a
supercoset with Z4-grading. It should be generalized, or an alternative procedure
should be used for searching for Lax connections in the cases in which the
superspace geometry is more involved, like, e.g., that of AdS4×CP 3 and AdS2×
S2×T 6. In the next section we shall describe such a more general procedure [1].

5. CONDITIONS FOR THE INTEGRABILITY
OF THE GS SUPERSTRINGS ON GENERIC SUPERBACKGROUNDS

WITH ISOMETRIES

Let us assume that the string propagates in a superspace which has isome-
tries, but which is not the supercoset. In general, the superspace may have
bosonic and fermionic isometries. The presence or the absence of the latter is just
the manifestation whether the background under consideration is supersymmetric
or not.



SUPERSTRINGS IN AdS SUPERBACKGROUNDS AND THEIR INTEGRABILITY 1145

The ˇrst natural condition of the existence of a Lax connection for string
σ-model in the target superspace is that the corresponding bosonic σ-model ob-
tained from the former by putting to zero all fermionic ˇelds is integrable. This re-
stricts the choice of a possible bosonic subspace of the superbackground. A well-
known class of integrable bosonic σ-models is those on symmetric spaces G/H .
All the bosonic backgrounds considered above are of this kind. In the case of
the G/H σ-models, the Lax connection can be constructed from their Noether
currents as follows [14]. From the G/H σ-model action

S =
1
2

∫
∗eA(X) eB(X) ηAB, (9)

where eA(X) is the worldsheet pullback of the G/H vielbein, we get the G-
algebra valued Noether current

j(ξ) = eA(X)KA(X) = dXM (ξ) eM
A(X)KA(X), (10)

where KA(X) is the Killing vector generating the isometries of G/H .
The current (10) is conserved (on the mass shell):

d ∗ j = ∂ij
i = 0, (11)

and satisˇes the MaurerÄCartan equations associated with the group G; i.e., it has
zero curvature

dj + 2j ∧ j = 0. (12)

It then follows from Eqs. (11) and (12) that the following Lax connection is �at:

LB =
(

2z2

1 − z2
eA +

2z

1 + z2
eA

)
KA ⇒ dLB − LB ∧ LB = 0. (13)

Let us now extend this construction to the case of the GS superstring, which
in addition to the bosonic modes X(ξ) has the fermionic modes Θ(ξ). The
Noether current consists of a term corresponding to the bosonic isometries and a
term associated with supersymmetry (if the background is supersymmetric):

J(X, Θ) = JB + JSUSY. (14)

The two terms are conserved separately:

d ∗ JB = 0 = d ∗ JSUSY. (15)

One can show [1] that up to the second order in Θ the two terms of the Noether
current have the following form:

JB(X, Θ) = j(X) + JA
1 (X, Θ)KA(X) + JAB(X, Θ)[KA(X), KB(X)], (16)
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JSUSY = Jα(X, Θ)Ξα(X), (17)

where j(X) and KA(X) are the same as in the bosonic case (10) and Ξα(X) is
the Killing spinor on the bosonic space G/H which generates the supersymmetric
part of the isometry.

The Lax connection constructed with the current components (14)Ä(17) has
the following form:

L = α1 j+α2∗JB+α2
2 J2+α1α2∗J2−α2(β1JSUSY−β2∗JSUSY)+O(Θ3), (18)

where α1,2(z) and β1,2(z) are certain functions of the spectral parameter z. Note
that the parameter α1 and α2 are already ˇxed by the zeroÄcurvature condition
of the purely bosonic limit (13) of the Lax connection.

In addition to be on shell, the condition for the Lax connection (18) to have
zero curvature ˇxes the spectral parameter dependence of β1,2(z) and requires
the Noether currents to satisfy the following relations:

dJSUSY = −2(JB ∧ JSUSY + JSUSY ∧ JB),
(19)

(∇JAB
2 − JA

1 ∧ jB)[KA, KB] = −JSUSY ∧ JSUSY.

These conditions on the Noether currents restrict possible superbackgrounds in
which the superstring sigma-model is integrable. All the supersymmetric back-
grounds listed in the Introduction are of this kind.

If a background is not supersymmetric, the components J1 and J2 of the
bosonic isometry current should satisfy the relation

(∇JAB
2 − JA

1 ∧ jB)[KA, KB] = 0. (20)

Then, a natural question arises whether there exist integrable string sigma-models
in superbackgrounds in which target-space supersymmetry is completely broken.
The obvious examples to check are non-supersymmetric AdS × M backgrounds
which are obtained from the supersymmetric ones by changing the sign of a
supporting gauge ˇeld �ux. It turns out, however, that for these backgrounds the
condition (20) is not satisˇed. The only example of the integrable superstring
in non-supersymmetric background which is known so far is a D = 4, N = 2
superstring in AdS4 with completely broken supersymmetry [1]. This model is a
consistent truncation to D = 4 of the AdS4 × CP 3 superstring in which only 8
non-supercoset fermionic modes are kept. The Lax connection for this model has
been constructed in [1] to all orders in the string fermionic modes in a particular
kappa-symmetry gauge of [15].

It can be shown [1,2] that the Lax connection (18) is related by an isometry
group transformation to the Lax connection (8) generalized with terms containing
the contribution of the non-coset fermionic modes. Such a generalization of (8)
preserves the Z4-invariance [16], which is of crucial importance for the application
of Bethe-ansatz techniques.
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CONCLUSION

We have reviewed some features of superstring theories in AdS superback-
grounds with a particular emphasis on the cases with less supersymmetries in
which the string has physical fermionic modes associated with broken symme-
tries that do not admit the supercoset interpretation. The presence of the non-coset
fermions makes the proof of the classical integrability of the theory much more
difˇcult.

Having at hand Lax connections which include the contribution of noncoset
worldsheet modes, one can address the problem of how these modify the alge-
braic curve and Bethe ansatz equations for the full superstring theory in these
backgrounds. This should lead to a more general approach to integrability of
GreenÄSchwarz superstrings, which does not rely on having their supercoset
sigma-model description.

For practical purposes, these results may be useful, in particular, for under-
standing the quantum spectrum of the AdS2 ×S2 ×T 6 superstring, which in turn
should shed light on the structure of the dual CFT1 theory.
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