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We develop the superˇeld background method and study the effective action in the N = 2, d3
supersymmetric ChernÄSimons-matter systems. The one-loop low-energy effective action for non-
Abelian supersymmetric ChernÄSimons theory is computed to order F 4 by use of N = 2 superˇeld
heat kernel techniques.
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INTRODUCTION

During the last few years, quantum aspects of d3 supersymmetric theories
at perturbative level have attracted considerable attention. This was inspired by
the papers [1Ä4], where for an IR description of stacks of M2-branes, highly
supersymmetric three-dimensional conformal ˇeld theories were proposed in the
same sense as maximally supersymmetric YangÄMills theory provides an effective
description of stacks of D-branes. Such models are referred to as the BaggerÄ
LambertÄGustavsson (BLG) and AharonyÄBergmanÄJafferisÄMaldacena (ABJM)
theories. ABJM models are deˇned as three-dimensional N = 6 superconformal
U(N)×U(N) ChernÄSimons-matter theory with level (k,−k). It is conjectured
to describe N M2-branes located at the ˇxed point of the C4/Zk orbifold in
the static gauge. It is also argued that the ABJM model is dual to M-theory
on AdS4 × S7/Zk at large N . For SU(2) × SU(2) gauge group, the N = 6
supersymmetry is enhanced to N = 8, and the ABJM model coincides with the
BLG model. All these new superconformal ˇeld theories involve a nondynamical
gauge ˇeld, described by a ChernÄSimons-like term in the Lagrangian, which is
coupled to matter ˇelds, parameterizing the degrees of freedom transverse to the
worldvolume of the M2-branes.

It has been known for a long time that the quantization of a membrane world-
volume theory is very challenging, and one of the difˇculties is the nonlocality
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associated with the deformation of membrane without changing its volume. A
quantum supermembrane theory faces a serious problem of quantum mechanical
instability [5]. As a result, a single (quantum mechanical) supermembrane does
not make sense and we get a multibody problem in its nature, which can be re-
garded as the origin of the continuous spectrum. Therefore, from the ˇeld theory
side, the action of M2-brane should go away from the infrared ˇxed point to a
nonperturbative YangÄMillsÄChernÄSimons system.

We want to draw attention to the fact that an effect similar to the quantum
effect potentially occurs in all super ChernÄSimons-matter models and even in
pure non-Abelian ChernÄSimons theory and its supersymmetric versions. Then
the BLG and ABJM Lagrangians and supersymmetry transformations presented
in [1,2] can be thought as representing the leading order terms in Planck scale ex-
pansion of a (not yet determined) nonlinear M2-brane theory. This circumstance
is analogous to the fact that the N = 4, D4 super YangÄMills theory represents
the leading order terms of the BornÄInfeld action, which is believed to describe
the dynamics of coincident D3-branes. Therefore, it would be interesting to de-
termine the full theory, in which the leading order terms are the BLG or ABJM
Lagrangians. This ambitious program is similar to non-Abelian supersymmet-
ric extension of the BornÄInfeld-type action in the N = 4, D4 super YangÄMills
quantum ˇeld theory (see as an example of just a few links [6], from a large list of
references). The off-shell loop corrections in ChernÄSimons-matter theory attract
much attention since they generate nontrivial quantum dynamics for classically
nondynamical gauge ˇeld (see, e.g., [7]). The natural way to study these correc-
tions is given by effective action which can be treated as a method to derive the
new, higher order in strength, gauge-invariant and supersymmetric functionals.

The aim of this paper is to construct the background ˇeld method for N = 2
super ChernÄSimons theories, study the effective action in terms of unconstrained
N = 2, d3 superˇelds and calculate the leading low-energy contributions to the
effective action. Although the various classical and quantum aspects of N = 2, d3
supersymmetric theories were extensively studied (see, for example, [8, 9]), the
superˇeld background ˇeld method, allowing one to develop manifestly gauge-
invariant and N = 2 supersymmetric perturbation theory, has not been formulated
up to now. It is just this problem that is being solved in the present paper. As
the applications of background ˇeld method we show that in case of pure non-
Abelian N = 2 super ChernÄSimons theory, η-invariant vanishes, but off-shell
contributions to the effective action have a nontrivial complicated structure.

1. N = 2, d3 SUPERFIELD MODELS
AND BACKGROUND FIELD QUANTIZATION

We start with a brief description of the N = 2, d3 super ChernÄSimons the-
ory [10,11]. The constrained geometry of N = 2 supergauge ˇeld is formulated
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in R3|4 superspace with coordinates zM = {xm, θα, θ̄α} in terms of the gauge
covariant derivatives DM ≡ {Dm,Dα, D̄α} = DM + iΓa

MT a, where DM are the
®�at¯ covariant derivatives and the gauge connection ΓM takes the values in the
Lie algebra of a compact gauge group. The vector multiplet in three dimensions
is built from one real scalar φ, one complex spinor λα, one vector ˇeld Am and
one real auxiliary scalar D, all in the adjoint representation of the gauge group.
The gauge covariant derivatives obey the superalgebra:

{Dα, D̄β} = −2iDαβ + 2iεαβG, {Dα,Dβ} = {D̄α, D̄β} = 0,

[Dρ,Dαβ ] = ερ(αW̄β), [D̄ρ,Dαβ ] = −ερ(αWβ), (1.1)

[Dαβ ,Dρσ] = −iε(αρFβ)σ − iε(ασFβ)ρ.

The superˇeld strengths are the linear superˇeld G and chiral Wα and antichiral
W̄α superˇelds satisfy the Bianchi identities.

In N = 2, d3 superspace, the gauge invariant ChernÄSimons action reads [10]

SCS =
ik

4π
tr

1∫
0

dt

∫
d7zD̄α{e−2V Dα e2V } e−2V ∂t e2V . (1.2)

Here the extra parameter t satisˇes the boundary conditions V (t = 0) = 0,
V (t = 1) ≡ V . After rescaling the potential as Vnew ≡ 2

√
k/πV , we see that

the coupling constant is
√

π/k.
The superˇeld Lagrangian for Nf matter chiral superˇelds Qi coupled

to non-Abelian N = 2 vector multiplet has the form: Smatter[V, Q, Q̄] =

tr
∫

d7z
Nf∑
i=1

Q̄i eqiV Qi, where the matter ˇeld Qi = {f i, ψi}, with global U(Nf )

�avor symmetry, is in an arbitrary representation R of the gauge group. Such an
N = 2 theory can be formulated for any gauge group G and chiral superˇelds in
any representation, with arbitrary superpotential. The more extended supersym-
metric theories can be formulated using some sets of N = 2 superˇelds. It should
be noted that the most elegant presentation of a large class of classically mar-
ginal models of ChernÄSimons matter with manifestly realized N = 3 off-shell
supersymmetry is provided in the N = 3 harmonic superspace [8].

Maximally supersymmetric theories in 2 + 1 dimensions with SO(8) R-
symmetry were constructed in [1]. These theories have an interesting prop-
erty that the closure of the supersymmetry requires particular combinations of
the gauge group and the matter content, whereas there is no such restriction
for N � 3. The essential feature of these theories is that the matter ˇelds
XI = XI

aT a, I = 1, . . . , 4 take the values in a metrized version of the Lie
3-algebra An: [T a, T b, T c] = fabc

d T d, hab = tr (T a, T b), where the structure
constants fabcd = fabc

e hed are totally antisymmetric in upper indices and are
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subject to some basic identity. The gauge ˇeld takes values in the Lie algebra
associated with the Lie 3-algebra Am = Am,abt

ab, where the generators act in
the fundamental representation as (tab)c

d = fabc
d . When hab is positive deˇnite,

there is the only such A4 3-Lie algebra (with fabcd ∝ εabcd, hab = δab) which
satisˇes all reasonable physical requirements. On the associated Lie algebra there
exist two invariant tensors which have the required structure of a Killing form,
namely Gab,cd = fabcd, gab,cd = fabe

f f cdf
e . Extending the BLG model to higher

numbers of M2-branes by reducing the number of supersymmetries led to two
generalizations of the notion of a 3-algebra: the generalized 3-Lie algebras and
the Hermitian 3-algebras [3]. A classiˇcation of the possible N = 6 theories of
ABJM-type was presented in [3]. In all cases, the underlying 3-bracket is no
longer required to be totally antisymmetric.

In order to get a compact form of the Feynman rules, it is convenient to
use the capital Roman letters A, B, . . . to denote the indices in associated gauge
Lie algebra [1, 3, 4]. In terms of the gauge algebra indices, the invariant form
is given by 〈X, Y 〉 = XabY cdfabcd = XAY bGAB . The structure constants

FABC = FD
ABGDC , where FE

AB ≡ Cef
ab,cd = 2f

[e
ab[c δ

f ]
d] , are totally antisymmetric

due to ad-invariance of 〈· · · 〉. Moreover, it is convenient to use the multi-indices
ai combining �avor and 3-algebra indices for Qai = QI . For example, we have
for vertices 〈Q̄i, V Qi〉 = QIV A(TA)I

JQ̄J .
By construction, all these models have at least N = 2 supersymmetry. Higher

supersymmetry depends on the underlying 3-algebra and the choices of the su-
perpotential. Therefore formally, the structure of the effective action in the sector
of gauge ˇelds (without violating the gauge symmetry) should have a universal
form. The difference of effective actions of one model from another is stipulated
by the choice of explicit 3-algebra representations and relations between various
Casimir invariants for such Lie 3-algebras.

We quantize the N = 2 super ChernÄSimons theory in the quantum-chiral but
background vector representation. As a ˇrst step, we split the initial superˇelds
V, Q, Q̄ into background V, Q, Q̄ and quantum v, q, q̄ parts by the rule eV → eV ev,
Q → Q + q. Our aim now is to construct an effective action as a gauge-invariant
and N = 2 supersymmetric functional of the background superˇeld V . The
presence of the parameter t in (1.2) is very essential, and the direct integration
in (1.2) can be explicitly done only in the Abelian case. However, the ˇrst (that
noted in [10]) variation of (1.2) and second-order expansion in powers of quantum
ˇeld v contain no t integration (modulo a total spinor derivative):

S ∼
1∫

0

dt ∂t(vD̄αΓα) +
1
2

1∫
0

dt ∂t(vD̄αDαv) + O(v3). (1.3)

It is well known that the linear in v term in (1.3) should be dropped when
considering the effective action. The quadratic part S2 of quantum action given
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in (1.3) depends on V via the dependence of DM on background superˇeld. Each
term in the action (1.3) is manifestly invariant with respect to the background
gauge transformations.

We now proceed to the quantization of the theory in a manifest N = 2
supersymmetric form. To construct the effective action, we can use the FaddeevÄ
Popov Ansatz. Within the framework of the background ˇeld method, we
should ˇx only the quantum gauge transformations keeping the invariance under
the background gauge transformations. It is convenient to choose the gauge-
ˇxing functions in the form analogous to N = 1, d4 theories: f̄ = D2v,
f = D̄2v. These functions are covariantly (anti)chiral and transform under
the quantum gauge transformations. Therefore, the ghost action is the same
as in the four-dimensional N = 1 case: SFP = tr

∫
d3xd4θ (b + b̄)L(1/2)v[c +

c̄ + coth (L(1/2)v)(c − c̄)], where c, c̄, b, b̄ covariantly chiral and antichiral su-
perˇelds. The effective action for pure ChernÄSimons theory is given by the
following functional integral: eiΓCS[V ] = eiSCS[V ]

∫
DvDbDc δ[f − D̄2v] δ[f̄ −

D2v] eiS2[V,v]+O(v3)+iSFP . Unlike in N = 1, d4 case, we average this expres-
sion with the following weight (see some details for N = 2, d3 theory in [12]):

1 =
∫
DfDf̄DϕDϕ̄ exp

{
i

2α

∫
d5zf2 +

i

2β

∫
d5z̄f̄2 + i

∫
d5zϕ2 + i

∫
d5z̄ϕ̄2

}
,

where α, β are the gauge-ˇxing parameters and the anticommuting third ghost
superˇeld ϕ is background covariantly chiral. As a result, we see that the N = 2
super ChernÄSimons theory is described within the background ˇeld approach by
three ghosts. However, the opposite of 4d case, the NielsenÄKallosh ghost, gives
no rise to the effective action even at one-loop level.

Further we will study only one-loop effective action in gauge superˇeld
sector. In this case, it is sufˇcient to consider, under the functional integral for
ΓCS[V ], only the quadratic part of gauge-ˇxed action for quantum ˇelds. Then
one gets

S2 + Sgf =
1
2
tr

∫
d7z v

1
4

(
DαD̄α + D̄αDα +

1
α
DαDα +

1
β
D̄αD̄α

)
v ≡

≡ 1
2
tr

∫
d7z vHvv. (1.4)

Now we should add the contribution of matter superˇelds. As a result, we get
the following representation for the one-loop effective action in the gauge ˇeld
sector:

eiΓ(1)[V ] = Det−1/2(Hv)Det(HFP)Det−1/2(Hhyper), (1.5)

where HFP =
(

0 (1/16)D2D̄2

−(1/16)D̄2D2 0

)
δ(7)(z, z′). The matter super-

ˇeld contributions to the effective action differ from the contributions of ghosts
only by the sign and choice of the representation of a gauge group.
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2. ONE-LOOP EFFECTIVE ACTION

In this section, we investigate off-shell one-loop corrections to the action
for N = 2 super ChernÄSimons quantum ˇeld theory. It is well known that the
one-loop effective action is given in terms of functional determinants of the differ-
ential operators in quadratic part of action for quantum ˇelds. In the theory under
consideration, all these operators are the generalized d'Alembertians acting on su-
perˇelds. According to the previous section, there are three basic d'Alembertians
which arise in the covariant supergraphs: (i) the vector d'Alembertian �v; (ii) the
chiral d'Alembertian �+; and (iii) the antichiral d'Alembertian �−. The vector
d'Alembertian is deˇned by

�v = H2
v =

1
16

[
−DD̄2D − D̄D2D̄ +

1
αβ

{D2, D̄2}−

− 16G2 − 8i

α
W̄αDα +

8i

β
WαD̄α

]
= �cov +

(
−1 +

1
αβ

)
1
16

{D2, D̄2}+

+
i

2

(
Wα − 1

α
W̄α

)
Dα − i

2

(
W̄α − 1

β
Wα

)
D̄α. (2.1)

It is clear that the most convenient gauge choice is α = β = 1. The covariantly
chiral d'Alembertian is deˇned by

�+ = �cov + iWαDα +
i

2
(DαWα) + G2,

(2.2)

�+Φ =
1
16

D̄2D2Φ, D̄αΦ = 0.

The operator Hv has the ®ˇrst order in power ∂¯. Therefore, we must
worry about the phase of the functional determinant. Following the pioneering
work [7], we deˇne the phase of the path integral by means of the superˇeld eta-
invariant as ηH(s) = (1/2) lim

s→0

∑
i

signλi|λi|−s = Tr
(
H(H)−(s+1)/2

)
. Then

1√
Det [H]

=
1√

Det |[H]|
ei(π/4)ηH(0). In case of non-supersymmetric ChernÄ

Simons theories, the phase was discussed in [7]. Our aim is to compute the
ηH(0) in the theory under consideration. To do that, one uses the identity ηH(s) =

1
Γ((s + 1)/2)

∞∫
0

dt t(s−1)/2 TrH e−tH2
and then puts s = 0. For evaluating the

integral, we replace the background ˇeld V by the ˇeld gV , with g being a real
parameter. As a result, one gets the operator H(g), such that H(1) = H and H(0)
is background-ˇeld-independent. Differentiating the above equation, one obtains
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δgηH(g)(s) =
1

Γ((s + 1)/2)

∞∫
0

dt t(s−1)/22t1/2 d

dt
Tr {t1/2δgH(g) e−tH2(g)}. Now

we see that δgηH(g) is regular at s = 0, and its value is given by a local invariant

lim
s→0

δgηH(g)(s) = − 2√
π

Tr (
√

tδgH(g) e−tH2(g))
∣∣∣
(t=0)

. (2.3)

It is easy to see that the nonzero contribution in δgηH(g)(0) can result only from
zero and ˇrst terms of power series expansion of (2.3) in t. Then, it is obvious
that to obtain a nonzero result, we must put exactly four spinor derivatives on
all Grassmann δ-functions. However, the operator δgH(y), where δgDα = [Dα,
e−gV δg egV ], δgD̄α = 0, has a combination of spinor derivatives D̄α, Dα of ˇrst-
degree and the operator H2(g) also has ˇrst-order spinor derivatives. Therefore,
both the ˇrst terms vanish. It is known that the background ˇeld dependent
ηH(0) gives rise to a ˇnite shift of coupling constant in non-Abelian ChernÄ
Simons action. Our result means that such a shift is absent in the theory under
consideration.

One-loop effective action, generated by vector multiplet, is given by the
expression

Γ(1)
v [V ] =

i

4
Tr ln H2

v =
i

4
Tr

∞∫
0

dt

t
e−m2t e−tH2

v , (2.4)

where m is an infrared regulator. We will calculate the asymptotic expansion
of the heat kernel in the integrand that takes the form of an expansion in the
powers of covariant derivatives. Structure of such an expansion is deˇned by
superˇeld De Witt coefˇcient. At the component level, the nontrivial De Witt
coefˇcients, an for n � 4, contain in bosonic sector the ˇeld strength terms of
the form Fn. The ˇrst nontrivial coefˇcient, a4, is well-known in d4 [6]. In
d3 we also have an analogous box diagram with factors (i/2)Wα(D + D̄)α at
each vertex, and to get nonzero result, one should keep terms with two D's and
two D̄'s. Besides, we should treat the gauge strength as matrix in the adjoint
representation Wα

ac ≡ fabcW
αb . Then we get for a four-points contribution to the

effective action:

Γ(1)
v = − 1

256πm5

∫
d7zg(a1, a2, a3, a4)(Wα(a1)Wα(a2)Wβ(a3)Wβ(a4)−

− 1
2
Wα(a1)Wβ(a2)Wα(a3)Wβ(a4)), (2.5)

where in N = 2, d3 case Wα ≡ (W − W̄ )α. Here we have used for colour
structures the notation g(a1, a2, . . . , an) = fb1a1b2fb2a2b3 . . . fbnanb1 , where fabc

are the structure constants for a gauge Lie-algebra or FABC for a gauge 3-algebra.
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Note that these terms do not have the Abelian analogue. They simply vanish in
the Abelian case.

Contribution to one-loop effective action from FaddeevÄPopov ghosts is de-
ˇned by the expression Tr ln HFP = Tr− ln �−+Tr+ ln �+. That allows one to

write the ghost contribution to the effective action Γ(1)
gh in the form of an integral

over a proper time iΓ(1)
gh =

∞∫
0

dt

t
e−tm2

(K+(t) + K−(t)). In this expression, m2

is the infrared cutoff, and K+(t) and K−(t) are the functional traces of the chiral
and antichiral heat kernels, respectively. It is well-known that K+(t) = K−(t).
Therefore, we discuss only the computation of the chiral kernel. One of the pro-
cedures in computations of the heat kernel is to make use of the Fourier integral

representation of delta function: δ(7)(z − z′)1 =
∫ d3p

(2π)3
ei/2ραβpαβζ2ζ̄2I(z, z′),

where ρm = (x− x′)m − iζγmθ̄′ + iθ′γmζ̄ , ζ = θ − θ′, ζ̄ = θ̄− θ̄′. Here I(z, z′)
is the parallel displacement operator along the geodesic line connecting the points
z′ and z. The heat kernel K+(z, t) has an asymptotic SchwingerÄDe Witt ex-

pansion, which is written as K+(z, t) =
i

(4πt)3/2

∞∑
n=0

tnan(z), a0 = a1 = 0.

The an(z) are the De Witt coefˇcients, which at the component level contain
bosonic ˇeld strength terms of the form Fn. From dimensional considerations
and the requirement of gauge invariance, we can expect that the ˇrst nontrivial
coefˇcient a2 in the non-Abelian case is a2 ∼ trR

∫
d5zW 2 ∼ trR

∫
d7zG2. One

can show that the an with n � 2 are obtained in form of D̄2 acting on superˇeld
strengths and their covariant derivatives, and hence all terms in K+(z, z′|t) can
be written as the gauge-invariant superfunctionals on full superspace. By differ-

entiating the kernel K+(z, z′|t) with respect to t, one observes that
dK+(t)

dt
=

trR
∫

d7z
1
4
D2 e−t�+δ+(z, z′)|z=z′ . It is convenient to introduce a new set of

coefˇcients by writing D2 e−t�+δ+(z, z′)|z=z′ =
1

(4πt)3/2

∑
tncn(z), as an as-

ymptotic series. Here an(z) =
1

n − 3/2

(
−1

4
D̄2

)
cn−1(z). The effective action

can then be written as

Γ(1)
gh = − 1

2π3/2

∞∑
n=2

Γ(n − 3/2)
(2n − 3)m2n−3

∫
d7z trR cn−1. (2.6)

Here R means adjoint representation. Matter contribution has the same form
as (2.6), with R being a corresponding representation.

Our next goal is to discuss the computations of the superˇeld coefˇcients
c1, c2 and c3. In some respects, this procedure is similar to that used in [13]
for constructing a gauge-invariant derivative expansion of the effective action
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in the YangÄMills theory. Using the identities
∫

d2η η2 = −4, we present a
ζ2 as ζ2 =

∫
d2η eηαζα . Then (d/dt)K+(z, z′, t) in the point coincidence limit

becomes

Kα
α =

∫
d3p

(2π)3
1
4
d2ηXαXα e−tΔ · 1. (2.7)

The operator Δ = (1/2)XαβXαβ +iXαWα +G2 is deˇned by Xm = Dm +ipm,
Xα = Dα + ηα − pαβ ζ̄β . Expanding the exponential in powers of proper time

around ep2t and integrating over p, we obtain the desired expansion, collecting
together the coefˇcients at each degree of proper time t. Due to gauge invariance,
these coefˇcients are actually expressed in terms of commutators of covariant
derivatives.

Zeroth-order term does not depend on background ˇelds. In the next terms
of the expansion, we must take into account that X3

α = 0 and the integrals over
odd powers of p vanish. Therefore, in the ˇrst order of expansion of (2.7), we
have −t(� + G2), with a factor i/(4πt)3/2, which is common in the expansion.
In the next order of expansion after integration over p, we have exactly +t� that
cancels gauge-noninvariant contribution, and then one gets c1 = G2, as mentioned
above∗. As a result, in the given order of the expansion of the heat kernel,
we obtain the super YangÄMills action as a leading low-energy contribution to
effective action. The IR cutoff parameter plays a role of the dimensional coupling
constant:

Γ(1)
gh = − 1

4π
trAdj

∫
d5z

1
m

WαWα. (2.8)

Discuss some consequences of (2.8). First, we see that the leading low-
energy quantum correction to action is YangÄMills and stipulated only by ghosts
and matter, vector multiplet does not give rise. Second, since a contribution of
matter to effective action has, up to a sign, the same form as ghost contribution,
one can conclude that for appropriate matter in adjoint representation a total
contribution of ghost and matter to effective action vanishes. Third, one applies
the above consideration to the BLG model formulated in terms of N = 2, d3
superˇelds. In this case, the ghost and matter superˇelds take the values in a
real 3-algebra. The induced YangÄMills action contains a factor FD

ACFC
BD −

2(TA)J
I (TB)I

J = −2GAB [3]. Therefore, the leading low-energy correction to

action is ΓYM =
1
2π

GAB

∫
d5z

1
m

WAαWB
α.

∗Such a cancellation of gauge-noninvariant terms should take place in any order of heat kernel
expansion.
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Using the second and third terms in expansion in proper time under the
integral (2.7), one ˇnds the coefˇcient c2 in the form

c2 =
{

1
2
G4 +

1
12

[Dm,Dn][Dm,Dn] +
1
6
[Dm, [Dm, G2]] − 1

2
[Dα, G2]iWα+

+
1
6
[Dm, [Dm,Dα]]iWα +

1
3
[Dm,Dα][Dm, iWα]

}
. (2.9)

In principle, all commutators can be expressed in terms of strengths and their
covariant derivatives. As a result, one gets in bosonic sector the terms of the
form ∼ f3, (Df)2, where fmn is bosonic strength. The next c3 coefˇcient in
expansion (2.6) has a complicated and cumbersome enough structure. Its explicit
form is given in [14]. In leading bosonic component sector, this coefˇcient gives
us the terms like (fmn)4 and the products of some power of fmn and some
powers of covariant derivatives Dmfnl with total dimension 8.

To conclude, we have developed the background method for constructing the
gauge-invariant effective action in non-Abelian N = 2, d = 3 supersymmetric
ChernÄSimons theory coupled to matter, and studied a structure of the one-loop
effective action. These results open the possibilities for studying the quantum
dynamics in various extended supersymmetric d = 3 models.
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