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NAMBU-POISSON DYNAMICS

WITH SOME APPLICATIONS
N. Makhaldiani*

Joint Institute for Nuclear Research, Dubna

Short introduction in NPD with several applications to (in)finite dimensional problems of me-
chanics, hydrodynamics, M-theory and quanputing is given.

PACS: 11.15.-q; 11.30.Pb; 11.30.-j; 47.32.-C; 03.65.-w; 03.65.Yz; 03.67.-a

Nabu — Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [1]. But HM is in a sense blind; e.g., it does
not make a difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) [2] and (super)integrable Hamiltonian systems
(with maximal number of the integrals of motion).

Nambu mechanics (NM) [3,4] is a proper generalization of the HM, which
makes the difference between dynamical systems with different numbers of inte-
grals of motion explicit (see, e.g., [5]).

1. HAMILTONIZATION OF DYNAMICAL SYSTEMS

Let us consider a general dynamical system described by the following system
of the ordinary differential equations [6]:

Tn =vp(z), 1< n<N, (1)

T, stands for the total derivative with respect to the parameter ¢.
When the number of the degrees of freedom is even, and

0H)

a.. > 1 < n, m g 2M7 (2)
Oz,

Un (J)) = Enm
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the system (1) is Hamiltonian one and can be put in the form
‘Cbn = {xanO}Ov (3)

where the Poisson bracket is defined as

 9A 0B 9 @
{4, Blo = nm Oxy Oxm A(‘)mn Enm O, B, @)

and summation rule under repeated indices has been used.
Let us consider the following Lagrangian:

and the corresponding equations of motion

. N 8 m
Tp = Up (33)7 'Lpn = _a%wm- (6)

The system (6) extends the general system (1) by linear equation for the variables
1. The extended system can be put in the Hamiltonian form [7]

Ty = {xqul}l; 'Lbn = {¢7L7H1}17 (7
where first-level (order) Hamiltonian is
Hy = vp(7)n &)

and (first-level) bracket is defined as
9 9 9 9 )

O O Do D ©)

{Aa B}l =A <
Note that when the Grassmann grading [8] of the conjugated variables x,, and v,
is different, the bracket (9) is known as Buttin bracket [9].
In the Faddeev—Jackiw formalism [10] for the Hamiltonian treatment of sys-
tems defined by first-order Lagrangians, i.e., by a Lagrangian of the form

L= fn(x)xn - H({E), (10)
motion equations
OH
mn 'n = ; 11
Smn® B (11)

for the regular structure function f,,,, can be put in the explicit Hamiltonian
(Poisson; Dirac) form

_, 0H OH

Ln = nm% = {x"’xm/}m = {xnaH}7 (12)
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where the fundamental Poisson (Dirac) bracket is

{xvuxm} = n_nlw fmn = 8mfn - 8nfm (13)

The system (6) is an important example of the first-order regular Hamiltonian
systems. Indeed, in the new variables,

Yn =Tn, Y =Yn, (14)
Lagrangian (5) takes the following first-order form:

L= (in —vn(z))n = %(xnwn - 1/)nxn) — v ()P, = %yk“bz)ﬁ - H(y) =

. 1
= fa)ge — H(y), fn= §y25”“, H =v,(y")y2,

w _ Ofh Of% s (13)
nm ay% ayTbn nm»

corresponding motion equations and the fundamental Poisson bracket are

. OH
y;ll = Eabénm—b = {y27 H}, {y27 yfn} = E(11)5n771,- (16)
oy?l,
To the canonical quantization of this system corresponds

[g?ng?n] = iheapOnm, g'rlz = yrlzv gi = —ih

T (7

In this quantum theory, classical part, motion equations for ¥, remain classical.
1.1. Modified Bochner—Killing—Yano (MBKY) Structures. Now we return
to our extended system (6) and formulate conditions for the integrals of motion

H(z,v)
H:H0($)+H1+...+HN, (18)

where
Hy = Apikgoon () Vky - ry, 1< <N, (19)

we are assuming Grassmann valued i, and the tensor Ay, x,. ., are skew-
symmetric. For integrals (18) we have

) N N N )
H={§}%H}=§]Mﬁm=§}uzo (20)
n=0 n=0 n=0

Now we see, that each term in the sum (18) must be conserved separately.
In particular for Hamiltonian systems (2), zeroth, Hg, and first-level Hy, (8),
Hamiltonians are integrals of motion. For n =0

Ho = Ho oy, = 0, 1)
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for 1 < n < N we have

Hn = Ak1k2~~~kn¢k1¢k2 T wkz\f + Aklkz“'knd}hwkz o 'wkz\f + ..
F Ak ben s Uk Py = (A ke e k0% — Ak ok Vky ke — -
- Akl"'k’n—lkvkhmk)wkl ka e wk’N = 07 (22)

and there is one-to-one correspondence between the existence of the integrals (19)
and the existence of the nontrivial solutions of the following equations:

DEtAklkzmkn = Akiky - bon kVk — Akl Uy o — - - -
— Apyok kO = 0. (23)

For n = 1 the system (23) gives
Ap, 50 — Agvg, =0 (24)

and this equation has at list one solution, Ay = vi. If we have two (or more)
independent first order integrals

HY = Alw,: HP = A20,, .. (25)

we can construct corresponding (reducible) second (or higher) order MBKY ten-
sor(s)

Hy = HYVH® = AL 20,0, = A 0,0,
Hy = Hfl) ) ..H](\jlm = Apyotins Wiy - Uy, s (26)
Akl...k']\/[ - {A;:RASX)}, 2 <M<N7

where under the bracket operation, {Bx, .y} = {B} we understand complete
antisymmetrization. The system (23) defines a generalization of the Bochner—
Killing—Yano structures of the geodesic motion of the point particle, for the case
of the general (1) (and extended (6)) dynamical systems. Having Ap;,2 < M <
N independent MBKY structures, we can construct corresponding second order
Killing tensors and Nambu-Poisson dynamics. In the superintegrable case, we
have maximal number of the motion integrals, N — 1.

The structures defined by the system (23) we call the Modified Bochner—
Killing—Yano structures or MBKY structures for short, [11].

1.2. Point Vortex Dynamics (PVD). PVD can dy defined (see, e.g., [12,13])
as the following first order system:

N
Zp =1 E ﬁ7 Zn = Tp+1Yn, 1<n<<N. (27
me#£n N m
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Corresponding first order Lagrangian, Hamiltonian, momenta, Poisson brackets
and commutators are

L= Z §7n(znzn — Zn2p) — Z Yo Ym0 |2 — Zm,
n n#m

1

oL ) N N oL )
Pn = 8—zn = _E'Ynzm DPn = az: = E'Ynzm (28)

PnysZm s = Onm, PrnsZm s = Onm, TnsYm s = Onm,
{ p=4 {pn: 2} =96 { p=4é

[Pn, 2m] = —tA0nm = [Tn, Ym] = _Z'E(;nm.
g

n
So, quantum vortex dynamics corresponds to the noncommutative space. It is
natural to assume that vortex parameters are quantized as

h
o= —sn, n=%1,£2,. ., (29)
a

and a is a characteristic (fundamental) length.

2. NAMBU DYNAMICS

In the canonical formulation, the equations of motion of a physical system are
defined via a Poisson bracket and a Hamiltonian, [6]. In Nambu’s formulation,
the Poisson bracket is replaced by the Nambu bracket with n + 1,n > 1, slots.
For n = 1, we have the canonical formalism with one Hamiltonian. For n > 2,
we have Nambu—Poisson formalism, with n Hamiltonians, [3,4].

2.1. System of Three Vortexes. The system of N vortexes (27) for N = 3,
and

up =1n |22 — 23%, wo=1In |23 — 21|%, wuz=1In |z — 2o (30)
reduces to the following system:
Uy =yi(e" —e"), g =ya(e" —e"), Uz =y3(e" —e"?). (31)
The system (31) has two integrals of motion

3 3

eui Us
Hl = Z ) H2 = _Z
- i i=1 i
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and can be presented in the Nambu—Poisson form [14]

O0H, OH. e 1
i = Wijkwjl—Q = {x;, H\, H2} = wiji

( )
Vi Vk

8uk

where
Wijk = €ijkPy P = V17273,
and the Nambu—Poisson bracket of the functions A, B, C on the three-dimensional
phase space is
0A 0B 0C
ABCt=wjjp———. 32
{4.B,C} w”kauic()uj Ouy, (32)
This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion NV — 1 = 2.
2.2. Extended Quantum Mechanics. As an example of the infinite di-
mensional Nambu—Poisson dynamics, let me conside the following extension of
Schrédinger quantum mechanics [15]:

V2
Vi=AV — =0 (33)
Wy = —AyY + V. (34)
An interesting solution to the equation for the potential (34) is
44—d
V= %j (35)
r

where d is the dimension of the space. In the case of d = 1, we have the potential
of conformal quantum mechanics.

The variational formulation of the extended quantum theory, is given by the
following Lagrangian:

1
L= (m — AV + 5v2> . (36)
The momentum variables are
oL
P,=—=1i), P,=0. 37
v, i w =0 37

As Hamiltonians of the Nambu-theoretic formulation, we take the following inte-
grals of motion:
1
H, = /d% (AV — 51/2) W,
= [ da(p, - i) (38)

H3 = / dzPy,.
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We invent unifying vector notation, ¢ = (¢1, 2, ¢3, ¢4) = (¢, Py, V, P,). Then
it may be verified that the equations of the extended quantum theory can be put
in the following Nambu-theoretic form:

d)t(x) = {¢($),H1,H2,H3}, (39)

where the bracket is defined as

. 6A1 5A2 5143 6"44
A1, Ag, Az, Ay} = igy; -
{Av, A, A3, Au} = igijn 09i(y) 065 (y) d¢r(y) d¢u(y) w

A15A27A37A4) ( k)
/ 561(0), 0200), 3 (0) 0al) ¥ = 10 G ) 4O

2.3. M Theory. The basic building blocks of M theory are membranes and
Mb5-branes. Membranes are fundamental objects carrying electric charges with
respect to the 3-form C-field, and M 5-branes are magnetic solitons. The Nambu-—
Poisson 3-algebras appear as gauge symmetries of superconformal Chern—Simons
non-Abelian theories in 2 4+ 1E dimensions with the maximum allowed number
of N = 8 linear supersymmetries.

The Bagger and Lambert [16] and Gustavsson [17] (BLG) model is based on
a 3-algebra,

[Ta,Tb,TC] — f'g,bcz'Vd7 (41)

where T are generators and fupq is a fully antisymmetric tensor. Given this
algebra, a maximally supersymmetric Chern—-Simons Lagrangian is

L= LCS + Lmatter;

1 2
LCS - ié‘uuk (fabchZbaVAg\d + gfcdag gfbAabACdAef>
(42)
1 T - i -
Lmatter - iBiaB(l;I - B[LGD#«X&I + +§¢GF“Duwa + ZwaIngxéwafade_

(XX XX XY X)), 1=,
where Azb is gauge boson, 1) and X! = XIT are matter fields. If a = 1,2, 3,4,
then we can obtain an SO(4) gauge symmetry by choosing fupca = fEabed, |
being a constant. It turns out to be the only case that gives a gauge theory with
manifest unitarity and N = 8 supersymmetry.
The action has the first order form so we can use the formalism of the first
section. The motion equations for the gauge fields

0H
A (t, @) = SAT (L 7))’ abed = € fabed (43)
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take canonical form

Aa abe oH a c oH a
Anb = fn’gldéAcd = {Anb’A’ﬂ(Li}éAcd = {AnbﬂH}v

m m

{A(t,2), A (t, )} = enm f*6P (z — y).

m

(44)

3. DISCRETE DYNAMICAL SYSTEMS

Computers are physical devices and their behavior is determined by physi-
cal laws. The Quantum Computations [18,19], Quantum Computing, Quanput-
ing [20], is a new interdisciplinary field of research, which benefits from the
contributions of physicists, computer scientists, mathematicians, chemists and
engineers.

Contemporary digital computer and its logical elements can be considered as
a spatial type of discrete dynamical systems [21]

where
Sn(k), 1<n<N(k) (46)

is the state vector of the system at the discrete time step k. Vector S may describe
the state and @ transition rule of some Cellular Automata [22]. The system of the
type (45) appears in applied mathematics as an explicit finite difference scheme
approximation of the equations of the physics [23].

Definition: We assume that the system (45) is time-reversible if we can define
the reverse dynamical system

Sn(k) = @1 (S(k +1)). (47)
In this case the following matrix:
0%, (S(k))
Mym = —c 5 4
55,1(1) )

is regular, i.e., has an inverse. If the matrix is not regular, this is the case, for
example, when N(k + 1) # N(k), we have an irreversible dynamical system
(usual digital computers and/or corresponding irreversible gates).

Let us consider an extension of the dynamical system (45) given by the
following action function:

A= "1 (k)(Sn(k + 1) — D (S(k))) (49)
kn
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and corresponding motion equations

S,k +1) = @,(S(0) = 55
09, (S(k ' OH e
1= 1) = () 25— 1, 0) M (510 = 50
where
H =" ln(k) @n(S(k)) (51)
kn

is discrete Hamiltonian. In the regular case, we put the system (50) in an explicit
form

Sn(k+1) = ®,(S(k)),
Zn(k + 1) = ZT”(k)MTTI}L(S(k + 1))

(52)

From this system it is obvious that, when the initial value 1,,(ko) is given, the
evolution of the vector [(k) is defined by evolution of the state vector S(k). The
equation of motion for [,,(k) is linear and has an important property that linear
superpositions of the solutions are also solutions.

Statement. Any time-reversible dynamical system (e.g., a time-reversible
computer) can be extended by corresponding linear dynamical system (quantum-
like processor) which is controlled by the dynamical system and has a huge
computational power [20,21,24,25].

3.1. (de)Coherence Criterion. For motion equations (50) in the continual
approximation, we have

Sp(k4+1) =, (tp +7) = 20 (tr) + &0 (tr)T + O(72),
Tn(t) = vn(z(ty)) + O(7), tp = kT,
Un(2(tr)) = (Pn(z(tk)) — zalte)) /T,

an(l‘(tk)) = Omn + T%.

(33)

(de)Coherence criterion: The system is reversible, the linear (quantum, coherent,
soul) subsystem exists, when the matrix M is regular,

detM:l—f—TZg%—i—O(TQ);éO. (54)
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For the Nambu-Poisson dynamical systems (see, e.g., [5])

wn AW N

oH, 0H,  OH,

p=1,2,3...,N—1,

Un ((E) = Enmima.

T 0T, 0Ty o 0w,
(55)
8Un .
Z . =dive =0.
n mn
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