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INTRODUCTION

The modern interest to three-dimensional supersymmetric models is caused
by the achievements in the study of superconformal theories with ChernÄSimons
gauge ˇelds interacting with matter [1, 2]. These models are devoted to devel-
oping a description of multiple M2 branes. It is known, that elimination of the
ChernÄSimons ˇelds by ˇxing the gauge allows one to obtain three-dimensional
supersymmetric nonlinear sigma-model for matter ˇelds. And so, the quantization
of three-dimensional nonlinear sigma-model perhaps helps to understand some of
quantum aspects of M2 branes.

In the present work, we study the low-energy effective action in the three-
dimensional general chiral superˇeld model for one chiral superˇeld ϕ with the
classical action

S[ϕ, ϕ̄] = −
∫

d7zK(ϕ, ϕ̄) −
( ∫

d5zW (ϕ) + c.c.
)

, (1)

where K(ϕ, ϕ̄) is a supersmooth function called Kéahler potential and W (ϕ) is a
chiral potential. We employ the superspace notations used in [3].
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We are interested in the effective potential. By the deˇnition, this is a part
of the effective action without derivatives of superˇelds. The effective potential
of the model (1) consists of the effective Kéahler potential and the effective chiral
potential. The general structure of a supersymmetric effective potential in the
four-dimensional case was discussed in detail in [4]. Our aim is to calculate a
one-loop effective potential for the model under consideration. It is noticed that
for a one-loop level it consists of the effective Kéahler potential only, because
there is no one-loop effective chiral potential. The computing of the effective
chiral potential is a special problem demanding individual consideration and we
don't discuss it here. It is obvious, that the Kéahler potential contains derivatives
of component ˇelds. Therefore, the one-loop effective Kéahler potential gives
one-loop effective action of component ˇelds.

The effective Kéahler and chiral potentials for similar four-dimensional models
were investigated in many works [4Ä11]. However, it should be noted that in
three-dimensional case the one-loop effective Kéahler potential does not contain
ultraviolet divergences. We demonstrate this using the heat kernel approach in
superspace (see, e.g., [12]).

1. ONE-LOOP EFFECTIVE ACTION
IN GENERAL CHIRAL SUPERFIELD MODEL

The one-loop effective action of the model (1) depending on background
superˇeld φ and φ̄ is deˇned by the standard expression

Γ(1)[φ, φ̄] =
i

2
sTr ln H(φ) = − i

2
sTr ln G(φ), (2)

where the operator H(φ) is deˇned in the manner

H(φ) =

⎛
⎜⎜⎜⎝

δ2S

δφ(z′)δφ(z)
δ2S

δφ(z′)δφ̄(z)

δ2S

δφ̄(z′)δφ(z)
δ2S

δφ̄(z′)δφ̄(z)

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎝−W ′′(φ)δ+(z, z′)

Kφφ̄

4
D̄2δ−(z, z′)

Kφφ̄

4
D2δ+(z, z′) W̄ ′′(φ̄)δ−(z, z′)

⎞
⎟⎠ . (3)

Here δ+(z, z′) = −(1/4)D̄2δ7(z − z′) and δ−(z, z′) = −(1/4)D2δ7(z − z′) are
(anti)chiral delta functions. The matrix superpropagator G(φ) meets the condition

H(φ)G(φ) = −I, I(�, �′) =
(

δ+(z, z′) 0
0 δ−(z, z′)

)
.
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Elements of matrix superpropagator G(φ) are denoted as follows:

G(φ)(z, z′) =

(
G++(z, z′) G+−(z, z′)

G−+(z, z′) G−−(z, z′)

)
. (4)

Similarly as in the four-dimensional case [12], one can show that for the case of
constant background superˇelds superpropagator G(φ) can be represented in the
form

G(φ)(z, z′) =
1
16

⎛
⎝ D̄2

zD̄
2
z′G

(φ)
V (z, z′) −D̄2

zD
2
z′G

(φ)
V (z, z′)

−D2
zD̄

2
z′G(φ)

V (z, z′) D2
zD

2
z′G(φ)

V (z, z′)

⎞
⎠ , (5)

where G(φ)
V (z, z′) is a solution of the following equation:

ΔG(φ)
V (z, z′) = −δ7(z, z′), Δ = Kφφ̄� − 1

4
W ′′(φ)D̄2 +

1
4
W̄ ′′(φ̄)D2. (6)

Here δ7(z, z′) is the delta function in the full N = 2, d = 3 superspace. For such
a representation (5), one can show that the effective action (2) can be written as
(see [4] for the proof of this statement in the four-dimensional case)

Γ(1) = − i

2
Tr lnG(φ)

V . (7)

In contrast with (2), the functional trace in this representation is taken in the space
of real superˇelds in the N = 2, d = 3 superspace rather than in the (anti-)chiral
ones.

To evaluate the one-loop affective action, we introduce the proper-time rep-
resentation (see [12]) for the propagator (7)

G(φ)
V (z, z′) = i

∞∫
0

ds U
(φ)
V (z, z′|s), (8)

U
(φ)
V (z, z′|s) being unique solution of the equation(

i
∂

∂s
+ Δ

)
U

(φ)
V (s) = 0, U

(φ)
V (z, z′|s → +0) = δ7(z, z′). (9)

Then the computation of the effective action (7) is reduced to ˇnding the heat
kernel at coincident superspace points,

Γ(1)[φ, φ̄] = − i

2

∞∫
0

d(is)
is

sTrU
(φ)
V (z, z′|s). (10)
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The formal solution for (9) reads

U
(φ)
V (z, z′|s) = eisΔδ7(z, z′). (11)

We will assume that background superˇelds are constant (φ = const). The
superkernel (11) can be represented in the form

U
(φ)
V (z, z′|s) = exp

[
− is

4
(W ′′D̄2 − W̄ ′′D2)

]
UV (z, z′|s),

(12)
UV (z, z′|s) = eisKφφ̄�δ7(z − z′).

Using useful identities (see [12])(
1
16

D̄2D2

)n

= �n−1

(
1
16

D̄2D2

)
,

(
1
16

D2D̄2

)n

= �n−1

(
1
16

D2D̄2

)
,

we obtain that the heat kernel (11) can be written explicitly (at coincident points),

U
(φ)
V (z, z|s) =

[
2
�

(cos (is
√

W ′′W̄ ′′�) − 1)
]
UV (x, x′|s)

∣∣
x=x′ , (13)

UV (x, x′|s) =
1

(4πKφφ̄is)3/2
e−(1/4iKφφ̄s)(x−x′)2 . (14)

Substituting expressions (13) and (14) for the heat kernel into (10) and computing
the integral over proper time s, we ˇnd the one-loop effective action,

Γ(1)
K =

∫
d3xd4θ K(1)(φ, φ̄), K(1)(φ, φ̄) =

1
4π

√
W ′′W̄ ′′

K2
φφ̄

. (15)

The one-loop Kéahler potential (15) is expressed in terms of classical potentials and
represents the eventual form of the one-loop quantum contribution to the Kéahler
potential. Also we emphasize that the Kéahler potential includes derivatives of
component ˇelds. Thus computation of the one-loop effective potential gives
one-loop effective action of component ˇelds.

We point out that the one-loop effective action (15) is UV ˇnite. In three-
dimensional ˇeld theories the divergences may appear only in the two-loop Feyn-
man diagrams. Note also that there are no one-loop contributions to the effective
chiral potential.

CONCLUSIONS

In the present work we computed one-loop quantum correction to the effective
Kéahler potential (15) using the heat kernel approach. In contrast to the four-
dimensional case [6], the one-loop contribution to the effective potential (15)
does not contain ultraviolet divergences.
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As a natural continuation of the present work, it is interesting to compute the
two-loop effective Kéahler and chiral potentials in the general three-dimensional
chiral superˇeld model and for the case when there are several interacting chiral
superˇelds, Φi, i = 1, . . . , n.
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