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ALTARELLI-PARISI EQUATION

IN NONEQUILIBRIUM QCD
G. C. Nayak *

Department of Physics, University of Arizona, Tucson, AZ, USA

The Q2 evolution of fragmentation function in nonequilibrium QCD by using DGLAP evolu-
tion equation may be necessary to study hadron formation from quark—gluon plasma at RHIC and
LHC. In this paper we study splitting functions in nonequilibrium QCD by using Schwinger—Keldysh
closed-time path integral formalism. For quarks and gluons with arbitrary nonequilibrium distribution
functions f4(p) and fq4(p), we derive expressions for quark and gluon splitting functions in nonequi-
librium QCD at leading order in ocs. We make a comparison of these splitting functions with those
obtained by Altarelli and Parisi in vacuum.

O6cyxn ercs HeobxomuMocTh yderT Q2-sBomonuy (yHKUMH (P IMEHT MU B HEP BHOBECHOII
KX, 3 1 B emoit yp BHeHueM spommormu AITIAIL npu uzydeHun mex HU3M 0Op 30B HHSL JIPOHOB
U3 KB PK-INIIOOHHOH 1 3Mel H ycT HOoBK X RHIC u LHC.

B npexct BiaeHHOH CT The M3y4 I0TCS (DYHKLMHU p cluervieHus: B Hep BHoBecHOW KXJI B p MK X
npubmxenns 3 MKHyroro Bpemenn IlIsunrep —Kemgpim B copm mu3Me (yHKIMOH JTBHBIX MHTETP -
710B. 11 KB PKOB ¥ [JIIOOHOB C [POM3BONbHBIME HEp BHOBECHBIMH (DYHKLIIME p crpenencHus fq(p)
i fg(Pp) MOMydeHb! BHIP KEHUs A1 KB PKOBOW U [NMIOOHHOH (DYHKIMII P CIUCIUICHHS B HEp BHOBECHOI
KX B BemymeM nopsjke 1o cs. Ilomydennsle yHKIHMHM CD BHUB IOTCS C PE3YJIbT TOM BBIYHCIIEHHI
Anpt permu u I1 pusu B B Kyyme.

PACS: 13.87.Fh; 13.85.Fb; 12.38.Bx; 11.15.Bt

INTRODUCTION

RHIC and LHC heavy-ion colliders are the best facilities to study quark—
gluon plasma in the laboratory. Since two nuclei travel almost at a speed of light,
the QCD matter formed at RHIC and LHC may be in nonequilibrium. In order to
make meaningful comparison of the theory with the experimental data on hadron
production, it may be necessary to study nonequilibrium-nonperturbative QCD at
RHIC and LHC. This, however, is a difficult problem.

Nonequilibrium quantum field theory can be studied by using Schwinger—
Keldysh closed-time path (CTP) formalism [1,2]. However, implementing CTP in
nonequilibrium at RHIC and LHC is a very difficult problem, especially due to the
presence of gluons in nonequilibrium and hadronization, etc. Recently, one-loop
resumed gluon propagator in nonequilibrium in covariant gauge is derived in [3,4].

*E-mail: nayak @physics.arizona.edu
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High-pr hadron production at high-energy ete™, ep, and pp colliders is
studied by using the Collins—Soper fragmentation function [5,6]. For a high-pr
parton fragmenting to hadron, Collins and Soper derived an expression for the
fragmentation function based on the field theory and factorization properties in
QCD at high energy [7]. This fragmentation function is universal in the sense
that, once its value is determined from one experiment, it explains the data from
other experiments.

Recently we have derived parton-to-hadron fragmentation function in non-
equilibrium QCD by using Schwinger—Keldysh closed-time path integral for-
malism [8]. This can be relevant at RHIC and LHC heavy-ion colliders to
study hadron production from quark—gluon plasma. We have considered a
high-pr parton in medium at initial time 7y with arbitrary nonequilibrium (non-
isotropic) distribution function f(p) fragmenting to hadron. The special case

f(p) =

librium.

We have found the following definition of the parton-to-hadron fragmentation
function in nonequilibrium QCD by using closed-time path integral formalism [8].
For a quark (¢) with arbitrary nonequilibrium distribution function f,(k) at initial
time, the quark-to-hadron fragmentation function is given by

—————— corresponds to the finite temperature QCD in equi-
exp (po/T) £ 1 P P a

DH/q(vaT) =
d—2
- : / o eik+z_+ipT zT/thrDirac ltl"colorx
2z [1+ fy(k)] (2m)d-1 2 3
x [y (in|e(z™, 27) [z, 27] al;(PT,07) an(PT,07) ®[0] $(0)[in)], (1)
where z(= PT/k™) is the longitudinal momentum fraction of the hadron with
respect to the parton, and pr is the transverse momentum of the hadron. For

a gluon (g) with arbitrary nonequilibrium distribution function f,(k) at initial
time, the gluon-to-hadron fragmentation function is given by

Di( - 1 /d _d ey ikt 2~ +ipr w7 /2 L 28: X
H/g\Z,PT) = 22kt (14 f,(k)] v (2m)d-1 ¢ 8 )

x [(in| F (@™, o7) @z, 27] aly(PT,07) an(PT,07) ®[0] Ff,(0)[in)]. (2)

In the above equations |in) is the initial state of the nonequilibrium quark (gluon)
medium. The path ordered exponential

0
Oz =P exp |ig / dA n - A%(zt +ntX) T 3)

is the Wilson line [5,7,9].
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Equations (1) and (2) can be compared with the following definition of the
Collins—Soper fragmentation function in vacuum [5]:

1 7dd QxT i toT+iprx z]' 1
DH/q(Z,pT) = g/dl’ (2 )d 7€ +ipr @/ §trDirac gtrcolor><

x (Ol (2™ er) @™, wr] ay(PT,0r)am(PF,07) ©[0] $(0)[0)] (4)

and

1 7dd ikTx ipT TT /2
DH/g(z,pT):—%/dx on )d 1e “Hiprer/zZ Zx

x [0 F (@ @) @™, 2r] aly(PT,0r)an(PF,0r) (0] F5(0)[0)]. (5)

Since the fragmentation function is a nonperturbative quantity, we do not
have theoretical tools in QCD to calculate it yet. The normal procedure at high-
energy pp, ep, and ete™ colliders is to extract it at some initial momentum
scale po and then evolve it to another scale p by using the DGLAP evolution
equation [10-12]

u Di—( Z/dyp <z >Djﬂ‘(y)~ (©)

In the above equation, P;;(z) is the splitting function of a parton j into a parton
1 which is related to the probability of a parton j emitting a parton ¢ with
longitudinal momentum fraction z. The quark and gluon splitting functions P;;(z)
in vacuum are evaluated by Altarelli and Parisi in [11] at the leading order in
coupling constant .

In order to apply this procedure at high-energy heavy-ion colliders at RHIC
and LHC one needs to prove factorization of fragmentation function in nonequi-
librium QCD. Recently we have proved factorization theorem in nonequilibrium
QED in [13] and in nonequilibrium QCD in [14].

In this paper we will evaluate the quark and gluon splitting functions in
nonequilibrium QCD at the leading order in coupling constant ag by using
closed-time path integral formalism. We find that these splitting functions
depend on nonequilibrium distribution functions of quarks and gluons in the
QCD medium. The Q? evolution of the nonequilibrium fragmentation functions
(Egs. (1) and (2)) can be studied from Eq.(6) by using nonequilibrium splitting
functions.
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We find the following expressions for the quark and gluon splitting functions
in nonequilibrium QCD at leading order in coupling constant a:

Pyq(2) = Ca(R) [L + fy(k))*

% (Lt fylbr 2R [+ fy(—kr, (1= 2)k)° [M} :
Pia(2) = Co(B) [L+ So(R))”
2 2 22 (7
< Syl (= P [+ Syt | T2

Pyg(2) = 20 [L+ fy(R)]* [+ fy(kr, k)] x

< [+ £y (ks (1 — 2))]? [1 —E, F

+1—z

+a1-2)].

where k is the momentum of initial parton (which is assumed to be along longi-
tudinal direction); k7 is the transverse momentum of the emitted parton, and z
is the longitudinal momentum fraction of the initial parton carried by the emitted
parton.

Equation (7) can be compared with the following expressions for the splitting
functions in vacuum obtained by Altarelli and Parisi [11] at the leading order in
coupling constant o:

1+ (1—-2)2
P(z) = Gty T2

1 2
Polz) = Go(R) ==, (8)
Pyg(2) =2C4 I;Z—i—liz—l—z(l—z)

We will present derivation of Eq. (7) in this paper.

The paper is organized as follows. In Sec.1 we briefly review the deriva-
tion of quark and gluon splitting functions in vacuum. In Sec.2 we describe
Schwinger—Keldysh closed-time path integral formalism in nonequilibrium QCD
relevant to our calculation. In Sec.3 we derive quark and gluon splitting func-
tions P;; in nonequilibrium QCD by using closed-time path integral formalism.
The last section contains conclusions.

1. QUARK AND GLUON SPLITTING FUNCTIONS IN VACUUM

In this section we briefly review the derivation of quark and gluon split-
ting functions F;; in vacuum. We will present our calculation in the S-matrix
approach. Hence, our derivation is slightly different from [11].
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Consider a quark with momentum p4 emitting a gluon with momentum ppg
in the process q(pa) — g(pB) + ¢(pc). The S-matrix element for this process is
given by

50 = / N [§(2) 4% () T (2)] | ©)

where (the normalization is from [15])

Y(z) = v (2) + ¢ (2)

—ZZ\/VE ay(p)u(p) e + al(p)o(p) 7|
spin  p

=33\ JvE [@ew) e +almup)e?]. (10)

Al(z) = A (z) + A" (2) =

=335 [ @ e + o) o).

spin p

In the above equations, aq(p), ag(p), and a,(p) are annihilation operators for
quark, antiquark, and gluons, respectively. In Eq. (10) the suppression of color
indices is understood. The initial and final states are

[i) = la(pa)) = al(p4)[0),

an
1) = lawe), 9(ps)) = al(pc)al(ps)|0),
where pc = pa — pp. Hence we find
(1) Vv 2 m om 9
[(FISDiy? = Z|M| (12)

(Ec + Ep — Ea) VEcVE4 2VE

lIl

where

M =igu(pc) yuu(pa) € (pp) T (13)



ALTARELLI-PARISI EQUATION IN NONEQUILIBRIUM QCD 1443

For massless quarks, we find

Vd3p

— (1) i\ |2 c —

Wg(] |<f|S |Z>| (27’()3

2 d?’pC Ep 1

g (27‘(‘)3 QEAEc(ZEB)Q (EC + FEp — EA)2

X Trlpoy' P47 ] <6” - p—§§B> . (14)
B

X

which gives the quark-to-gluon splitting function

1+(1-2)2
Pyy(z) = G =20 15)
Similarly we find the quark-to-quark splitting function
1422
Pyq(2) = Ca2(R) 1—2 (16)
and the gluon-to-gluon splitting function
1-=2 z
Pyy(z) =2Cyu . + 1_Z—kz(l—z) . (17)

2. NONEQUILIBRIUM QCD USING CLOSED-TIME PATH FORMALISM

Unlike pp collisions, the ground state at RHIC and LHC heavy-ion collisions
(due to the presence of a QCD medium at initial time ¢ = ¢, (say ti, = 0)) is
not a vacuum state |0) any more. We denote |in) as the initial state of the non-
equilibrium QCD medium at ¢;,. The nonequilibrium distribution function f(k)
of a parton (quark or gluon), corresponding to such an initial state is given by

(' (K)a(k')) = (infa’ (K)a(k')[in) = f(k)o, (18)

where we have assumed space translational invariance at initial time.
Finite temperature field theory formulation is a special case of this when

1
Jlk) = exp (ko/T) £1°
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2.1. Quarks in Nonequilibrium. The nonequilibrium (massless) quark prop-
agator at initial time ¢t = t;, is given by (suppression of color indices is under-
stood)

G(k)ij =
% 4 omd (k) f,(K)  — 28 (k2)0(—ko) + 275(K) £, (K)

= k + e 1 I (19)
—2710(k)0(ko) + 2m5 (k) fo(k)  — =t 216 (k?) f, (k)

where i,j = 4, —, and f,(k) is the arbitrary nonequilibrium distribution function
of quark.

2.2. Gluons in Nonequilibrium. @ We work in the frozen ghost forma-
lism [3,4], where the nonequilibrium gluon propagator at initial time ¢ = t;, is
given by (the suppression of color indices is understood)

ket kv

GH(k)ig = =i 19" + (@ =1)—3

vac -y ymed
Gij (k) — T Gij (k), (20)

where 7, j = 4, —. The transverse tensor is given by

N L (k-u)(uPkY 4+ uVkP) — kPR — K2utu?
TH (k) = gh — g , 1)

with the flow velocity of the medium u#. G}3°(k) are the usual vacuum propa-
gators of the gluon

1
= —276(k?)0(—ko)
Gt =| R | , (22)
—2m0(k*)0(ko) .
and the medium part of the propagators is given by
G (k) = 2w (k) £, (k) ( L ). 23)

2.3. Ratio of Characteristic Relaxation Time of the Nonequilibrium State
to the QCD Evolution Time. The typical relaxation time in the nonequilibrium
QCD plasma can be written as [16—18]

1

~
NOty

(24)

Te =

where

n:/ﬁ%ﬂm (25)
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is the parton number density in terms of the nonequilibrium parton distribution
function f(k), and &y, is the typical transport cross section of the partonic col-
lisions in the nonequilibrium QCD plasma which depends on the nonequilibrium
parton distribution function f(k).

Consider, for example, the gg — gg scattering. The leading-order partonic
differential cross section in vacuum is given by

dé  9ma? SU
- = 5 3 ————— —~ 26
dt 252 2 a2 2] (26)

which in the infrared limit £ — 0 diverges

dé 9ma?

22 % @7

dt 2t2
However, in the medium, the medium modified resumed gluon propagator re-
moves this infrared divergence and the typical finite-differential cross section
becomes [19]

do  9ra? 1

di 8 |[(Hp—#& L -1

) M - B, — 1)
1 1
T R T D M

where II; and IIr are the longitudinal and transverse components of the gluon
self-energy which depend on the nonequilibrium distribution function f(k). One
can see that even at the one-loop level of the self-energy the magnetic screening
mass is nonzero [3,4,20,21] as long as the nonequilibrium distribution function
f(k) is nonisotropic, i.e., it depends on the direction of k of the parton, which
is the case at the early stage of the heavy-ion collisions at RHIC and LHC.
The expressions of the medium modified resumed gluon propagator at the one-
loop level of self-energy in nonequilibrium in covariant gauge is recently deri-
ved in [3,4].
The transport cross section [16, 19]

0 0 R
_db 6 4iik
o = / di 22 5in20,,, = / i == (29)
dt dt §
—3/2 —3/2

for this process can be obtained by using Eq. (28). Since gluons are dominate part
of the total parton production at the early stage of the heavy-ion collisions at RHIC
and LHC, one can get an estimate of the relaxation time of the nonequilibrium
state from Egs. (24), (25), (28), and (29). For example, the typical value of the
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maximum relaxation time in nonequilibrium state found in [16] is ~ 1.5 fm at
RHIC and LHC heavy-ion colliders.

The typical QCD evolution time associated with the DGLAP evolution equa-
tion of the fragmentation function is given by

t =InQ, (30)

where
Q=n (3D

is the energy scale determined by the hard process probing fragmentation func-
tion [22].

3. QUARK AND GLUON SPLITTING FUNCTIONS
IN NONEQUILIBRIUM QCD

In this section we evaluate quark and gluon splitting functions P;; in non-
equilibrium QCD. Similar to the vacuum case in [11] (see Eq. (11)) we define the
state |¢) and |f) in nonequilibrium QCD as follows:

[i) = la(pa)) = al(pa)lin),

32
)= lae)s  9(ps)) = al (pe)al (ps) i), 42

where |in) is the initial state of the nonequilibrium QCD medium. It has to be
remembered that for evaluating the Feynman diagrams and S matrix we work
in the interaction picture, where the fields ¥ (z) and A, (z) obey the free field
equations in terms of creation and annihilation operators as given by Eq. (10).
From Egs. (32) and (9) we find

(f15W1i) = ZLq/d‘lfﬂﬁnlaq(PC) ag(pp) N[ (2) 4% (@) T*%(x)] af (pa)lin), (33)

which gives by using Eq. (10)

(1), _ 4
718V =g [ d 25 v\ 7R ,,\/ZVE

Yl ()6 () o T
x [aq<p">u<p">e—w '”]aq(m)lin>~ (4

x (infaq(pc)ag(ps)[al (p)u(p) e
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Performing z integration we find

(A1l =ig}, > E+E’ 20 \/VE \/VE~\/2VE
spin p,p’ p”

x (inlay (pc)ag (ps) a} (p)u(p)] bua) (p')e
X [aq(p )u(p//)]aq(pA)|1n>. (35)

In the interaction picture, the commutation relations are the same as that for free
field operators

[a(p), aT (p/)] = 5;0;0’7
36
(a(p). ap)] = [at (p). a' ()] = 0. 30

which gives

ISV =ig D 2, E+E’ E") \/VE \/VE,,\/WE
spin p,p’ p”

x {in[[al (p)aq(pc) + dppelulp)yulal (0)ag(p) + 8pps]
x e (p') T al (pa)ag(p”) + 8prpaJu(p”)lin).  (37)

For our purpose of evaluating Feynman diagrams in momentum space, we
use Eq. (18)

(in|a,tap/|in> =f(p )(553,, (38)

where we have assumed the space-translational invariance at initial time ¢ = t;,, =
0. Using Eq.(38) and summing over p, p’, and p”, we find from Eq. (37)

Vv 2 m m 1
W72 —
S0 = | BT By — By VEcVEA2VES S
X [1+ fo(pe)® [+ fo(pB))? [1+ fo(pa))® DM, (39)
spin
where
M = igu(pc) yuulpa) € (pp)T*. (40)

From now onwards, we can follow exactly the same steps as in the vacuum
case (see Sec. 1, the derivations after Eq. (12)) to find the probability

Qs

21

X [L+ fo(pp)* [L+ fo(pa)]

W =Co(R)5= [1+ fo(po)]” X

N2
2 # dz d(In p2). (41)
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3.1. Quark-to-Gluon Splitting Function in Nonequilibrium QCD. From
Eq.(41) we find the quark-to-gluon splitting function in nonequilibrium QCD at
leading order in a:

Pyq(2) = Co(R) [1+ fo(p)* [L+ fo(pr, 2p))*

(1t (e (0 2 FELZEE

(42)

which reproduces Eq. (7).

In the above equation, p is the momentum of initial quark (which is as-
sumed to be along longitudinal direction); pr is the transverse momentum of the
gluon, and z is the longitudinal momentum fraction of the initial quark carried
by the gluon.

3.2. Quark-to-Quark Splitting Function in Nonequilibrium QCD. The quark-
to-quark splitting function (in the process ¢(pa) — q(pg) + g(pc)) can be
obtained from the quark-to-gluon splitting function (in the process ¢(pa) —
g(pB) + q(pc)) with the replacement z — (1 — z)

Pyy(2) = Pgq(l—2), z<1. (43)

Hence we find from Eq. (42) the quark-to-quark splitting function in nonequilib-
rium QCD

Pyq(2) = Co(R) [1 + fq(p)]2><
14 22

X [L+ fo(=pr, (1 = 2)p)*[1 + fy(pr, 2p)]? 1= (44)
which reproduces Eq. (7).
3.3. Gluon-to-Gluon Splitting Function in Nonequilibrium QCD. Similarly,
using three-gluon vertex and carrying out the similar algebra, we find gluon-to-
gluon splitting function in nonequilibrium QCD

Pyg(2) = 2Ca [L+ fy(p)]* [L + fo(pr, 2p))*

% (14 fy(—pr. (1— 2)p)? |22 4 2

z 1—=z

+2(1=2)| 45)

which reproduces Eq. (7).

The splitting functions in nonequilibrium QCD as given by Eqs. (42), (44),
and (45) can be used to study DGLAP evolution equation of fragmentation func-
tion in nonequilibrium QCD [8, 14] to study high-pr hadron production from
quark—gluon plasma at RHIC and LHC.
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CONCLUSIONS

RHIC and LHC heavy-ion colliders are the best facilities to study quark—
gluon plasma in the laboratory. Since two nuclei travel almost at a speed of light,
the QCD matter formed at RHIC and LHC may be in nonequilibrium. Since the
fragmentation function is a non-perturbative quantity, we do not have theoretical
tools in QCD to calculate it yet. The normal procedure at high-energy pp, ep, and
ete™ colliders is to extract it at some initial momentum scale po and then evolve
it to another scale p by using the DGLAP evolution equation which involves
splitting function Pj; of a parton j into a parton ¢. The quark and gluon splitting
functions in vacuum are evaluated by Altarelli and Parisi in [11] at the leading
order in coupling constant ;. In order to apply this procedure at high-energy
heavy-ion colliders at RHIC and LHC one needs to prove factorization of fragmen-
tation function in nonequilibrium QCD. Recently, we have proved factorization
theorem in nonequilibrium QED in [13] and in nonequilibrium QCD in [14].

In this paper we have evaluated the quark and gluon splitting functions in
nonequilibrium QCD at the leading order in coupling constant «s by using closed-
time path integral formalism. For quarks and gluons with arbitrary nonequilibrium
distribution functions f,(p) and f,(p), we have derived expressions for quark and
gluon splitting functions in nonequilibrium QCD. We have found that the quark
and gluon splitting functions depend on nonequilibrium distribution functions
fq(p) and fy(p). We have made a comparison of these splitting functions with
those obtained by Altarelli and Parisi in vacuum.

The splitting functions in nonequilibrium QCD can be used to study DGLAP
evolution equation of fragmentation function in nonequilibrium QCD [8, 14] to
study high-pr hadron production from quark—gluon plasma [16,23] at RHIC
and LHC.
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