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We present a model of the gravitational ˇeld based on two symmetric tensors. The equations of
motion of test particles are derived. Massive particles do not follow a geodesic, but massless-particles
trajectories are null geodesics of an effective metric. Outside matter, the predictions of the model
coincide exactly with general relativity, so all classical tests are satisˇed. In cosmology, we get
accelerated expansion without a cosmological constant. Additionally, we study the quantization of the
model. The main result being that the effective action is ˇnite and receives one-loop corrections only.

PACS: 04.20.-q

INTRODUCTION

General Relativity (GR) works very well at the macroscopic scales [1]. Its
quantization has proved to be difˇcult, though. It is nonrenormalizable, which
prevents its uniˇcation with the other forces of Nature. Trying to make sense of
quantum GR is the main physical motivation of String Theories [2]. Moreover,
recent discoveries in cosmology [3,4] have revealed that the most part of matter
is in the form of unknown matter (dark matter, DM) and that the dynamics
of the expansion of the Universe is governed by a mysterious component that
accelerates the later stages of the expansion (dark energy, DE). Although GR is
able to accommodate both DM and DE, the interpretation of the dark sector in
terms of fundamental theories of elementary particles is problematic [5]. Although
some candidates exist that could play the role of DM, none have been detected
yet. Also, an alternative explanation based on the modiˇcation of the dynamics
for small accelerations cannot be ruled out [6].

In GR, DE can be explained if a small cosmological constant (Λ) is present.
At the later stages of the evolution of the Universe, Λ will dominate the expansion,
explaining the acceleration. Such small Λ is very difˇcult to generate in Quantum
Field Theory (QFT) models, because in this models Λ is the vacuum energy,
which is usually very large.

In recent years, there has been various proposals to explain the observed
acceleration of the Universe. They involve the inclusion of some additional
ˇeld like in quintessence, chameleon, vector dark energy or massive gravity;
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addition of higher order terms in the EinstenÄHilbert action, like f(R) theories
and GaussÄBonnet terms; modiˇcation of gravity on large scales by introduction
of extra dimensions. For a review, see [7].

Less widely explored, but interesting possibilities, are the search for non-
trivial ultraviolet ˇxed points in gravity (asymptotic safety [9]) and the notion
of induced gravity [10]. The ˇrst possibility uses exact renormalization-group
techniques [11], and lattice and numerical techniques such as Lorentzian triangu-
lation analysis [12]. Induced gravity proposed that gravitation is a residual force
produced by other interactions.

In recent papers [13, 14], a ˇeld theory model explores the emergence of
geometry by the spontaneous symmetry breaking of a larger symmetry where the
metric is absent. Previous works in this direction can be found in [15,16] and [17].

In this paper, we will review the results of [21, 31]. The main observation
is that GR is ˇnite on shell at one loop [18]. In [19,20], we presented a type of
gauge theories, δ gauge theories (DGT). The main properties of DGT are: 1) The
classical equations of motion are satisˇed in the full quantum theory. 2) They
live at one loop. 3) They are obtained through the extension of the former
symmetry of the model introducing an extra symmetry that we call δ symmetry,
since it is formally obtained as the variation of the original symmetry. When we
apply this prescription to GR, we obtain δ gravity. Quantization of δ gravity is
discussed in [21].

The impact of dark energy on cosmological observations can be expressed in
terms of a �uid equation of state p = w(R)ρ, which is to be determined studying
its in�uence on the large-scale structure and dynamics of the Universe.

In this paper we follow the same approach. So, we will not include the matter
dynamics, except by demanding that the energy-momentum tensor of the matter
�uid is covariantly conserved. This is required in order to respect the symmetries
of the model.

The main properties of this model at the classical level are: a) It agrees with
GR, outside the sources and with adequate boundary conditions. In particular, the
causal structure of delta gravity in vacuum is the same as in general relativity. So,
all standard tests are satisˇed automatically. b) When we study the evolution of
the Universe, it predicts acceleration without a cosmological constant or additional
scalar ˇelds. The Universe ends in a Big Rip, similar to the scenario considered
in [23]. c) The scale factor agrees with the standard cosmology at early times
and shows acceleration only at late times. Therefore we expect that density
perturbations should not have large corrections.

It should be remarked that δ gravity is not a metric model of gravity because
massive particles do not move on geodesics. Only massless particles move on
null geodesics of a linear combination of both tensor ˇelds.

Upon quantization, the model exhibits several remarkable properties. The
effective action receives one-loop corrections only. Moreover, all possible di-
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vergences of one-particle irreducible graphs vanish. Thus δ gravity is a ˇnite
quantum ˇeld theory.

It was noticed in [20] that the Hamiltonian of delta models is not bounded
from below. Phantoms cosmological models [22, 23] also have this property.
Although it is not clear whether this problem will subsist in a diffeomorphism
invariant model as delta gravity or not, we mention some ways out of the difˇculty
at the end.

In Sec. 1, we write the action deˇning the model and the corresponding sym-
metries. Section 2 discusses the motion of particles in the model. In Sec. 3, we
deˇne proper time and distances. In Sec. 4, we obtain the Newtonian limit. In
Sec. 5, we solve the equations of the model for FriedmanÄRobertsonÄWalker met-
ric. In Sec. 6, we ˇnd the red shift. In Sec. 7, we deˇne luminosity distance. In
Sec. 8, we ˇt the equations of Sec. 5 to the supernova Ia data. Section 9 contains
a preliminary discussion of dark matter. In Sec. 10, we ˇnd the exact effective ac-
tion for a general δ model. Section 11 contains the computation of divergences in
the effective action of δ gravity, showing that it is a ˇnite quantum ˇeld theory, in
vacuum and without a cosmological constant. In Sec. 12, we exhibit the existence
of ghosts in the model in a particular gauge. Section 13 deals with the simplest
nonvanishing quantum corrections to the effective action of δ gravity. Section 14
contains the conclusions and brief discussions of open problems. In Appendix A,
we review δ symmetries. In Appendix B, we discuss a simpler model: a delta
harmonic oscillator, to illustrate the boundedness of the Hamiltonian.

1. DEFINITION OF DELTA GRAVITY

In this section we deˇne the action as well as the symmetries of the model
and derive the equations of motion.

We use the metric convention of [8]. The action of δ gravity is

S(g, g̃, λ) =
∫

ddx
√
−g

(
− 1

2κ
R + LM

)
+

+ κ2

∫ [(
Rμν − 1

2
gμνR

)
+ κTμν

]√
−gg̃μνddx+

+ κ2κ

∫ √
−g (λμ;ν + λν;μ)Tμν ddx. (1)

Here κ = 8πG/c4; κ2 is an arbitrary constant, and Tμν := − 2√−g

δ(
√−gLM )
δgμν

is the energy-momentum tensor of matter; Rμν is the Ricci's tensor, and R is the
curvature scalar of gμν ; g̃μν is a two-contravariant tensor under general coordinate
transformations.
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The action (1) is obtained by applying the prescription contained in [19,20].
That is, we add to the action of general relativity, the variation of it and consider
the variation δgμν = g̃μν as a new ˇeld. Similarly, the symmetries we write below
are obtained as variation of the inˇnitesimal general coordinate transformations
where the variation of the inˇnitesimal parameter δξρ

0 = ξρ
1 is the inˇnitesimal

parameter of the new transformation δ. The last term in (1) is needed to implement
the condition T μν

;ν = 0 as an equation of motion in order to implement the δ
symmetry (2) off shell. This term is not needed in vacuum (see Secs. 11Ä13).

Action (1) is invariant under the following transformations (δ):

δgμν = gμρξ
ρ
0,ν + gνρξ

ρ
0,μ + gμν,ρξ

ρ
0 = ξ0μ;ν + ξ0ν;μ,

δg̃μν(x) = ξ1μ;ν + ξ1ν;μ + g̃μρξ
ρ
0,ν + g̃νρξ

ρ
0,μ + g̃μν,ρξ

ρ
0 , (2)

δλμ = −ξ1μ + λρξ
ρ
0,μ + λμ,ρξ

ρ
0 .

From now on, we will ˇx the gauge λμ = 0. This gauge preserves general coordi-
nate transformations but ˇxes completely the extra symmetry with parameter ξ1μ.

Equations of motion. Varying gμν , we get

Sγσ +
1
2
(Rg̃γσ − gμν g̃μνRγσ) − 1

2
gγσ 1√−g

(√
−g∇ν g̃μν

)
,μ

+

1
4
gγσ 1√−g

(√
−ggαβ∇β(gμν g̃μν)

)
,α

= κ
δTμν

δgγσ
g̃μν , (3)

where Sγσ = (Uσβγρ+Uγβσρ−Uσγβρ);ρβ , Uαβγρ = (1/2)[gγρ(g̃βα−(1/2)gαβ×
gμν g̃μν)].

Varying g̃μν , we get the Einstein equation(
Rμν − 1

2
gμνR

)
+ κTμν = 0. (4)

Varying λμ, we get: T μν
;ν = 0.

Covariant derivatives as well as raising and lowering of indices are deˇned
using gμν . Notice that outside the sources (Tμν = 0), a solution of (3) is
g̃μν = λgμν , for a constant λ, since gμν

;ρ = 0 and Rμν = 0. We will have
g̃μν = gμν , assuming that both ˇelds satisfy the same boundary conditions far
from the sources.

The equation for g̃μν is linear and of the second order in the derivatives.

2. PARTICLE MOTION IN THE GRAVITATIONAL FIELD

We are aware of the presence of the gravitational ˇeld through its effects on
test particles. For this reason, here we discuss the coupling of a test particle to
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a background gravitational ˇeld, such that the action of the particle is invariant
under (2).

In δ gravity, we postulate the following action for a test particle:

Sp = −m

∫
dt

√
−gμν ẋμẋν + κ′

2

∫
dny

√
−gTμν (g̃μν + λμ;ν + λν;μ) ,

where Tμν is the energy-momentum tensor of the test particle

Tμν(y) =
m

2
√−g

∫
dt

ẋμẋν√
−gαβẋαẋβ

δ(y − x),

κ′
2 = κ2κ is a dimensionless constant. That is,

Sp = m

∫
dt√

−gαβẋαẋβ

(
gμν +

κ2

2

′
ḡμν

)
ẋμẋν , (5)

where ḡμν = g̃μν + λμ;ν + λν;μ. Notice that Sp is invariant under (2) and
t-parameterizations.

From now on, we work in the gauge λμ = 0.
Since far from the sources, we must have free particles in Minkowski space,

i.e., gμν ∼ ημν , g̃μν ∼ ημν , it follows that we are describing the motion of a
particle of mass m′ = m(1 + κ′

2/2′).
Since in vacuum g̃μν = gμν , the equation of motion for test particles is the

same as Einstein's. Moreover, the equation of motion is independent of the mass
of the particle.

In order to include massless particles, we prefer to use the action [24]

L =
1
2

∫
dt

(
vm2 − v−1 (gμν + κ′

2ḡμν) ẋμẋν+

+
m2 + v−2 (gμν + κ′

2ḡμν) ẋμẋν

2v−3gαβ ẋαẋβ

(
m2 + v−2gλρẋ

λẋρ
))

. (6)

This action is invariant under reparameterizations:

x′(t′) = x(t), dt′v′(t′) = dtv(t), t′ = t − ε(t). (7)

The equation of motion for v is

v = −
√
−gμνẋμẋν

m
. (8)

Replacing (8) into (6), we get back (5).
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Let us consider ˇrst the massive case. Using (7) we can ˇx the gauge v = 1.
Introducing m dt = dτ , we get the action

L1 =
1
2
m

∫
dτ

(
1 − (gμν + κ2ḡμν) ẋμẋν+

+
1 + (gμν + κ2ḡμν) ẋμẋν

2gαβẋαẋβ

(
1 + gλρẋ

λẋρ
))

(9)

plus the constraint obtained from the equation of motion for v

gμν ẋμẋν = −1. (10)

From L1 the equation of motion for massive particles is derived. We deˇne:
gμν = gμν + (κ′

2/2)ḡμν ,

d(ẋμẋνgμν ẋβgαβ + 2ẋβ ḡαβ)
dτ

− 1
2
ẋμẋν ḡμν ẋβ ẋγgβγ,α − ẋμẋνgμν,α = 0. (11)

We will discuss the motion of massive particles elsewhere.
The action for massless particles is

L0 =
1
4

∫
dt

(
−v−1 (gμν + κ2ḡμν) ẋμẋν

)
. (12)

In the gauge v = 1, we get

L0 = −1
4

∫
dt (gμν + κ2ḡμν) ẋμẋν (13)

plus the equation of motion for v evaluated at v = 1: (gμν + κ′
2ḡμν) ẋμẋν = 0.

So, the massless particle moves on a null geodesic of gμν = gμν + κ′
2ḡμν .

3. DISTANCES AND TIME INTERVALS

In this section, we deˇne the measurement of time and distances in the model.
In GR, the geodesic equation preserves the proper time of the particle along

the trajectory. Equation (11) satisˇes the same property: Along the trajectory
ẋμẋνgμν is constant. Therefore we deˇne proper time using the original met-
ric gμν ,

dτ =
√
−gμν dxμ dxν =

√
−g00 dx0(dxi = 0). (14)

Following [25], we consider the motion of light rays along inˇnitesimally near
trajectories and (14) to get the three-dimensional metric:

dl2 = γij dxi dxj , γij =
g00

g00

(
gij −

g0ig0j

g00

)
. (15)
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That is, we measure proper time using the metric gμν but the space geometry
is determined by both metrics. In this model, massive particles do not move on
geodesics of a four-dimensional metric. Only massless particles move on a null
geodesic of gμν . So, delta gravity is not a metric theory.

4. THE NEWTONIAN LIMIT

The motion of a nonrelativistic particle in a weak static gravitational ˇeld is
obtained using

gμν = diag (−1 − 2Uε, 1 − 2Uε, 1 − 2Uε, 1 − 2Uε), (16)

which solves the Einstein equations to the ˇrst order in ε if ∇2U = (1/2)κρ.

The solution for g̃μν is

g̃μν = diag (εŨ , 1 + ε(Ũ − 2U), 1 + ε(Ũ − 2U), 1 + ε(Ũ − 2U)). (17)

Solving (3), to the ˇrst order in ε we get ∇2Ũ = (1/2)κρ.
To recover the Minkowsky metric far from the sources, ρ → 0, we must

require there: U → 0, Ũ → −ε−1.
Equation (11) implies d2xi/dt2 = −φ,i with φ = U − κ′

2(2U + Ũ).
The Newtonian potential satisˇes ∇2φ = (κ/2)(1 − 3κ′

2)ρ, |κ′
2| � 1. The

whole effect is a small redeˇnition of the Newton constant.
Gravitational red shift experiments can be used to put bounds on κ′

2. Ac-
cording to (14), the shift in frequency of a source located at x1, compared to
the same source located at x2, due to the change in gravitational potential is:
(ν2 − ν1)/ν1 = φN (x2) − φN (x1), where φN is the usual Newtonian poten-
tial, computed with κ as the Newton constant. From [26], we get Δν/ν =
(1 + (2.5 ± 70) · 10−6)(ϕS − ϕE + . . .), where ϕS is the gravitational potential
at the spacecraft position and ϕE is the gravitational potential on the Earth. . . .
accounts for additional effects not related to the gravitational potential. We can
ascribe the uncertainty of the experiment to κ′

2, to get the bound

|κ′
2| < 24 · 10−6.

This bound is conservative because the Newton constant itself has a larger er-
ror [27]: G = (6.67428± 0.00067) · 10−11 m3/kGs2.

In our description of the evolution of the Universe, the value of κ′
2 is not

important, so we will keep it arbitrary for the time being.
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5. FRIEDMANÄROBERTSONÄWALKER (FRW) METRIC

In this section, we discuss the equations of motion for the Universe de-
scribed by the FRW metric. We use spatial curvature equal to zero to agree with
cosmological observations.

Here we will deal only with a perfect �uid, since rotational and translational
invariance implies that the energy-momentum tensor of the Universe has this
form. The energy-momentum tensor for a perfect �uid is [8]

Tμν = pgμν + (p + ρ)UμUν , gμνUμUν = −1, (18)

then
δTμν

δgγσ
g̃μν = pg̃γσ +

1
2
(p + ρ)(UγUν g̃σν + UσUν g̃γν). (19)

In this case, assuming �at three-dimensional metric:

−ds2 = dt2 − R(t)2
{
dr2 + r2dθ2 + r2 sin2 θdφ2

}
,

−ds̃2 = Ã(t)dt2 − B̃(t)
{
dr2 + r2dθ2 + r2 sin2 θdφ2

}
.

Using (11), (14), we can check that these are co-mobile coordinates and the proper
time interval dτ for a co-moving clock is just dt, so t is the time measured in the
rest frame of a co-moving clock. Equations (3), (19) give

−Ṙ ˙̃B − 1
2
pRB̃ +

1
2
R−1Ṙ2B̃ − 1

6
ρR3Ã +

3
2
RṘ2Ã = 0,

−pB̃ − 2 ¨̃B − R−2Ṙ2B̃ + 2R−1R̈B̃+2R−1Ṙ ˙̃B+ (20)

+ ρ R2Ã + Ṙ2Ã + 2RṘ ˙̃A + 2RÃR̈ = 0.

Einstein's equations are

3((d/dt)R)2

R2
= κρ, 2R

(
d2

dt2
R

)
+

(
d

dt
R

)2

= −κR2p.

We use the equation of state p = wρ, to get, for w �= −1:

R = R0t
2

3(1+w) , Ã = 3wl2t
( w−1

w+1 ),

B̃ = R2
0l2t

b, b =
4

3w + 3
+

w − 1
w + 1

,
(21)

l2 is a free parameter.
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6. RED SHIFT

To make the usual connection between red shift and the scale factor, we
consider light waves traveling from r = r1 to r = 0, along the r direction with
ˇxed θ, φ. Photons move on a null geodesic of g:

0 = −(1 + κ′
2Ã) dt2 + (R2 + κ′

2B̃)(dr2 + r2 dθ2 + r2 sin2 θ dφ2), (22)

so,
t0∫

t1

dt

√
1 + κ′

2tA

R2 + κ′
2tB

= r1. (23)

A typical galaxy will have ˇxed r1, θ1, φ1. If a second wave crest is emitted at
t = t1 + δt1 from r = r1, it will reach r = 0 at t0 + δt0, where

t0+δt0∫
t1+δt1

dt

√
1 + κ′

2tA

R2 + κ′
2tB

= r1.

Therefore, for δt1, δt0 small, which is true for light waves, we have

δt0

√
1 + κ′

2tA

R2 + κ′
2tB

(t0) = δt1

√
1 + κ′

2tA

R2 + κ′
2tB

(t1). (24)

Introduce

R̃(t) =

√
R2 + κ′

2tB

1 + κ′
2tA

(t).

We get
δt0
δt1

=
R̃(t0)
R̃(t1)

. A crucial point is that, according to equation (14), δt

measure the change in proper time. That is,
ν1

ν0
=

R̃(t0)
R̃(t1)

, where ν0 is the light

frequency detected at r = 0 corresponding to a source emission at frequency ν1.
Or in terms of the red shift parameter z, deˇned as the fractional increase of the
wavelength λ:

z =
R̃(t0)
R̃(t1)

− 1 =
λ0 − λ1

λ1
. (25)

We see that R̃ replaces the usual scale factor R in the computation of z.
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7. LUMINOSITY DISTANCE

Let us consider a mirror of radius b that is receiving light from a distant
source. The photons that reach the mirror are inside a cone of half-angle ε with
origin at the source.

Let us compute ε. The light path of rays coming from a far away source at
x1 is given by x(ρ) = ρn̂+x1; ρ > 0 is a parameter and n̂ is the direction of the
light ray. The path reaches us at x = 0 for ρ = |x1| = r1. Write n̂ = −x̂1 + ε.
Since n̂, x̂1 have modulus 1, ε = |ε| � 1 is precisely the angle between −x1 and
n̂ at the source. The impact parameter is the proper distance of the path from the
origin, when ρ = |x1|. The proper distance is determined by the 3-dimensional

metric (15). That is, b = R̃(t0)r1θ = R̃(t0)r1ε, i.e., ε =
b

R̃(t0)r1

.

Then the solid angle of the cone is πε2 =
A

r2
1R̃(t0)2

, where A = πb2 is

the proper area of the mirror. The fraction of all isotropically emitted photons

that reach the mirror is f =
A

4πr2
1R̃(t0)2

. Each photon carries an energy hν1

at the source and hν0 at the mirror. Photons emitted at intervals δt1 will arrive

at intervals δt0. We have
ν1

ν0
=

R̃(t0)
R̃(t1)

,
δt0
δt1

=
R̃(t0)
R̃(t1)

. Therefore the power at

the mirror is P0 = L
R̃(t1)2

R̃(t0)2
f , where L is the luminosity of the source. The

apparent luminosity is l =
P0

A
= L

R̃(t1)2

R̃(t0)2
1

4πr2
1R̃(t0)2

. In Euclidean space, the

luminosity decreases with distance d according to l = L/4πd2. This permits one

to deˇne the luminosity distance: dL =
√

L/4πl = R̃(t0)2
r1

R̃(t1)
. Using (23) we

can write this in terms of the red shift:

dL = (1 + z)

z∫
0

dz′

H̃(z′)
, H̃ =

˙̃R
R̃

. (26)

8. SUPERNOVA Ia DATA

The supernova Ia data gives m (apparent or effective magnitude) as a function
of z. This is related to distance dL by m = M + 5 log (dL/10pc). Here M is
common to all supernova, and m changes with dL alone.

We compare δ gravity to general relativity (GR) with a cosmological constant:

H2 = H2
0 (Ωm(1 + z)3 + (1 − Ωm)), ΩΛ = 1 − Ωm.
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Notice that Ã = 0 for w = 0 in (21). So, it seems that we cannot ˇt the supernova
data. However, w = 0 is not the only component of the Universe. The massless
particles that decoupled earlier still remain. It means that the true w is between
0 � w < 1/3, but very close to w = 0. So, we will ˇt the data with w = 0.1,
0.01, 0.001 and see how sensitive the predictions are to the value of w.

Using the data from Essence [28], we notice that R2 test changes very little
for the chosen sequence of ws. Each ˇt determines the best l2 for a given w. In
this way, we see that l2 scales like l2 ∼ a/3w, a being independent of w. As an
approximation to the limit w = 0, we get

R̃(t) = R(t)
√

a√
a − t

, (27)

√
1/3w renormalizes the derivative of R̃ at t = 0. It is not divergent, because

for t → 0, w → 1/3, a is a free parameter determined by the best ˇt to the data.
Of course, the complete model must include the contribution of normal matter

(w = 0) plus relativistic matter (w = 1/3). But, at later times, the data should
tend to (27).

Let us ˇt the data to the simple scaling model (27).
We get
Ωm = 0.22 ± 0.03, M = 43.29 ± 0.03, χ2(per point) = 1.0328, general

relativity;
a = 2.21 ± 0.12, M = 43.45 ± 0.06, χ2(per point) = 1.0327, delta gravity;
δ gravity with nonrelativistic (NR) matter alone gives a ˇt to the data as good

as GR with NR matter plus a cosmological constant.
According to the ˇt to data, a Big Rip will happen at t = 2.21049 in unities

of t0 (today). It is a similar scenario as in [23].
Finally, we want to point out that since for t → 0, we have w → 1/3, then

R̃(t) = R(t). Therefore the accelerated expansion is slower than (27) when we
include both matter and radiation in the model.

9. DARK MATTER

Several years ago, the astronomers were able to measure the speed of in-
dividual stars around the center of the galaxies [3]. Surprisingly, such speeds
v(r) as a function of the distance r to the galactic center, did not follow the
Kepler law. Most of the galactic mass was assumed to be in the form of stars,
which concentrate near the galactic center. So, the expectation was that the speed
of rotation of stars far from the center will decrease as r−1/2. The observation
shows that v(r) approaches a constant v0 far from the center. A natural way to
explain the observed velocities was to assume the existence of extra mass that
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cannot be seen but interacts gravitationally (dark matter, DM). Additional support
for the existence of DM comes from the study of galaxy stability against gravi-
tational collapse: The form of the galaxy that we can see (luminous part) is not
gravitationally stable unless we assume the existence of a spherically symmetric
halo that we cannot see.

From observation, we get that 80Ä90% of the galactic mass is DM.
However, the physical nature of dark matter is not known yet.
Most people think that DM is made of particles that interact weekly with

normal matter. Until recently the standard cosmological scenario was the so-
called Λ CDM model. That is, the evolution of the Universe is governed by a
cosmological constant Λ that produces the accelerated expansion of the Universe
(dark energy) [4, 29] and nonrelativistic particles (cold DM) that were the seeds
of the galaxies. However, recent simulations of the neighborhood of the Milky
Way [30] have challenged the CDM paradigma. They proposed instead that DM
particles are warm, with a rest mass of 1 keV.

There is an alternative to DM that is gaining some support: MOND [6].
The main idea of MOND involves a modiˇcation of Newton Second Law for
accelerations below a critical acceleration a0. In this way, the constant speed v0

of individual stars far from the galactic center is explained. Therefore, according
to MOND, DM particles do not exist.

Since DM particles have not been detected yet and even their existence is
challenged in some models, in this section we want to explore a different scenario
to understand the properties of galaxies. Preliminary studies of the solutions of
DG in vacuum have shown that it contains extra degrees of freedom that produces
an additional Newtonian potential far from the sources.

In fact, far from a source the gravitational ˇeld corresponds to the Schwarz-
schild solution: point-like source, spherically symmetric.

The exact solution is

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
(
1 − a

r

)
0 0 0

0
1

1 − a

r

0 0

0 0 r2 0
0 0 0 r2 sin (θ)2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

g̃μν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 − a

r
+

ba

r

)
0 0 0

0
1

1 − a

r

− ab

r
(
1 − a

r

)2 0 0

0 0 r2 0
0 0 0 r2 sin (θ)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (29)
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Boundary condition is gμν ∼ ημν g̃μν ∼ ημν for r → ∞. Notice that still there
are two arbitrary constants.

9.1. Newtonian Potential for Massive Particles

gμν = ημν + hμν , h00 =
a

r
, a = 2M,

g̃μν = ημν + h̃μν , h̃00 =
a(1 − b)

r
, a(1 − b) = 2M ′.

The Newtonian potential is

φ = −
((

1
1 + (κ2/2)′

− 1
2

)
h00 +

(κ2/2)′

1 + (κ2/2)′
h̃00

)
= −MT

r
.

So, the total mass of the source is

MT = M − κ′
2bM

1 + (κ2/2)′
.

So, the dark matter mass is

MDM = − κ′
2bM

1 + (κ2/2)′
. (30)

M is the mass coming from the �uid density in Einstein equations. b is a new
constant to accomodate DM.

9.2. Photons and Gravitational Lensing. The photon trajectory is given by[
−

(
1 − a

r

)
− κ′

2

(
1 − a

r
+

ba

r

)]
dt2+

+
[

1
1 − a/r

+ κ′
2

(
1

1 − a/r
− ab

r(1 − a/r)2

)]
dr2 = 0,[

−1 +
1
r

(
a − κ′

2ba

1 + κ′
2

)]
dt2 +

[
1 +

1
r

(
a − κ′

2ba

1 + κ′
2

)]
dr2 = 0.

So, according to photons:

MT = M − κ′
2bM

1 + κ′
2

. (31)

Notice that photons and massive particles see different MT , but since κ′
2 is very

small, this difference is hard to detect.
To determine if δ gravity can describe dark matter, we must be able to

compute the speed of stars rotating around the center of galaxies. This work is
in progress.
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10. EFFECTIVE ACTION FOR A GENERIC δ MODEL

In this section, we derive the exact effective action for a generic δ model.
We start by considering a model based on a given action S0[φI ], where φI

are generic ˇelds, then we add to it a piece that is equal to a δ variation with
respect to the ˇelds, and we let δφJ = φ̃J , so that we have

S[φ, φ̃] = S0[φ] + κ2

∫
d4x

δS0

δφI(x)
[φ]φ̃I(x), (32)

with κ2 Å an arbitrary constant, and the indexes I can represent any kind of
indexes. For more details of the deˇnition of δ, please, see Appendix A. This new
deˇned action shows the standard structure used to deˇne any modiˇed element
or function for δ-type models, for example, the gauge ˇxing and FaddeevÄPopov.
Next, we verify that this form of action is indeed the correct one for δ gravity
and so is invariant to the new general coordinate transformation.

We saw that the classical action for a δ model is (32). This in turn implies
that we now have two ˇelds to be integrated in the generating functional of Green
functions:

Z(j, j̃) = eiW (j,j̃) =
∫

DφDφ̃×

× exp
[
i

(
S0 +

∫
dNx

δS0

δφI
φ̃I +

∫
dNx(jI(x)φI(x) + j̃I(x)φ̃I (x))

)]
. (33)

We can readily appreciate that, because of the linearity of the exponent on φ̃J ,
what we have is the integral representation of a Dirac delta function, so that our
modiˇed model, once integrated over φ̃J , gives a model with a constraint making
the original model live on shell:

Z(j, j̃) =
∫

Dφ exp
[
i

(
S0 +

∫
dNxjI(x)φI(x)

)]
δ

(
δS0

δφI(x)
+ j̃I(x)

)
. (34)

A ˇrst glance at equation (34) could lead us to believe that this model is purely
classical. But we can see by doing a simple analysis that this is not so. For this,
we follow [32] (see also [33]).

Let ϕI solve the classical equation of motion:

δS0

δφI(x)

∣∣∣∣
ϕI

+j̃I(x) = 0. (35)

We have

δ

(
δS0

δφI(x)
+ j̃I(x)

)
=

−1

det

(
δ2S0

δφI(x) δφJ (y)

∣∣∣∣
ϕI

)
δ(φI − ϕI). (36)
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Therefore

Z(j, j̃) =
∫

Dφ exp
[
i(S0 +

∫
dNxjI(x)φI (x))

]
δ

(
δS0

δφI(x)
+ j̃I(x)

)
,

(37)

= exp
[
i(S0(ϕ) +

∫
dNxjI(x)ϕI(x))

]
−1

det

(
δ2S0

δφI(x)δφJ (y)

∣∣∣∣
ϕI

)
.

Notice that ϕ is a functional of j̃. The generating functional of connected Green
functions is

W (j, j̃) = S0(ϕ) +
∫

dNxjI(x)ϕI (x) + i Tr

(
log

(
δ2S0

δφI(x)δφJ (y)

∣∣∣∣
ϕI

))
. (38)

Deˇne

ΦI(x) =
δW

δjI(x)
,

= ϕI(x)

Φ̃I(x) =
δW

δj̃I(x)
.

The effective action is deˇned by

Γ(Φ, Φ̃) = W (j, j̃) −
∫

dNx
{
jI(x)ΦI(x) + j̃I(x) Φ̃I(x)

}
.

We get, using equations (35) and (38):

Γ(Φ, Φ̃) = S0(Φ) +
∫

dNx
δS0

δΦI(x)
Φ̃I(x) + i Tr

(
log

(
δ2S0

δΦI(x)δΦJ (y)

))
. (39)

This is the exact effective action for δ theories. In this proof, it is assumed that
all the relevant steps for ˇxing the gauge have been made in (33), so S0 in-
cludes the gauge ˇxing and FaddeevÄPopov Lagrangian. More details can be
found in [21].

Comparing equation (16.42) of [32] with equation (39), we see that the one-
loop contribution to the effective action of δ theories is exact, and the δ modiˇed
model lives only to one loop because higher corrections simply do not exist.
Finally, it is twice the one-loop contribution of the original theory from which
the δ model was derived. This results from having doubled the number of degrees
of freedom. We also see that this term does not depend on the φ̃I ˇelds.
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11. DIVERGENT PART OF THE EFFECTIVE ACTION
IN DELTA GRAVITY IN VACUUM

AND WITHOUT A COSMOLOGICAL CONSTANT

In the previous section, we demonstrated that the quantum corrections to
the effective action do not depend on the tilde ˇelds, in this case g̃μν . On
the other hand, renormalization theory tells us that its divergent corrections can
only be local terms. So, by power counting and invariance of the background
ˇeld effective action under general coordinate transformations, we know that the
divergent part to L loops is [21,34,35]

ΔSL
div ∝

∫
d4x

√
−g RL+1, (40)

where RL+1 is any scalar contraction of (L + 1) Riemann tensors. As our model
lives only to one loop, then

Ldiv
Q =

√
−g(a1R

2 + a2RαβRαβ). (41)

We do not use RαβγλRαβγλ because we have the topological identity in four
dimensions:

√
−g

(
RαβγλRαβγλ − 4RαβRαβ + R

)
= total derivative. (42)

The divergent part of the effective action in our model (i.e., a1 and a2 in (41)),
was calculated in [21]. It is

Ldiv
Q,grav =

√
−g

�c

ε

(
7
12

R2 +
7
6
RαβRαβ

)
,

Ldiv
Q,ghost = −2

√
−g

�c

ε

(
17
60

R2 +
7
30

RαβRαβ

)
, (43)

Ldiv
Q =

√
−g

�c

ε

(
1
60

R2 +
7
10

RαβRαβ

)
,

with ε = 8π2(N − 4). N is the dimension of space-time in dimensional regular-
ization. When we compare with the usual result in gravitation [34, 36], we can
see that we obtain twice the divergent term of general relativity. Divergences
also double in YangÄMills [37].

Moreover, since Einstein's equations of motion are exactly valid at the quan-
tum level, (

δΓ(g, g̃)
δg̃μν

)
= Rμν = 0, (44)



DELTA GRAVITY 359

where Γ(g, g̃) is the effective action in the background ˇeld method. It follows
that the contribution of (43) to the equation of motion vanishes:

�c

[√−g

ε

(
1
2
gμν

(
1
60

R2 +
7
10

RαβRαβ

)
+

+
1
30

R
δR

δgμν
+

7
10

Rαβ
δRαβ

δgμν
+

7
10

Rαβ δRαβ

δgμν

)]
Rαβ=0

= 0. (45)

Therefore, δ gravity is a ˇnite model of gravitation if we do not have matter
and a cosmological constant. The ˇniteness of our model implies that Newton's
constant does not run at all, neither with time nor energy scale, which would be
supported by the very stringent experimental bounds set on its change [38, 39].
We must notice that this model is ˇnite only in four dimensions because we
need (42). Moreover, in more dimensions there could appear more terms in (41),
that contains Rμ1μ2...μN with N Å the dimension of space, that give a nonzero
contribution to the equations of motion.

In spite of these apparent successes, there seems to be a problem with this
model, namely is the possible existence of ghosts. This issue will be dealt with
in the next section.

12. GHOSTS

In this section, we discuss the fact that our model has ghosts, as well as the
lost of unitarity due to them. In order to proceed with this endeavor, we ˇrst
write the action (1) in vacuum, i.e., LM = 0, Tμν = 0, λμ = 0, and putting the
backgrounds equal to the Minkowski metric gμν = ημν+hμν and g̃μν = ημν+h̃μν ,
and calculate from it the canonical conjugate momenta to the quantum ˇelds. It
is important to notice that a gauge has been chosen (49), (50). Thus, it is possible
to show that under these conditions and in this gauge, the quantum ˇelds obey
the wave equation, and an expansion in plane waves is possible where the Fourier
coefˇcients are promoted to creation and annihilation operators much in the same
way as can be done for the electromagnetic potential. We use the canonical
commutation relations for ˇelds and momenta to work out the corresponding
canonical commutation relations for the creation and annihilation operators. We
also show ˇrst the Hamiltonian in terms of ˇelds and momenta and then in terms
of annihilation and creation operators.

We obtain

S[h, h̃] =

= − 1
2κ

∫
d4xP ((αβ)(μν))

(
(1 − κ2)

2
∂ρhαβ∂ρhμν + κ2∂ρh̃αβ∂ρhμν

)
, (46)
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where now

P ((αβ)(μν)) =
1
4

(
ηαμηβν + ηανηβμ − ηαβημν

)
, (47)

and the equations of motion for the ˇelds are

∂2hμν = 0, ∂2h̃μν = 0, (48)

with ∂2 = ηρλ∂ρ∂λ. This corresponds to the wave equation with energy Ep = |p|.
Here we notice that in order to obtain these equations, we have made use of a
particular gauge ˇxing term

hν
μ,ν − 1

2
hν

ν,μ = 0, (49)

h̃ν
μ,ν − 1

2
h̃ν

ν,μ = 0. (50)

It is well known that for a diffeomorˇsm-invariant Lagrangian, the canonical
Hamiltonian is zero. This is so in delta gravity as well as in general relativity: the
total Hamiltonian is a linear combination of the ˇrst-class constraints (see [40]).
After gauge ˇxing, the Hamiltonian is

H =
∫

d3x

(
2κ

κ2
P−1

((αβ)(μν))

(
Π̃αβΠμν − (1 − κ2)

2κ2
Π̃αβΠ̃μν

))
+

+
∫

d3x

(
κ2

2κ
P ((αβ)(μν))

(
∂ih̃αβ∂ihμν +

(1 − κ2)
2κ2

∂ihαβ∂ihμν

))
, (51)

with

P−1
((αβ)(μν)) = ηαμηβν + ηανηβμ − ηαβημν = 4P((αβ)(μν)), (52)

and where the conjugate momenta are

Πμν =
δL

δḣμν

=
1
2κ

P ((αβ)(μν))
(
(1 − κ2)ḣαβ + κ2

˙̃
hαβ

)
, (53)

Π̃μν =
δL

δ
˙̃
hμν

=
κ2

2kappa
P ((αβ)(μν))ḣαβ. (54)
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We can write our ˇelds h and h̃ in the following way:

hμν(x, t) =
∫

d3p√
(2π)32Ep

×

×
[
χ

(AB)
(μν) (p)a(AB)(p) eip·x + χ

(AB)
(μν) (p)a+

(AB)(p) e−ip·x
]
|p0=Ep ,

(55)

h̃μν(x, t) =
∫

d3p√
(2π)32Ep

×

×
[
χ

(AB)
(μν) (p)ã(AB)(p) eip·x + χ

(AB)
(μν) (p)ã+

(AB)(p) e−ip·x
]
|p0=Ep ,

where χ
(AB)
(μν) (p) is a polarization tensor, and a(AB)(p) and ã(AB)(p) are pro-

moted to annihilation operators when we quantize it; a+
(AB)(p) and ã+

(AB)(p)
correspond to the creation operators; A and B are indices of polarization that
work like Lorentz indices, that is, they go from 0 to 3 and are moved up and
down with ηAB . As these indices are presented symmetrically, we will have ten
polarization tensors, enough to make a complete basis. For quantization of the
model, we must impose the canonical commutation relations, the only nonvan-
ishing commutators are

[hμν(t,x), Παβ(t,y)] = [h̃μν(t,x), Π̃αβ(t,y)] = iδαβ
μν δ3(x − y). (56)

When expressed using (55) the nonvanishing commutators are

[aAB(p), ã+
CD(p′)] = [ãAB(p), a+

CD(p′)] =
4κ

κ2
δAB
CDδ3(p − p′), (57)

[ãAB(p), ã+
CD(p′)] = −4κ(1 − κ2)

κ2
2

δAB
CDδ3(p − p′). (58)

There is a slight subtlety in calculating the above commutators. Basically, the
expression that appears at one stage of the calculus is∑
ABCD

χ
(AB)
(μν) P

(αβ)
(γε) χ

(γε)
CD =

∑
ABCD

χ
(AB)
(μν)

1
2
δ
(αβ)
(γε) χ

(γε)
CD − 1

4
ηαβχ

(AB)
(μν) Tr (χ), (59)

and since we have the completeness relation∑
ABCD

χ
(AB)
(μν) χ

(αβ)
(CD)δ

(CD)
(AB) = δ

(αβ)
(μν) , (60)

we must impose Tr (χ) = 0, which in turn means that Tr (h) = Tr (h̃) = 0. This
can always be done, because the gauge ˇxing being used does not ˇx the gauge
freedom entirely, and this further condition can be imposed (see [41]).
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The Hamiltonian expressed in terms of creation and annihilation operators is

H =
∫

d3p

4κ
Ep

(
(1 − κ2)a+

ABaAB + κ2a
+
AB ãAB + κ2ã

+
ABaAB

)
, (61)

where we have subtracted an inˇnite constant. Looking at this Hamiltonian, we
notice that it has cross-products of operators, which obscures its physical inter-
pretation. Something analogous happens when we observe the commutators (57)
and (58), and so it is difˇcult to deˇne their action over states. Because of this,
we redeˇne our annihilation (and therefore also the creation) operators, for which
we return to our action (46), deˇning:

hμν = Ah̄1
μν + Bh̄2

μν ,
(62)

h̃μν = Ch̄1
μν + Dh̄2

μν ,

where A, B, C, and D are real constants, so that the new ˇelds, h̄1 and h̄2, are
real ˇelds. When replacing this in (46), we obtain

S[h̄1, h̄2] =
1
2κ

∫
d4xP ((αβ)(μν))×

×
(

A

2
(A − κ2A + 2κ2C)h̄1

αβ∂2h̄1
μν + +

B

2
(B − κ2B + 2κ2D)h̄2

αβ∂2h̄2
μν

)
+

+ P ((αβ)(μν))(AB − κ2AB + κ2AD + κ2BC)h̄1
αβ∂2h̄2

μν . (63)

With the objective of decoupling the new ˇelds, we make the last term in
(63) null. It can be demonstrated that imposing the above criteria, it is inevitable
that one (and only one) of two ˇelds will be a ghost. We make the choice of h̄2

as the corresponding ghost. Taking the above considerations plus the condition
that (63) has the usual form of an action with real ˇelds, we impose that the
coefˇcients of the ˇrst and second terms in it are 1/2 and −1/2, respectively.
This means

A = B,

C =
1 − (1 − κ2)B2

2κ2B
, (64)

D = −1 + (1 − κ2)B2

2κ2B
,

where B is left as an arbitrary real constant. Here we make the point that, if we
had chosen h̄1 as the ghost, then the real constants change such that C ↔ D.
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Thus, the action we are ˇnally left with is

S[h̄1, h̄2] =
1
2κ

∫
d4xP ((αβ)(μν))

(
1
2
h̄1

αβ∂2h̄1
μν − 1

2
h̄2

αβ∂2h̄2
μν

)
. (65)

Following this same line of reasoning, we can ˇnd the annihilation operators for
h̄1 and h̄2:

b1
AB(p) =

1 + B2(1 − κ2)
2B

aAB(p) + κ2BãAB(p), (66)

b2
AB(p) =

1 − B2(1 − κ2)
2B

aAB(p) − κ2BãAB(p), (67)

where we have used (62). It can be veriˇed that the only nonvanishing commu-
tators are now

[b1(AB)(p), b1+
CD(p′)] = 4κδAB

CDδ3(p− p′), (68)

[b2(AB)(p), b2+
CD(p′)] = −4κδAB

CDδ3(p − p′). (69)

These commutators indicate that b1 and b2 have a vanishing inner product, and that
b2 is the annihilation operator for the ghost. On the other hand, the Hamiltonian
expressed in terms of these operators is

H =
∫

d3p

4κ
Ep

(
b1+
ABb1AB − b2+

ABb2AB
)
. (70)

Due to the existence of the ghost, it is possible that this model will not be unitary.
To analyze this in greater depth, it is necessary to do a more profound study of
the S matrix, but to do this for gravitation is a colossal task that would take us
beyond the original scope of this work. On the other hand, the existence of ghost
or phantom ˇelds has been proposed by some authors to explain the accelerated
expansion of the Universe [22,42Ä45], a feature that our model presents [31]. The
problem with these models is that, when they are quantized, either there is a loss
of unitarity or there is negative energy, which means loss of stability. Looking
at (65), we ˇnd that the propagators of h̄1 and h̄2 are, respectively,

−2κP−1
((αβ)(μν))

i

p2 − iε
, (71)

2κP−1
((αβ)(μν))

i

p2 ± iε
, (72)

where the sign ± in the phantom propagator, h̄2, will decide whether unitarity
and negative energy solutions or nonunitary and positive energy solutions will be
present in the model [44].
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The advantage that our model has against other models that use scalar ˇelds
for the phantoms is that, being a gauge model, the possibility remains open of
ˇxing a gauge in which the model is unitary, keeping the model's good attributes,
as in the BRST canonical quantization [47].

It is important to indicate that the existence of ghosts is a general feature
of all delta theories and not only subscribed to delta gravity, as can clearly be
seen in [37] (see there Appendix B, where the Hamiltonian of the model is not
bounded from below).

The fact that our model has ghosts permits us to avoid a no-go theo-
rem [48, 49] on the impossibility of having models with more than one con-
sistent interacting gravitons (spin-two ˇelds). Thus, in our case, we have a model
with two interacting gravitons, but with a Hamiltonian not bounded from below
(instability) as is exhibited by (70).

On the other hand, as a possible solution to the case of instability, we may
consider δ supergravity, which may solve the unboundedness from below of the
Hamiltonian. The last argument comes from the fact that in supersymmetry one
deˇnes the Hamiltonian as the square of an Hermitian charge, making it positive
deˇnite [50,51].

Additionally, a delta model has more symmetries than the original model.
This permits one to bound the Hamiltonian for a ˇxed value of a conserved
quantity. See Appendix B.

Having explained the problem that our model has, now we discuss the new
physics that our model might predict. For this, we will analyze the type of some
ˇnite quantum corrections and how the simplest of these affect the equations of
motion of the model.

13. FINITE QUANTUM CORRECTIONS

The ˇnite quantum corrections to our modiˇed model of gravity can be sep-
arated into two groups. The ˇrst are the nonlocal terms, which are characterized
by the presence of a logarithm, in the form [52]:

√
−gRμν ln

(
∇2

μ2

)
Rμν ,

√
−gR ln

(
∇2

μ2

)
R, (73)

whith ∇2 = gαβ∇α∇β , ∇β being the covariant derivative. There are no terms
like the above ones but quadratic in the Riemann tensor because these terms
always occur like

1
ε

+ ln
(
∇2

μ2

)
, (74)
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and it is known that the terms that appear with the pole are purely Ricci tensors
and Ricci scalars [34,36] (see Eq. (43), too), which in turn is due to (42). Now,
when looking at the quantum corrections and Eq. (44), we need to care about the
variations of (73) with respect to gμν . Taking this into consideration, for the
nonlocal terms we have

δ
(√

−g
)
Rμν ln

(
∇2

μ2

)
Rμν = 0,

√
−gRμνδ

(
ln

(
∇2

μ2

)
Rμν

)
= 0,

√
−gδ(Rμν) ln

(
∇2

μ2

)
Rμν = 0,

(75)

δ
(√

−g
)
R ln

(
∇2

μ2

)
R = 0,

√
−gRδ

(
ln

(
∇2

μ2

)
R

)
= 0,

√
−gδ(R) ln

(
∇2

μ2

)
R = 0,

because our model lives on shell, i.e., Rμν ≡ 0 and R ≡ 0. So, we see that the
only relevant quantum corrections will come from the second group, that is, from
the local terms that correspond to a series expansion in powers of the curvature
tensor. The linear term is basically R, which corresponds to the original action,
and the quadratic terms when taking into account their contribution are null due
to (42). The next terms to consider are cubic in the Riemann tensor. In principle,
any power of the curvature tensor will appear, but we now want to discuss only
the cubic ones because they are the simpler to be dealt with [53]. The most
general form of these corrections is

Lfin
Q =

√
−g

(
c1RμνλσRαβλσRμν

αβ + c2R
μν
λσRλβ

μαRασ
νβ +

+c3RμνRμαβγRν
αβγ + c4RRμνλκRμνλκ

)
. (76)

This type of corrections will affect the equations of motion for g̃μν . So, using (3),
we obtain

Sμν = − 1
κ2

(
M (μν) + c1N

(μν) + c2B
(μν) + 3 {Dρ,Dσ}E[σμ][νρ]

)
, (77)
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with

M (μν) =
1
2
(
DαDνA(αμ) + DαDμA(αν) − DαDαA(μν) − gμνDαDβA(αβ)

)
,

(78)

A(μν) = c3R
μαβγRν

∼αβγ + c4g
μνRαβγεRαβγε, (79)

N (μν) =
1
2
gμνRρελσRλσαβR∼∼∼ρε

αβ + 3RρελσR∼νερ
α Rαμλσ , (80)

B(μν) =
1
2
gμνRρελσRραλβR∼σε

α∼∼β + 3RρελσRνσρ
∼∼∼βRμεβλ, (81)

E[σμ][νρ] = c1R
σμ
∼∼αβRαβνρ +

1
2
c2

(
Rν∼σ

∼α∼βRρβαμ − Rρ∼σ
∼α∼βRνβαμ

)
, (82)

where Sμν was deˇned in Sec. 1. Obviously, if we do not have quantum cor-
rections, i.e., c1 = c2 = c3 = c4 = 0, (77) is transformed in (3). It is possible
to demonstrate that one solution to (3) is g̃μν = gμν , a fact that is necessary so
that the predictions of the original theory of EinsteinÄHilbert are still fulˇlled
in vacuum. This means, the solution of (77) must come to be small perturba-
tions to gμν .

Delta gravity will provide ˇnite answers for the constants ci. Due to the
general structure of the ˇnite quantum corrections, they will be relevant only
at very short distances and strong curvatures. So, the natural scenario to test
the predictions of the model is the in�ationary epoch of the Universe. The
computation of the ci and the phenomenological implications of quantum δ gravity
will be discussed elsewhere.

14. CONCLUSIONS AND OPEN PROBLEMS

Delta gravity agrees with GR when Tμν = 0, imposing the same boundary
conditions for both tensor ˇelds. In particular, the causal structure of delta gravity
in vacuum is the same as in GR, since in this case the action (5) is proportional
to the geodesic action in GR.

We recover the Newtonian approximation.
In a homogeneous and isotropic universe, we get accelerated expansion with-

out a cosmological constant or additional scalar ˇelds.
The computation of Post Newtonian Parameters (PNP) is in progress, but

we do not expect large departures from general relativity, because the Newtonian
limit is the right one, as explained in Sec. 5. Moreover, the interstellar space has
very small matter densities, so δ gravity must give GR values for the PNPs (see
comments after Eq. (4)). Additionally, please notice that all g̃ contributions are
multiplied by the small parameter κ′

2 of the order of 10−5 or less, so they are
very small in the Solar System.
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Stellar evolution will not be changed from its Newtonian description, unless
density of matter becomes very large. Even at the densities of white dwarfs, the
Poisson equation for the gravitational potential sufˇces. (See, for instance, [8],
Ch. 11.3.); δ gravity implies it, as it is shown in Sec. 5. Higher densities which are
present in neutron stars may provide new tests of δ gravity, since there we have
to use the whole nonlinear Einstein equations and the corresponding δ-gravity
equations. But for the inner regions of massive stars, data is very scarce.

Notice that equation (21) implies that R̃ = R at the beginning of the
Universe, when w = 1/3, corresponding to ultrarelativistic matter. That is,
the accelerated expansion started at a later time, which is needed if we want to
recover the observational data of density perturbations and growth of structures in
the Universe. An earlier acceleration of the expansion would prevent the growth
of density perturbations.

Work is in progress to compute the growth of density perturbations and
the anisotropies in the CMBR. The comparison of these calculations with the
considerable amount of astronomical data that will be available in the near future
will be a very stringent test of the present gravitational model.

It was noticed in [20] that the Hamiltonian of delta models is not bounded
from below. See also Sec. 12. Phantoms cosmological models [22,23] also have
this property. Although it is not clear whether this problem will subsist in a
diffeomorphism invariant model as delta gravity or not, we want to mention
some ways out of the difˇculty.

a) Delta gravity is a gauge theory. Moreover, it is diffeomorphism invariant.
Thus, the canonical Hamiltonian vanishes identically. It may be possible to
truncate the Hilbert space, using the BRST formalism, to deˇne a model with a
Hamiltonian bounded from below. This is a difˇcult task that goes far beyond
the present paper, but should be pursued in a future work.

b) In a supersymmetric model, we have H = Q2, where H is the Hamiltonian
and Q is the Hermitian supersymmetry charge. Thus, the Hamiltonian is bounded
from below. So, we expect that a delta-supergravity model has a Hamiltonian
bounded from below.

c) A delta model has more symmetries than the original model. This permits
one to bound the Hamiltonian for a given value of a conserved quantity. We
explain this in Appendix B.
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Appendix A
REVIEW OF δ SYMMETRIES

Assume we have a group of transformations acting on the variables y with
inˇnitesimal parameters ε, that is

δyi = Λi
α(y)εα. (83)

We deˇne the δ transformation by

δȳi = Λi
α(y),j ȳ

jεα + Λi
α(y)ε̄α, (84)

k,i = ∂k/∂yi.
Notice that we have introduced a new ˇeld ȳi and a new transformation with

parameter ε̄α.
It is easy to see that (83), (84) form a closed algebra.
An invariant action under the extended symmetry is built in the same way.

We assume that
S(y) is invariant under (83)

δS

δyi
Λi

α(y) = 0, ∀y, all α, (85)

then

S̄(y, ȳ) = S(y) +
δS

δyi
ȳi

is invariant under (83), (84).
Proof:

δS̄(y, ȳ) =
δS

δyi
Λi

α(y)εα +
δ2S

δyiδyj
Λj

α(y)εαȳi +
δS

δyi
(Λi

α(y),j ȳ
jεα +Λi

α(y)ε̄α)=

= 0 +
(

δ2S

δyiδyj
Λj

α(y)ȳi +
δS

δyi
Λi

α(y),j ȳ
j

)
εα + 0ε̄α =

=
(

δ2S

δyiδyj
Λi

α(y) +
δS

δyi
Λi

α(y),j

)
εαȳj =

{
δ

δyj

(
δS

δyi
Λi

α(y)
)}

εαȳj = 0.

Last equality follows from equation (85).
Being careful with signs of permutations, these results are true for anti-

commuting y, ε as well. In particular, supersymmetric transformations can be
generalized to a δ symmetry.

Other generalizations are possible. Suppose we have canonical transforma-
tions generated by ε(x, p):

δF = (ε, F ), δF̄ = (ε, F̄ ) + (ε̄, F ), (86)
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Eqs. (83), (84) are particular cases of (86). (A, B) is the Poisson bracket. Now
we can prove the closure of the algebra in a more general context:

[δβ , δα]F = (δβ(α, F ) − α ↔ β) = (α, (β, F )) − (β, (α, F )) = (F, (β, α)) =
= ((α, β), F ) = δ(α,β)F,

[δβ , δα]F̄ = (δβ(α, F̄ ) − α ↔ β) = (α, (β, F̄ )) − (β, (α, F̄ )) = (F̄ , (β, α)) =
= ((α, β), F̄ ) = δ(α,β)F̄ ,

[δα, δβ̄ ]F = 0,

[δα, δβ̄ ]F̄ = (δα(β̄, F ) − δβ̄(α, F̄ )) = (β̄, (α, F )) − (α, (β̄, F )) =

= (F, (α, β̄)) = δ(β̄,α)F,

[δᾱ, δβ̄ ]F̄ = δᾱ(β̄, F ) − ᾱ ↔ β̄ = 0.

Replacing Poisson bracket by commutators is the realization of the algebra we
used in [20].

Appendix B
THE DELTA HARMONIC OSCILLATOR

L =
1
2
ẋ2 − 1

2
ω2x2 + ẋẏ − ω2xy.

The canonical variables are

px = ẋ + ẏ, py = ẋ,

H = ẋ(ẋ + ẏ) + ẏẋ − L = H0 + ẋẏ + ω2xy, (87)

H0 =
1
2
p2

y +
1
2
ω2x2.

We know that H0 is conserved, because the model satisˇes the equations of
motion for x. Since H is conserved, we have that Q is conserved, too:

Q = ẋẏ + ω2xy,

since H0 is greater or equal to zero. H is bounded from below by the value of
the conserved quantity Q.

This is a generic feature of delta models. The Hamiltonian is bounded from
below, for a given value of a conserved quantity Q, if the Hamiltonian of the
original model is bounded from below.
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