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The model of a domain wall (®thick¯ brane) in noncompact ˇve-dimensional space-time is
considered with geometries of AdS5 type generated by self-interacting scalar matter. The scalar
matter is composed of two ˇelds with O(2) symmetric self-interaction. One of them is mixed with
gravity scalar modes and plays the role of the brane formation mode (due to a kink background)
and another one is of a Higgs-ˇeld type. The interplay between soft breaking of O(2) symmetry
and gravity in�uence is thoroughly investigated around the critical point of spontaneous τ symmetry
breaking when the vacuum expectation value (v.e.v.) of the Higgs-type scalar ˇeld occurs. The
possibility of (quasi)localization of scalar modes on such thick branes is examined.
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INTRODUCTION

Recent years, the models based on the hypothesis that our Universe is a
four-dimensional space-time hypersurface (3-brane) embedded in a fundamental
multidimensional space [1, 2] have become quite popular, see, for example, the
reviews [3Ä11] and the references therein. The number of extradimensions, their
characteristic size and the number of physical ˇelds, which are spread out the bulk
space, may be different in various approaches. At the same time, it is assumed
that the additional space size is large enough, and additional dimensions can, in
principle, be detected in terrestrial experiments planned in the near future and/or
in astrophysical observations. Four dimensions of our world can be ensured, in
particular, by the localization mechanism of matter ˇelds on three-dimensional
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hypersurfaces in multidimensional space, i.e., 3-branes. Different scenarios of
domain-walls description and their applications to elementary particle physics and
cosmology can be found in a number of reviews [4Ä11]. The in�uence of gravity
is especially interesting, which plays an important role in a (quasi)localization of
matter ˇelds on the brane [12Ä22]. The question arises, under what circumstances
the (quasi)localization of matter ˇelds with spin zero on a brane is still possible
when the minimal interaction with gravity is present? This work is devoted
partially to answer this question.

In this paper, we consider a model of the domain-wall formation with ˇnite
thickness (®thick¯ branes) by self-interacting scalar ˇelds and gravity in ˇve-
dimensional noncompact space-time [23] with anti-de Sitter geometries on both
sides of the brane. The formation of ®thick¯ brane with the localization of light
particles on it was obtained earlier in [24] with the help of a background scalar
and the gravitational ˇelds, when their vacuum conˇgurations have nontrivial
topology. Appearance of scalar states with (almost) zero mass on a brane has
happened to be possible. However, as it was previously shown [22], the existence
of the centrifugal potential in the second variation of scalar-ˇeld action may lead
to the absence of localized modes on a brane.

In the present work, the scalar matter is composed of two ˇelds with O(2)
symmetric self-interaction. One of them (®branon¯ [25]) is mixed with gravity
scalar modes and plays the role of the brane formation mode (due to a kink
background), and another one is a fermion mass generating (FMG) ˇeld (replacing
a Higgs ˇeld). The soft breaking of O(2) symmetry by tachyon mass terms
for both ˇelds is introduced which eventually generates spontaneous breaking of
translational symmetry due to formation of kink-type ˇeld v.e.v. Furthermore, for
special values of tachyon mass terms, the critical point of spontaneous τ -symmetry
breaking exists when the v.e.v. of the FMG scalar ˇeld occurs. In the ˇrst
phase, the only nontrivial v.e.v. is given by a kink conˇguration. But the branon
�uctuations around kink in the presence of gravity are suppressed by the universal
repulsive centrifugal potential which survives in the zero gravity limit [22]. Thus
gravity induces a discontinuity in the branon ˇeld spectrum. However, the FMG
ˇeld in this phase decouples from branons, is massive, and exhibits a more
regular weak gravity behavior. In the second phase, the Higgs-type ˇeld obtains
a localized v.e.v. to be used for generation of fermion masses [24]. Both ˇelds,
branons and FMG scalars, are mixed and the scalar mass spectrum and eigenstates
must be found by functional matrix diagonalization.

The work starts (Sec. 1) with brief motivation of necessity for two scalar ˇelds
to provide fermion localization on domain wall [26Ä35] and to supply localized
Dirac fermions with masses. In Sec. 2, the model of two scalar ˇelds with their
minimal coupling to gravity is formulated for arbitrary potential and the equations
of motion are derived. In Subsec. 2.2, the scalar potential is restricted with a
quartic O(2) symmetric potential and soft breaking of O(2) symmetry quadratic
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in ˇelds (as it could arise from the fermion induced effective action [23]). For this
Lagrangian, the Gaussian normal coordinates are introduced and the appropriate
equations of motion are obtained. The existence of two phases which differ
in the presence or absence of v.e.v. for the FMG ˇeld is revealed and the
solutions for classical background of both scalar ˇelds are found in the leading
approximation of the gravity coupling expansion. In Subsec. 2.3, the next-to-
leading approximation is performed.

In Sec. 3, the full action is derived up to quadratic order in �uctuations in a
vicinity of a background metric. It is dedicated to the separation of equations in
respect to different degrees of freedom. At the end of this section, the action of
scalar ˇelds for the brane and gravity is obtained in gauge invariant variables. In
Sec. 4, the mass spectrum for the ®thick¯ brane in the theory with a quartic O(2)
symmetric potential and soft breaking of O(2) symmetry quadratic in ˇelds is
investigated around the critical point in the weak gravity expansion. In conclusion,
we discuss results and prospects of the proposed model.

1. MOTIVATION OF THE TWO-SCALAR FIELD MODEL

Let us start with elucidating how to trap fermion matter on a domain wall Å
®thick brane¯. The latter one emerges in the model of ˇve-dimensional fermion
bispinors ψ(X) coupled to a scalar ˇeld Φ(X). The extradimension coordinate
is assumed to be space-like,

(Xα) = (xμ, z), (xμ) = (x0, x1, x2, x3), (ηαα) = (+,−,−,−,−),

and the subspace of xμ corresponds to the four-dimensional Minkowski space.
The extradimension size is assumed to be inˇnite (or large enough). The fermion
wave function then obeys the Dirac equation

[iγα∂α − Φ(X)]ψ(X) = 0, γα = (γμ,−iγ5), {γα, γβ} = 2ηαβ , (1)

with γα being a set of four-dimensional Dirac matrices in the chiral representation.
The trapping of light fermion states on a four-dimensional hyperplane Å the

domain wall (the ®thick brane¯) is provided by localization mechanism in the ˇfth
dimension at z = z0. It is facilitated by a certain z-dependent background con-
ˇguration of the scalar ˇeld 〈Φ(X)〉0 = ϕ(z), which provides the appearance of
zero-modes in the four-dimensional fermion spectrum. For the four-dimensional
space-time interpretation, Eq. (1) can be decomposed into the inˇnite set of fermi-
ons with different masses calculable from the following squared Dirac equation:

[ iγα∂α + ϕ(z) ][ iγα∂α − ϕ(z) ]ψ(X) ≡ (−∂μ∂μ − m̂2
z)ψ(X),

(2)
m̂2

z = −∂2
z + ϕ2(z) − γ5ϕ

′(z) = m̂2
+PL + m̂2

−PR,
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where PL,R = (1/2)(1 ± γ5) are projectors on the left- and right-handed states.
Thus the mass squared operator m̂2

z consists of two chiral partners

m̂2
± = −∂2

z + ϕ2(z) ∓ ϕ′(z) = [−∂z ± ϕ(z) ][ ∂z ± ϕ(z) ], (3)

m̂2
+ q+ = q+ m̂2

−, m̂2
− q− = q− m̂2

+, q± ≡ ∓∂z + ϕ(z). (4)

Due to such a supersymmetry [36Ä38], for nonvanishing masses, the left- and
right-handed spinors in (4) form the bispinor describing a dim-4 massive Dirac
particle which is, in general, not localized at any point of the extradimension for
asymptotically constant ˇeld conˇgurations ϕ(z). Such a spectral equivalence
may be broken by a normalizable zero mode of one of the mass operators m̂2

±.
This mode is read out of Eqs. (3) and (4)

q−ψ+
0 (x, z) = 0, ψ+

0 (x, z) = ψL(x) exp

⎧⎨⎩−
z∫

z0

dw ϕ(w)

⎫⎬⎭ , (5)

where ψL(x) = PLψ(x) is a free-particle Weyl spinor in the four-dimensional
Minkowski space. Evidently, if a scalar ˇeld conˇguration has the appropriate
asymptotic behavior,

ϕ(z) z→±∞∼ ±C±|z|ν± , Re ν± > −1, C± > 0,

then the wave function ψ+
0 (x, z) is normalizable on the z axis and the correspond-

ing left-handed fermion is a massless Weyl particle localized in the vicinity of a
four-dimensional domain wall. If ϕ(z) is asymptotically constant, with C± > 0
and ν± = 0, then there is a gap for the massive Dirac states.

In this paper, we restrict ourselves with generating parity symmetric branes
by ˇeld conˇgurations of deˇnite parity. The example of a parity-odd topolog-
ical conˇguration is realized by a kink-like scalar ˇeld background (of possibly
dynamical origin, see below)

ϕ+ = M tanh (Mz). (6)

The two mass operators have the following potentials:

m̂2
+ = −∂2

z + M2
[
1 − 2 sech2(Mz)

]
, m̂2

− = −∂2
z + M2, (7)

and the left-handed normalized zero-mode is localized around z = 0,

ψ+
0 (x, z) = ψL(x)ψ0(z), ψ0(z) ≡

√
M

2
sech (Mz). (8)

Evidently, the threshold for the continuum is at M2, and the heavy Dirac particles
may have any masses m > M . The corresponding wave functions are spread out
in the ˇfth dimension.
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But the fermions of the Standard Model are mainly massive and composed of
both left- and right-handed spinors. Therefore, for light fermions on a brane one
needs at least two ˇve-dimensional fermions ψ1(X), ψ2(X) in order to generate
left- and right-handed parts of a four-dimensional Dirac bispinor as zero modes.
The required zero modes with different chiralities for 〈Φ(X)〉0 = ϕ+(z) arise
when the two fermions couple to the scalar ˇeld Φ(X) with opposite charges,

[ i �∂ − τ3Φ(X) ]Ψ(X) = 0, �∂ ≡ γ̂α∂α, Ψ(X) =
⎧⎪⎪⎩ ψ1(X)

ψ2(X)

⎫⎪⎪⎭ , (9)

where γ̂α ≡ γα ⊗ 12 are Dirac matrices, and τa ≡ 14 ⊗ σa, a = 1, 2, 3
are the generalizations of the Pauli matrices σa acting on the bispinor compo-
nents ψi(X).

In this way, one obtains a massless Dirac particle on the brane, and the next
task is to supply it with a light mass. As the mass operator mixes left- and
right-handed components of the four-dimensional fermion, it is embedded in the
Dirac operator (9) with the mixing matrix τ1mf of the ˇelds ψ1(X) and ψ2(X).
Realizing the Standard Model mechanism of fermion mass generation by means
of dedicated scalars, one has to introduce the second scalar ˇeld H(x), replacing
the bare mass τ1mf → τ1H(x) in the Lagrangian density [24]:

L(5)(Ψ, Ψ, Φ, H) = Ψ(i �∂ − τ3Φ − τ1H)Ψ. (10)

Both scalar ˇelds may be dynamical, and their self-interaction should justify
the spontaneous symmetry breaking by certain classical conˇgurations trapping
light massive fermions on the domain wall. If the Lagrangian of scalar ˇelds is
symmetric under re�ections Φ, −Φ and H → −H , then the invariance may hold
under discrete τ -symmetry transformations,

Ψ → τ1Ψ, Φ → −Φ, (11)

Ψ → τ2Ψ, Φ, H → −Φ,−H, (12)

Ψ → τ3Ψ, H → −H, (13)

the τ2 symmetry, in fact, can be extended to the continuous Uτ (1) symmetry
under rotations,

Ψ → exp
(

iατ2

2

)
Ψ, Φ → cosαΦ+sin αH, H → − sinαΦ+cos αH, (14)

which could be a high-energy symmetry if the scalar ˇeld Lagrangian adopts it
for large values of ˇelds. But, in full, these symmetries do not allow the fermions
to acquire a mass unless translational invariance is spontaneously broken in the
scalar sector.
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There may be several patterns of the partial τ -symmetry breaking by scalar
ˇeld backgrounds. The ˇrst one is generated by a z-inhomogeneous v.e.v. of
only one of the ˇelds, say, the ˇeld Φ(z) with H(z) = 0. Then the τ3 symmetry
certainly survives, but the τ1,2 symmetries are broken. Still, if the function
Φ(z) is odd against re�ection in z, the latter symmetries can be restored, being
supplemented by re�ection z → −z (τ3P (arity) symmetries). The second pattern
is supported by z-inhomogeneous v.e.v.'s of both scalar ˇelds provided that
Φ(z) �∼ H(z). Then, in general, none of the τ symmetries holds. But if Φ(z)
and H(z) are odd and even functions, respectively, the τ3P symmetry may
again survive.

Thus, one may anticipate a phase transition between the phases with different
symmetry patterns which is presumably of the second order if the v.e.v. H(z)
is continuous in coupling constants of the model. This realization is welcome to
implement light fermion masses near a phase transition which are governed by a
small deviation in parameters of the scalar ˇeld potential around a scaling point
much less than the localization scale M .

Further on, we assume that the dynamics of fermions and scalar ˇelds is
τ - and Uτ (1)-symmetric (13), (14) at high energies, whereas at low energies
Uτ (1) symmetry is broken softly and τ symmetry is violated spontaneously.
Accordingly, the scalar ˇeld potential contains even powers of ˇelds Φ(z) and
H(z), and its proˇle induces the required spontaneous symmetry breaking. A
concrete model for two phases with broken translational invariance is presented
in the next section.

2. FORMULATION OF THE MODEL IN BOSONIC SECTOR

2.1. General Two-Boson Potentials: Conformal Coordinates. Eventually,
we want to examine the properties of scalar matter generating gravity. Therefore
let us supply the ˇve-dimensional space with gravity providing it with a pseudo-
Riemann metric tensor gAB. This tensor in �at space and for the rectangular
coordinate system is reduced to ηAB . We deˇne the dynamics of two real scalar
ˇelds Φ(X) and H(X) with a minimal interaction to gravity by the following
action functional:

S[g, Φ, H ] =
∫

d5X
√
|g|L(g, Φ, H), (15)

L =
{
−1

2
M3

∗R +
1
2
(∂AΦ∂AΦ + ∂AH∂AH) − V (Φ, H)

}
, (16)

where R stands for a scalar curvature; |g| is the determinant of the metric tensor,
and M∗ denotes a ˇve-dimensional gravitational Planck scale.
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The equations of motion are

RAB − 1
2
gABR =

1
M3

∗
TAB,

(17)

D2Φ = −∂V

∂Φ
, D2H = − ∂V

∂H
,

where D2 is a covariant D'Alambertian, and the energy-momentum tensor reads

TAB = ∂AΦ∂BΦ + ∂AH∂BH−

− gAB

(
1
2
∂CΦ∂CΦ + ∂CH∂CH − V (Φ, H)

)
. (18)

In order to build a thick (3 + 1)-dimensional brane we study such classical
vacuum conˇgurations which do not violate spontaneously 4-dimensional Poincare
invariance. In this Section, the metric is represented in the conformally �at form,
gAB = A2(z)ηAB . This kind of metric suits well for interpretation of scalar
�uctuation spectrum and their resonance effects (i.e., scattering states).

For this metric the equations of motion read(
A′

A2

)′
= −Φ′2 + H ′2

3M3
∗A

, −2A5V (Φ, H) = 3M3
∗

(
A2A′′ + 2A(A′)2

)
, (19)

(
A3Φ′)′ = A5 ∂V

∂Φ
,

(
A3H ′)′ = A5 ∂V

∂H
. (20)

One can prove [24] that only three of these equations are independent.
Following the arguments of the previous section, we assume that the po-

tential is analytic in scalar ˇelds, exhibits the discrete symmetry under re�ec-
tions Φ → −Φ and H → −H , and has a set of minima for nonvanishing
v.e.v. of scalar ˇelds. Correspondingly, there exist constant background solutions
{Φmin, Hmin} which are compatible with the Einstein equations provided that
〈V (Φ, H)〉 = V ({Φmin, Hmin}) ≡ λcosmM3

∗ < 0, i.e., for positive cosmological
constant λcosm. In this case, the warped geometry will be of anti-de-Sitter type,
1/A ∼ ±kz with AdS curvature k =

√
−λcosm/6 as in the RandallÄSundrum

model II [39].

2.2. Minimal Realization in φ4 Theory: Gaussian Normal Coordinates.
In this Subsection, we study the formation of a brane in the theory with a
minimal stable potential admitting kink solutions. It possesses a quartic scalar
self-interaction and wrong-sign mass terms for both scalar ˇelds. This potential
is designed with Uτ (1) symmetry of dim-4 vertices but with different quadratic
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couplings. The conveniently normalized effective action has the form

Seff(Φ̃, g) =
1
2
M3

∗

∫
d5X

√
|g|
{
−R + 2λ +

3κ

M2

(
∂AΦ̃∂AΦ̃ + ∂AH̃∂AH̃+

+ 2M2Φ̃2 + 2ΔHH̃2 − (Φ̃2 + H̃2)2 − Ṽ0

)}
, (21)

where the normalization of the kinetic term of scalar ˇelds κ is chosen differently
from (15) in order to simplify the equations of motion (see below)∗. They are
connected as follows:

[Φ, H ] =
(

3κM3
∗

M2

)1/2

[Φ̃, H̃]. (22)

For relating it to the weak gravity limit, we guess that κ ∼ M3/M3
∗ is a small

parameter, which characterizes the interaction of gravity and matter ˇelds. Let us
take M2 > ΔH , then the true minima are achieved at Φ̃min = ±M, H̃min = 0,
and a constant shift of the potential energy must be set V0 = M4 in order to
determine properly the cosmological constant λcosm.

Now we change the coordinate frame to the warped metric in Gaussian normal
coordinates:

ds2 = exp (−2ρ(y)) dxμ dxμ − dy2, y =

z∫
0

dz′A(z′). (23)

This choice happens to be more tractable for analytic calculations than the confor-
mal one used for (20). With the deˇnition (23), the function y(z) is monotonous
and z → −z → y → −y.

The equations of motion (20) for this metric take the form

Φ̃′′ = −2M2Φ̃ + 4ρ′Φ̃′ + 2Φ̃(Φ̃2 + H̃2), (24)

H̃ ′′ = −2ΔHH̃ + 4ρ′H̃ ′ + 2H̃(Φ̃2 + H̃2), (25)

ρ′′ =
κ

M2
(Φ̃′2 + H̃ ′2), (26)

λcosm = −6ρ′2 +
3κ

2M2

{
(Φ̃)′2 + (H̃ ′)2 + 2M2Φ̃2+

+ 2ΔHH̃2 − (Φ̃2 + H̃2)2 − M4
}
. (27)

∗It could be inherited from the low-energy effective action of composite scalar ˇelds induced
by the one-loop dynamics of ˇve-dimensional prefermions [23].
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When compared to Eqs. (20), one ˇnds that in the Gaussian coordinates the
equations (24)Ä(26) are algebraically simpler being linear in the metric factor
ρ(y). It allows one to calculate a few ˇrst orders in gravitational perturbation
theory analytically.

As expected for constant background solutions Φ̃min = ±M , H̃min = 0,
the cosmological constant λcosm completely determines the metric factor ρ′ =√
−λcosm/6. In general, for any classical solution, the right-hand side of (27) is

an integration constant that can be proven by differentiating this equation. Thus,
λcosm is indeed a true constant at the classical level.

The above equations contain terms which have different orders in small
parameter κ, and accordingly they can be solved by perturbation theory assuming
that

|ρ′(y)|
M

= O(κ) =
|ρ′′(y)|

M2
.

Then in the leading order in κ, the equations for the ˇelds Φ̃(y), H̃(y) do not
contain the metric factor, and the metric is completely governed by matter order
by order in κ.

Depending on the relation between quadratic couplings M2 and ΔH , there
are two types of z-inhomogeneous solutions of equations (27) which have the
form of a two-component kink [24]. For gravity switched off, the ˇrst one holds
for ΔH � M2/2,

Φ̃ → Φ0 = ±M tanh (My) + O(κ), H̃(y) = 0, (28)

and therefore the conformal factor to the leading order in κ reads

ρ1(y) =
2κ

3

{
ln cosh (My) +

1
4

tanh2(My)
}

+ O(κ2), (29)

which is chosen to be an even function of y in order to preserve the remaining
τ symmetry.

The second one arises only when M2/2 � ΔH � M2, i.e., 2ΔH = M2+μ2,
μ2 < M2,

Φ0(y) = ±M tanh (βMy), H0(y) = ± μ

cosh (βMy)
, β =

√
1 − μ2

M2
,

(30)
wherefrom one can ˇnd the conformal factor to the leading order in κ in the
following form:

ρ1(y) =
κ

3

{
(3 − β2)ln cosh (βMy) +

1
2
β2 tanh2(βMy)

}
+ O(κ2), (31)
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as well symmetric against y → −y. One can see that the asymptotic AdS curvature
k (deˇned in the limit y 
 1/M when ρ(y) ∼ ky) is somewhat different in the
τ symmetry unbroken and broken phases:

kunbroken =
2
3
κM vs. kbroken =

2
3
κM

(
1 +

μ2

2M2

)√
1 − μ2

M2
< kunbroken.

(32)
As the scalar potential is invariant under re�ections Φ̃(y) → −Φ̃(y) and

H̃(y) → −H̃(y), one ˇnds replicas of the kink-type solutions which can be
uniquely selected out from coupling to fermions if to specify their chirality (+M
for left-handed ones) and the sign of induced masses (+μ for positive masses).
Let us choose the positive signs further on.

Evidently, the second solution generates the fermion mass in (10) whereas
the ˇrst kink leaves fermions massless. The solution breaks τ symmetry and is of
main interest for our model building. Thus, there are two phases with different
scalar backgrounds and it can be shown (see below) that if ΔH < M2/2, the
ˇrst kink provides a local minimum, but for some M2/2 < ΔH < M2 it gives a
saddle point, whereas the second kink with H̃ �= 0 guarantees a local stability.

2.3. Relationship to Conformal Coordinate Metric. To the leading order
in κ one can derive a simple relation between conformal factor A(z) and ρ1(y).
Namely, with a certain ansatz for A(z), the ˇrst equation for the metric factor
in (19) taken in the variables (22) is linearized:

A(z) =
1

1 + f(z)
, f(0) = 0, f ′′ = κ

(Φ̃′)2 + (H̃ ′)2

M2
(1 + f). (33)

Then the expansion in powers of gravitational coupling constant κ is given by f =
∞∑

n=1
κnfn, and the leading order f1 obviously coincides in functional dependence

with (26) for the τ -symmetry unbroken phase or with (31) for the broken phase:

κf1(z) = ρ1(y → z) =

=
κ

3

{
(3 − β2) ln cosh (βMz) +

1
2
β2 tanh2(βMz)

}
+ O(κ2). (34)

However, the perturbative expansion in κ is not valid for any z. Indeed, for
βMzgg1/κ 
 1 the asymptotic f(z) is linearly growing and the second term in
the right-hand side of Eq. (33) dominates over the ˇrst one which generated the
perturbation series. In spite of that, in conformal reference frame the coordinate
asymptotic at Mz 
 1 is given by the leading order in κ as f(z) → kz, the
next orders in κ have a more complicated nonanalytic structure. Thereby the
perturbation theory in Gaussian normal coordinates happens to be more tractable.
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2.4. Next Approximation in κ: Unbroken τ Symmetry. Let us ˇnd the
modiˇcations of kink proˇles and the shift of critical point under gravity in�uence.
In the unbroken phase (zero order in μ) the expansion in κ reads

Φ̃ = M

∞∑
n=0

κnΦn, ρ =
∞∑

n=1

κnρn. (35)

In order to simplify the asymptotic behavior and analytic structure we introduce
also the coupling dependence into the argument of iterated functions similar to
Eq. (30)), β → β(κ) with the expansion

1
β2(κ)

=
∞∑

n=0

κn

(
1
β2

)
n

,

(
1
β2

)
0

= 1. (36)

After rescaling y = τ/(βM), Φ̃ → M Φ̃, the next-to-leading order for Φ̃ obeys
the equation

(∂2
τ + 2 − 6Φ2

0)Φ1 = 4ρ′1Φ
′
0 − 2κ

(
1
β2

)
1

Φ0(1 − Φ2
0) ≡ G1(τ), (37)

where the deˇnitions (28) and (29) have been used. Its real parity-odd solution
can be found by integration of (37):

Φ1 =
1

cosh2 τ

τ∫
0

dτ ′ cosh4 τ ′
τ ′∫

−∞

dτ ′′ 1
cosh2 τ ′′ G1(τ). (38)

It decreases at inˇnity for 1/β2)1 = 4/3 and looks as follows:

Φ1 = −2
9

sinh τ

cosh3 τ
. (39)

Therefrom the appropriately iterated function Φ̃(y) can be represented as

Φ̃(y) = M tanhβMy

(
1 − κ

2
9 cosh2 βMy

)
+ O(κ2), β = 1 − 2

3
κ. (40)

The second approximation of conformal factor ρ′2 derived directly from (39) obeys
the equation

ρ′′2 = 2Φ̃′
0Φ̃

′
1, (41)

which can be integrated to

ρ′2 = −2M

135
tanhMy

(
38 +

19
cosh2 My

+
18

cosh4 My

)
. (42)
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Accordingly, the iterated result could be assembled in

ρ(τ) =
2
3
κ

(
1 − 8

45
κ

)
log cosh τ +

1
6
κ

(
1 − 26

45
κ

)
−

− 1
6
κ

(
1 − 8

45
κ

)
1

cosh2 τ
+

1
15

Mκ2 1
cosh4 τ

+ O(κ3),

(43)

= − 1
3
κ

(
1 − 8

45
κ

)
log (1 − tanh2 τ)+

+
κ

6

(
1 − 44

45
κ

)
tanh2 τ +

κ2

15
tanh4 τ + O(κ3),

where the ˇrst expansion is ordered in accordance to its decreasing at large y, and
the second one characterizes better the vicinity of y = 0 where the normalization
ρ(0) = 0 is employed.

2.5. Next Approximation in κ: Broken τ Symmetry Phase. Above the
phase transition point one discovers nontrivial solutions for H̃(τ) which satisfy
the properly normalized Eq. (25). When a weak gravity is present, then all
functions and constants are taken depending on κ

H̃(τ) = M

∞∑
n,m=0

κn
( μ

M

)2m+1

Hn,m(τ),

Φ̃(τ) = M
∞∑

n,m=0

κn
( μ

M

)2m

Φn,m(τ), Φn,0 ≡ Φn,

(44)

ρ(τ) = κ

∞∑
n,m=0

κn
( μ

M

)2m

ρn+1,m(τ), ρn,0 ≡ ρn,

ΔH = ΔH,c(κ) +
1
2
μ2,

as well as,

1
β2

=
∞∑

n,m=0

κn
( μ

M

)2m( 1
β2

)
n,m

,

(45)( 1
β2

)
0,0

= 1,
( 1

β2

)
0,1

= 1,
( 1

β2

)
1,0

=
4
3
.

The position of the critical point μ = 0 is generically shifted:

ΔH,c(κ) =
1
2
M2

∞∑
n=0

κnΔn
H =

1
2
M2

(
1 − 44

27
κ

)
+ O(κ2), (46)
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which can be established from the consistency of integrated EoM. Indeed, in
the leading approximation against its normalization scale μ, the function H̃(τ)
satisˇes the equation

(∂2
τ + 1 − 2Φ2

0,0)H1,0 = −κ

(
Δ1

H +
(

1
β2

)
1,0

)
H0,0 + 4ρ′1H

′
0,0+

+ 2κ

(
1
β2

)
1,0

H0,0Φ2
0,0 + 4H0,0Φ0,0Φ1,0 ≡ F1(τ). (47)

Its solution can be found by integration of (47),

H1,0 =
1

cosh τ

⎡⎣CH
1,0 +

τ∫
0

dτ ′ cosh2 τ ′
τ ′∫

0

dτ ′′ 1
cosh τ ′′F1(τ)

⎤⎦ , (48)

and it is given by

H1,0 =
2

27 cosh τ

(
CH

1,0 − 2 log cosh τ + 3 tanh2 τ
)
, (49)

provided that (46) holds. The integration constant CH
1,0 is not ˇxed at this order

in κ, μ.
Mixed orders in κ and μ2/M2 are practically irrelevant as in realistic mod-

els κ ∼ 10−15 and μ2/M2 ∼ 10−3 (see [23] and Sec. 6). Correspondingly,
κμ2/M2 � κ � μ2/M2. Therefore, the overlapping of classical solutions (30),
(31) with solutions (40), (43), (49) provides our calculations with required preci-
sion in the case when the perturbation expansion works well. The latter seems to
be �awless for classical EoM.

3. FIELD FLUCTUATIONS AROUND THE CLASSICAL SOLUTIONS

3.1. Quadratic Action and Inˇnitesimal Diffeomorphisms. We consider
small localized deviations of the ˇelds from the average background values and
ˇnd the action-square corresponding to them.

Action (15) is invariant under diffeomorphisms. Inˇnitesimal diffeomor-
phisms correspond to the Lie derivative along an arbitrary vector ˇeld ζ̃A(X),
deˇning the coordinate transformation X → X̃ = X + ζ̃(X).

Let us introduce the �uctuations of the metric hAB(X) and the scalar ˇelds
φ(X) and χ(X) on the background solutions of the equations of motion:

gAB (X) = A2(z) (ηAB + hAB (X)) ,
(50)

Φ (X) = Φ(z) + φ (X) , H (X) = H(z) + χ (X) .
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Since 4D Poincare symmetry is not broken, we select the corresponding 4D
part of the metric hμν and introduce the notation for gravivectors h5μ ≡ vμ and
graviscalars h55 ≡ S. By rescaling the vector �uctuations ζ̃μ = A2ζμ and the
scalar ones ζ̃5 = Aζ5, we obtain the following gauge transformations in the ˇrst
order of ζA(X):

hμν → hμν −
(

ζμ,ν + ζν,μ − 2A′

A2
ημνζ5

)
, vμ → vμ −

(
1
A

ζ5,μ + ζ′μ

)
,

(51)

S → S − 2
A

ζ′5, φ → φ + ζ5
Φ′

A
, χ → χ + ζ5

H ′

A
,

with an accuracy of order O(ζ2, h2, hζ). Herein ® , ¯ denotes a partial derivative.
Now expand the action to quadratic order in �uctuations. The full action

after this procedure is a sum

L(2) = Lh + Lφ,χ + LS + LV , (52)

where

√
|g| Lh ≡ −1

2
M3

∗A3

{
−1

4
hαβ,νhαβ,ν − 1

2
hαβ

,β h,α +
1
2
hαν

,α hβ
ν,β+

+
1
4
h,αh,α +

1
4
h′

μνh′μν − 1
4
h′2

}
, (53)

√
|g| Lφ,χ ≡ 1

2
A3(φ,μφ,μ − φ′2 + χ,μχ,μ − (χ′)2)−

− 1
2
A5

(
∂2V

∂Φ2
φ2 + 2

∂2V

∂Φ∂H
φχ +

∂2V

∂H2
χ2

)
+

1
2
A3h′(Φ′φ + H ′χ), (54)

√
|g| LS ≡ 1

4

(
− A5V S2 + S

(
M3

∗A3(hμν
,μν − h,μ

,μ) + M3
∗ (A3)′h′+

+ 2(A3(Φ′φ + H ′χ))′ − 4A3(Φ′φ′ + H ′χ′)
))

, (55)

√
|g| LV ≡ −1

8
M3

∗A3vμνvμν +
1
2
vμ
[
−M3

∗A3(h,ν
μν − h,μ)′+

+ 2A3(Φ′φ,μ + H ′χ,μ) + M3
∗ (A3)′S,μ

]
, (56)

where vμν = vμ,ν − vν,μ, h = hμνημν . Transformations (51) allow one to
eliminate gauge degrees of freedom.
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3.2. Disentangling the Physical Degrees of Freedom. A physical sector
can be determined after the separation of different spin components of the ˇeld
hμν in the system. It can be accomplished by description of ten components
of 4-dim metric in terms of the traceless-transverse tensor, vector, and scalar
components [16,40],

hμν = bμν + Fμ,ν + Fν,μ + E,μν + ημνψ, (57)

where bμν and Fμ obey the relation b,μ
μν = b = 0 = F ,μ

μ . Obviously, the
gravitational ˇelds bμν are gauge-invariant and thereby describe graviton ˇelds in
the 4-dim space. Let us expand the gauge parameter ζμ and vector ˇelds vμ into
the transverse and longitudinal parts,

ζμ = ζ⊥μ + ∂μC, ∂μζ⊥μ = 0, vμ = v⊥μ + ∂μη, ∂μv⊥μ = 0. (58)

Then the vector ˇelds are transformed as follows:

Fμ → Fμ − ζ⊥μ , v⊥μ → v⊥μ − ζ′μ
⊥

, (59)

i.e., the expression F ′
μ − v⊥μ is gauge-invariant. In turn, the scalar components

η, E, ψ, S, φ change under gauge transformations in the following way:

η → η − 1
A

ζ5 − C′, E → E − 2C, ψ → ψ +
2A′

A2
ζ5,

(60)

S → S − 2
A

ζ′5, φ → φ +
Φ′

A
ζ5, χ → χ +

H ′

A
ζ5.

Therefrom we can ˇnd four independent gauge invariants,

1
2
E′ − η − A

2A′ψ, −ψ +
2A′

AΦ′ φ,
1
2
AS +

(
A

Φ′φ

)′
, H ′φ − Φ′χ. (61)

Using the parameterization (57), we can calculate components of the quadratic
action,

h ≡ hμ
μ = �E + 4ψ, hαβ

,β = �(Fα + E,α) + ψ,α; hαβ
,αβ = �2E + �ψ,

(62)
hμν

,μν − h,μ
,μ = −3�ψ, h,ν

μν − h,μ = �Fμ − 3ψ,μ.
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Thus, the decomposition (57) entails a partial separation of degrees of freedom
in the Lagrangian quadratic in �uctuations:√

|g| L(2) =
1
8
M3

∗A3 {bμν,σbμν,σ − (b′)μν(b′)μν − fμνfμν}+

+
3
4
M3

∗A3

{
−ψ,μψ,μ + ψ,μS,μ + 2(ψ′)2 + 4

A′

A
ψ′S

}
+

+
1
2
A3

{
φ,μφ,μ−(φ′)2+χ,μχ,μ−(χ′)2−A2

(
∂2V

∂Φ2
φ2 + 2

∂2V

∂Φ∂H
φχ +

∂2V

∂H2
χ2

)
−

− 1
2
A2V (Φ, H)S2 + 4ψ′(Φ′φ + H ′χ)+

+ S

(
−Φ′φ′ − H ′χ′ + A2

(
∂V

∂Φ
φ +

∂V

∂H
χ

))}
+

+
3
4
M3

∗A3 �(E′ − 2η)
(

A′

A
S + ψ′ +

2
3M3

∗
(Φ′φ + H ′χ)

)
, (63)

where fμ ≡ F ′
μ − v⊥μ , fμν ≡ fμ,ν − fν,μ.

We see that some redundant degrees of freedom exist: one of vectors F ′
μ, v⊥μ

and one of scalars E′, η. They can be removed to provide vμ = 0. Obviously, in
the quadratic approximation graviton, gravivector and graviscalar are decoupled
from each other. From the last line it follows that the scalar E′ is a Lagrange
multiplier and generates a gauge-invariant constraint

A′

A
S + ψ′ = − 2

3M3
∗
(Φ′φ + H ′χ). (64)

Thus, taking this constraint into account, only one independent scalar ˇeld re-
mains.

4. SCALAR FIELD ACTION IN GAUGE-INVARIANT VARIABLES

The further analysis of the scalar spectrum is convenient to perform in gauge-
invariant variables. Let us perform the following rotation in (φ, χ) sector:

φ = φ̌ cos θ + χ̌ sin θ, χ = −φ̌ sin θ + χ̌ cos θ,
(65)

cos θ =
Φ′

R , sin θ =
H ′

R , R2 = (Φ′)2 + (H ′)2.

While χ̌ is gauge invariant, φ̌ is not. We can exclude redundant gauge
invariance introducing three gauge-invariant variables:

ψ̌ = ψ − 2A′

AR φ̌, Š = S +
2
R φ̌′ − 2A

R2

(
R
A

)′
φ̌, η̌ = E′ − 2η − 2

R φ̌. (66)
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Accordingly, the scalar part of the Lagrangian quadratic in �uctuations takes
the form

√
|g| L(2),scal =

3
4
M3

∗A3

{
−ψ̌,μψ̌,μ + ψ̌,μŠ,μ + 2(ψ̌′)2 + 4

A′

A
ψ̌′Š

}
+

+
1
2
A3

{
χ̌,μχ̌,μ − (χ̌′)2 −

[
(θ′)2 +

A2

R2

(
∂2V

∂Φ2
(H ′)2−

−2
∂2V

∂Φ∂H
Φ′H ′ +

∂2V

∂H2
(Φ′)2

)]
χ̌2

}
+ A3Rθ′Šχ̌ − 1

4
A5V (Φ, H)Š2+

+
3
4
M3

∗A3�η̌

(
A′

A
Š + ψ̌′

)
, (67)

where θ′ = (arctan H ′/Φ′)′ = (H ′′Φ′ − Φ′′H ′)/R2.
From the last line, it follows that the scalar ˇeld η̌ is a gauge-invariant

Lagrange multiplier and generates a gauge-invariant constraint,

A′

A
Š + ψ̌′ = 0. (68)

Thus, after taking this constraint into account, only two independent scalar ˇelds
remain and the scalar action takes the following form:

√
|g| L(2),scal =

A5R2

8(A′)2
{
∂μψ̌∂μψ̌ − (∂zψ̌)2

}
− A4

A′ Rθ′(∂zψ̌)χ̌+

+
A3

2

{
∂μχ̌∂μχ̌ − (∂zχ̌)2 −

(
(θ′)2 +

A2

R2

(
H ′

−Φ′

)†
∂2V

(
H ′

−Φ′

))
χ̌2

}
. (69)

To normalize kinetic terms, the ˇelds should be redeˇned χ̂ = A3/2χ̌, ψ̂ = Ωψ̌,
where Ω = A5/2R/2A′

√
|g|L(2),scal =

1
2

{
∂μψ̂∂μψ̂ − (∂zψ̂)2 − Ω′′

Ω
ψ̂2

}
− 2θ′χ̂

(
∂z − Ω′

Ω

)
ψ̂+

+
1
2

{
∂μχ̂∂μχ̂ − (∂zχ̂)2 − (A3/2)′′

A3/2
−

−
(

(θ′)2 +
A2

R2

(
H ′

−Φ′

)†
∂2V

(
H ′

−Φ′

))
χ̂2

}
. (70)
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5. FLUCTUATIONS IN DIFFERENT PHASES AND AT CRITICAL POINT

5.1. Fluctuations Around a τ Symmetric Background. When H(z) = 0,
the two scalar sectors decouple because θ = 0. The operator which describes the
branon mass spectrum,

m̂2
ψ = −∂2

z +
Ω′′

Ω
=
(

∂z +
Ω′

Ω

)(
−∂z +

Ω′

Ω

)
, (71)

is positive on functions ψ̂(z) normalizable along the ˇfth dimension z. Indeed,
the possible zero mode is singular ψ̂(z) ∼ Ω ∼ 1/z|z→0. It corresponds to
the centrifugal barrier in the potential Ω′′/Ω at the origin [22]. Thus, in the
presence of gravity, there is no a (normalizable) Goldstone zero mode related
to spontaneous breaking of translational symmetry. The cause is evident: the
corresponding brane �uctuation represents, in fact, a gauge transformation (51)
and does not appear in the invariant part of the spectrum. One could say that
in the presence of gravity induced by a brane, the latter becomes more rigid
as only massive �uctuations are possible around it. Of course, the very gauge
transformation (51) leaves invariant only the quadratic action and thereby a track
of Goldstone mode may have in�uence on higher-order vertices of interaction
between gravity and scalar ˇelds. This option is beyond the scope of the present
investigation.

As to the possible localized states with positive m2
ψ > 0, they may exist with

masses of order M . However, for the action (21) they happen to be unstable
resonances as it will be evident from the spectral problem formulated in Gaussian
normal coordinates.

The �uctuations of the second, mass generating ˇeld H(x) do not develop
any centrifugal barrier, and as 〈H〉 = 0, their mass spectrum is described by the
operator,

m̂2
χ = −∂2

z +
(A3/2)′′

A3/2
+ A2 ∂2V (Φ, H))

(∂H)2

∣∣∣
H=0

≡ −∂2
z + V(z). (72)

Its potential is not singular, and for background solutions delivering a minimum
this operator must be positive. For the minimal potential with quartic self-
interaction (21) (in terms of the rescaled variables (22)), one can come to more
quantitative conclusions. Indeed, for gravity switched off the background Φ̃(z) =
Φ0(z) (pay attention to y → z!) is deˇned by (28). Accordingly, the mass
spectrum operator receives the potential

V(z) = −2ΔH + 2Φ2
0 = (M2 − 2ΔH) + M2

(
1 − 2

cosh2 Mz

)
. (73)
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The only localized state of the mass operator m̂2
χ is χ̂ → χ0 � 1/ cosh(Mz) with

the corresponding mass m2
0 = M2 − 2ΔH as expected. Thus, in the unbroken

phase with M2 > 2ΔH the lightest scalar �uctuation in χ channel possesses a
positive mass and the system is stable. In the critical point, M2 = 2ΔH , the
lightest �uctuation is massless, and for M2 < 2ΔH � 2M2 the localized state
χ0 represents a tachyon and brings instability providing a saddle point. Instead,
the solution (30) provides a true minimum (see [24]).

Qualitatively the spectrum pattern in the gravity background remains similar.
But the derivation of localized eigenfunctions uniformly in coordinate z encoun-
ters certain difˇculties as explained in Subsec. 2.3 and therefore it will be done
in Gaussian normal coordinates.

5.2. Fluctuations in Gaussian Normal Coordinates. To simplify analytical
calculations, let us represent the quadratic action for scalar ˇelds in the Gaussian
normal coordinates xμ, y,

ds2 = A2(z)(dxμ dxμ − dz2) = exp (−2ρ(y)) dxμ dxμ − dy2. (74)

We remind the formulas for the transition,

z =
∫

exp ρ(y) dy, A(z) = exp (−ρ(y)).

Below, the prime denotes differentiation with respect to y. Further on, we
focus on the minimal potential with quartic self-interaction (21) in terms of the
rescaled variables (22). To simplify the form of the action, let us introduce
R̃ = exp (ρ)R and, in addition, redeˇne the ˇelds in order to normalize kinetic
term, ψ̂ = exp (−ρ/2)ψ̃, χ̂ = exp (−ρ/2)χ̃,

S(2),scal =
∫

d4xdy

[
1
2
∂μψ̃∂μψ̃ +

1
2
∂μχ̃∂μχ̃−

− 2 exp (−2ρ)θ′χ̃

(
∂y + ρ′ +

ρ′′

ρ′
− R̃′

R̃

)
ψ̃ − 1

2
exp (−2ρ)ψ̃×

×
{(

−∂y +
ρ′′

ρ′
− R̃′

R̃

)(
∂y +

ρ′′

ρ′
− R̃′

R̃

)
+2ρ′∂y +3(ρ′)2 +3ρ′′−4ρ′

R̃′

R̃

}
ψ̃−

− 1
2

exp (−2ρ)χ̃

{
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

)
+

+ 2ρ′∂y + 3(ρ′)2 − ρ′′

}
χ̃

]
, (75)
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where the second variation of the ˇeld potential reads

∂2V =
(

−2M2 + 6Φ̃2 + 2H̃2 4Φ̃H̃

4Φ̃H̃ −2ΔH + 2Φ̃2 + 6H̃2

)
. (76)

Let us perform the mass spectrum expansion

ψ̃(X) = exp (ρ)
∑
m

Ψ(m)(x)ψm(y),

χ̃(X) = exp (ρ)
∑
m

Ψ(m)(x)χm(y), (77)

∂μ∂μΨ(m) = −m2Ψ(m),

where the factor exp (ρ) is introduced to eliminate ˇrst derivatives in the equa-
tions. We obtain the following equations:(

−∂y +
ρ′′

ρ′
− R̃′

R̃
+ 2ρ′

)(
∂y +

ρ′′

ρ′
− R̃′

R̃
+ 2ρ′

)
ψm−

− 2θ′

(
∂y − ρ′′

ρ′
+

R̃′

R̃
− 2ρ′ +

θ′′

θ′

)
χm = exp (2ρ)m2ψm, (78)

(
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

)
+ 4(ρ′)2 − 2ρ′′

)
χm+

+ 2θ′

(
∂y +

ρ′′

ρ′
− R̃′

R̃
+ 2ρ′

)
ψm = exp (2ρ)m2χm. (79)

This is a coupled channel equation of the second order in derivative and with
the spectral parameter m2, being a coupling constant of a part of potential
(a nonderivative piece). The latter part is essentially negative for all m2 > 0.
Then, as the exponent ρ(y) is positive and growing at very large y, it becomes
evident that the mass term in the potential makes it unbounded below. Thus,
any eigenfunction of the spectral problem (79) is at best a resonance state though
it could be quasi-localized in a ˇnite volume around a local minimum of the
potential. In [23], the probability for quantum tunneling of quasi-localized light
resonances with masses m � M was estimated as ∼ exp{−(3/κ) ln (2M/m)}
which for phenomenologically acceptable values of κ ∼ 10−15 and M/m � 30
means an enormous suppression. Moreover, in the perturbation theory the decay
does not occur, as the turning point to an unbounded potential energy is situated
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at y ∼ 1/κ. Therefore, one can calculate the localization of resonances following
the perturbation schemes.

In the limit κ → 0, we obtain(
−∂y +

ρ′′1
ρ′1

− R̃′

R̃

)(
∂y +

ρ′′1
ρ′1

− R̃′

R̃

)
ψm−

− 2θ′

(
∂y − ρ′′1

ρ′1
+

R̃′

R̃
+

θ′′

θ′

)
χm = m2ψm, (80)

(
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

))
χm+

+ 2θ′

(
∂y +

ρ′′1
ρ′1

− R̃′

R̃

)
ψm = m2χm, (81)

where ρ1 is the ˇrst order of κ.
5.3. Phase Transition Point in the Presence of Gravity. In the unbroken

phase H̃(y) = 0, and the equation on χ takes the form[
−∂2

τ +
1

β2M2
e−2ρ(−2ΔH + 2Φ2) + 4(ρ′)2 − 2ρ′′

]
χm =

m2

M2β2
e2ρ χm,

(82)
where the variable τ = βMy is employed and the derivative is deˇned against it.

Let us perform the perturbative expansion in κ

χm =
∑
n=0

κnχm,n, ΔH,c =
1
2
M2

∑
n=1

κnΔn
H , m2 =

∑
n=1

κn(m2)n (83)

and use also the expansions (35) and (36). The limit of turned off gravity is
smooth and the differential operator on the left-hand side of (82) can be factorized[

M2 − 2ΔH

M2
+ (−∂τ + tanh τ)(∂τ + tanh τ)

]
χm,0 =

(m2)0
M2

χm,0, (84)

which corresponds to Δ0
H = 1 for zero scalar mass (phase transition point). In

general, for M2 − 2ΔH > 0, one ˇnds one localized state with positive m2

χ =
1

cosh τ
+ O(κ), m2 = M2 − 2ΔH + O(κ), (85)

as it was already established in the previous Subsection.
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Let us now examine the phase transition point where m2 = 0 and calculate
the next approximation of κ:

0 =
[
−∂2

τ + 1 − 2
cosh2 τ

]
χ1+

+
[(

1
β2

)
1

(
1 − 2

cosh2 τ

)
− Δ1

H + 4Φ0Φ1 − 2ρ′′1

]
χ0. (86)

At critical point ΔH = ΔH,c =
1
2
M2(1 − 44

27
κ + O(κ2)) exactly as it has been

obtained in (46). Accordingly, there exists a normalizable solution of (86) which
is a zero mode corresponding to the second-order phase transition. In this case
the corresponding ˇrst correction of χ takes the form

χ1 =
1
9

1
cosh τ

[
1

cosh2 τ
− 40

3
ln (2 cosh τ) +

38
3

+ C1

]
, (87)

where for the constant C1 = 0 this correction is orthogonal to χ0. Thus, in
the scalar sector not mixed with branon (gravity) �uctuations, the localization of
massless state occurs in the presence of gravity. It can also be shown that for
ΔH < ΔH,c the quasi-localization of light states in this sector takes place.

When ΔH > ΔH,c, the squared mass becomes negative signalling the in-
stability of the unbroken phase. In broken phase mixing, terms are nonzero,
and one has to study spectrum by perturbation theory near critical point. The
calculations are not presented in this paper because of their high complexity but
to the leading order in κ they provide the same mass for light scalar state as in
the model [24] without gravity, namely: m2 = 2μ2 + O(μ4/M2). This state is
associated with the fermion mass generation (Sec. 1) and substitutes the Higgs
ˇeld of the Standard Model.

6. CONCLUSIONS: CONSISTENCY OF SCALES
AND OF GRAVITATIONAL COUPLING WITH MODERN DATA

To consider phenomenological implications, we have to study interaction of
the scalar matter with fermions,

Lf = Ψ̄(i∂/ − gKτ3ΦΨ − gHτ1H)Ψ, (88)

where, in general, we can introduce different Yukawa constants for different
fermions of the Standard Model (SM). The localization proˇle depends on the
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ˇrst coupling gK ,

ψ0 = exp

⎛⎝−gK

y∫
dy′Φ(y′)

⎞⎠ =
1

coshα Mβy
,

(89)

α =
gK

β
= gK + O

(
μ2

M2

)
.

Correspondingly, in the leading order in μ and κ, the fermion mass is described by

mf =

+∞∫
−∞

ψ0(y)2H(y) dy

+∞∫
−∞

ψ0(y)2
= gHμ

Γ(α + 1/2)2

Γ(α)Γ(α + 1)
. (90)

As was shown in Secs. 2, 5, the scalar �uctuations have a single normalizable
state associated with the fermion mass generation,

Φ = Φ0(y) + O
( μ

M

)
, H = H0(y) + χ0(y)h(x) + O

(
μ2

M2

)
,

(91)

χ0 =
1

cosh Mβy
,

with the mass mh =
√

2μ(1 + O(μ2/M2)). For μ � M , the low-energy four-
dimensional Lagrangian including only the lightest states takes the following
form:

Llow =
3κM3

∗
2M3

+∞∫
−∞

χ0(y)2 dy(∂μh∂μh − m2
hh2)+

+ 2

∞∫
−∞

ψ0(y)2 dyψ̄(i∂/ − mf )ψ − 2gH

+∞∫
−∞

ψ0(y)2χ0(y) dy ψ̄hψ. (92)

After normalization,

h → h

√√√√√ 2
3κ

( M

M∗

)3
/ +∞∫

−∞

χ0(y)2 dt, ψ → ψ

/√√√√√2

+∞∫
−∞

ψ0(y)2 dy, (93)
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we obtain the following Yukawa coupling constant between Higgs-like boson and
fermion:

gf =
√

2
3κ

( M

M∗

)3

gH

+∞∫
−∞

ψ0(y)2χ0(y) dy√
+∞∫
−∞

χ0(y)2 dt
+∞∫
−∞

ψ0(y)2 dy

=
√

2
3κ

( M

M∗

)3 mf

mh
. (94)

We can compare it with similar couplings λ, gt,SM in the standard Higgs model.
We adopt the normalization of coupling constants in the Higgs potential of the
Standard Model as follows:

VSM

(
h(x)

)
≡ −m2h2 + λh4, 〈h〉 =

v√
2

=
m√
2λ

. (95)

The scale v � 246 GeV stands for the v.e.v of the Higgs ˇeld h in the Standard
Model [41]. For the top quark channel dominating for the Higgs boson decay via
one-loop mechanism, one obtains

mh =
√

2λv, mt =
1√
2
gt,SMv ⇒ gt,SM = 2

√
λ

mt

mh
. (96)

Accordingly, the relation between the Yukawa coupling constants is given by

λ
g2

t

g2
t,SM

=
1
6κ

(
M

M∗

)3

. (97)

Let us involve the gravity scales coming from reduction of ˇve-dimensional
EinsteinÄHilbert action to the four-dimensional one [23]:

M3
∗ = kM2

P , (98)

which can be derived from the graviton kinetic action (63) when taking the wave
function b′μν = 0 for massless graviton. It determines the four-dimensional gravity
scale, the Planck mass, MP � 2.5 · 1018 GeV [41].

From the experimental bounds on the AdS curvature in extra dimension [42],
one can estimate the minimal value for the mass scales, M∗, M as well as for
the dimensional gravitational coupling κ. Indeed, combining (98), (32), and (97),
one gets

M =
√

3
√

λkMP
gt

gt,SM
, κ =

1
2
√

λ

M

MP

gt,SM

gt
. (99)

The modern bound for the AdS curvature, k > 0.004 eV. As well the excess
of γγ-pair production observed recently at LHC [43] could be explained by the
Higgs particle decay h → γγ via virtual t̄t triangle loop if the Yukawa coupling
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is abnormally larger than the SM value, gt/gt,SM = 1−1.5. All together, it entails
the following bounds for the scales and couplings of our model:

M > 3.5 TeV, M∗ > 3 · 108 GeV, κ > 2 · 10−15. (100)

Thus, we conclude that the gravitational corrections on localization mechanism
are indeed very small except for branon spectrum. But the thickness of the brane
may affect the high-energy scattering processes already at the next LHC running
and show up in appearance/disappearance processes, in particular, in missing
energy events [12,44].
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