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MODIFIED FREQUENTIST DETERMINATION
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FOR POISSON DISTRIBUTION
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We propose the modiˇed frequentist deˇnition for the determination of conˇdence intervals for

the case of Poisson statistics. Namely, we require that 1 − β′ �
n=nobs+k∑

n=0
P (n|λ) � α′. We show

that this deˇnition is equivalent to the Bayesian method with prior π(λ) ∼ λk. We also propose the
modiˇed frequentist deˇnition for the case of nonzero background.

PACS: 02.70.Rr

In high-energy physics one of the standard problems [1] is the determination
of the conˇdence intervals for the parameter λ in the Poisson distribution

P (n|λ) =
λn

n!
exp (−λ). (1)

There are two methods to solve this problem Å the frequentist and the Bayesian.
In this paper, we propose the modiˇed frequentist deˇnition of the conˇdence

interval for the case of the Poisson distribution. We show that the modiˇed
frequentist distribution is equivalent to the Bayesian approach.

In the Bayesian method [1,2], due to the Bayes theorem

P (A|B) =
P (B|A)P (A)

P (B)
,

the probability density for the λ parameter is determined as

p(λ|nobs) =
P (nobs|λ)π(λ)

∞∫
0

P (nobs|λ′)π(λ′) dλ′
. (2)

Here π(λ) is the prior function and, in general, it is not known what is the main
problem of the Bayesian method. Formula (2) reduces the statistics problem to
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the probability problem. At the (1 − α) probability level the parameters λup and
λdown are determined from the equation∗

λup∫

λdown

p(λ|nobs) dλ = 1 − α, (3)

and the unknown parameter λ lies between λdown and λup with the probability
1 − α. The solution of Eq. (3) is not unique. One can deˇne

∞∫

λup

p(λ|nobs) dλ = α′, (4)

λdown∫

0

p(λ|nobs) dλ = β′. (5)

In general, the parameters α′ and β′ are arbitrary except the evident equality

α′ + β′ = α. (6)

The most popular are the following options [1]:
1. λdown = 0 Å upper limit.
2. λup = ∞ Å lower limit.

3.
λup∫
0

p(λ|nobs) dλ =
∞∫

λdown

p(λ|nobs) dλ = α/2 Å symmetric interval.

4. The shortest interval Å p(λ|nobs) inside the interval is bigger or equal to
p(λ|nobs) outside the interval.

In frequentist approach, the Neyman belt construction [3] (see Fig. 1) is used
for the determination of the conˇdence intervals.

For the continuous observable −∞ < x < ∞ with the probability density
f(x, λ)∗∗, we require that

xup∫

xdown

f(x, λ) dx = 1 − α, (7)

∗Usually α is taken equal to 0.05.

∗∗Here λ is some unknown parameter, and
∞∫

−∞
f(x, λ) dx = 1.
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Fig. 1. The Neyman belt construction

or
∞∫

xup

f(x, λ) dx = β′, (8)

xdown∫

−∞

f(x, λ) dx = α′, (9)

α′ + β′ = α. (10)

The equations∗
∞∫

xobs

f(x, λdown) dx = β′, (11)

xobs∫

−∞

f(x, λup) dx = α′ (12)

determine the interval of possible values λdown � λ � λup of the parameter λ at
the (1 − α) conˇdence level. Equations (11), (12) are equivalent to the equations

∞∫

xobs

f(x, λdown) dx = β′, (13)

∗Here xobs is the observed value of random variable x.
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∞∫
xobs

f(x, λup) dx = 1 − α′, (14)

or to the equations
xobs∫

−∞

f(x, λdown) dx = α′, (15)

xobs∫
−∞

f(x, λdown) dx = 1 − β′. (16)

For the Poisson distribution P (n|λ), the analog of Eq. (7) has the form

nup(λ)∑
ndown(λ)

P (n|λ) � 1 − α. (17)

The equations for the determination of λdown and λup (analogs of Eqs. (11),
12)) have the form [4Ä6]

∞∑
n=nobs

P (n|λdown) = β′, (18)

nobs∑
n=0

P (n|λup) = α′. (19)

The analogs of the equations (13), (14) and (15), (16) for the Poisson distribu-
tion are

∞∑
n=nobs

P (n|λdown) = β′, (20)

∞∑
n=nobs

P (n|λup) = 1 − α′, (21)

and
nobs∑
n=0

P (n|λdown) = 1 − β′, (22)

nobs∑
n=0

P (n|λup) = α′, (23)

correspondingly. Unlike to the case of continuous variable, the equations (18)Ä
(21) and (22), (23) are not equivalent for the discrete variable n and they differ in
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the presence or absence of P (nobs|λup,down) in some equations. For instance, for
β′ = 0, α′ = α (upper limit case) the equations (19), (23) coincide and read as

nobs∑
n=0

P (n|λup) = α, (24)

while Eq. (21) is equivalent to

nobs−1∑
n=0

P (n|λup) = α. (25)

For nobs = 3 and α = 0.05, we ˇnd that

λ � 7.75 (Eq. (24)), (26)

λ � 6.30 (Eq. (25)). (27)

Consider the probability to observe the number of events n � nobs

P−(nobs|λ) =
nobs∑
n=0

P (n|λ). (28)

To determine possible values λdown and λup of the conˇdence interval, we re-
quire that

1 − β′ � P−(nobs|λ) � α′, (29)

where α′ + β′ = α. The equations for the determination of λup and λdown have
the form

P−(nobs|λup) = α′, (30)

P−(nobs|λdown) = 1 − β′. (31)

Note that as in the case of the Bayesian approach, the choice of α′ and β′ is not
unique. Due to the identity [6]

P−(nobs|λ) =

∞∫

λ

P (nobs|λ′) dλ′, (32)

the conˇdence interval [λdown, λup] is determined from the equations

α′ =

∞∫

λup

P (nobs|λ′) dλ′, (33)

β′ =

λdown∫

0

P (nobs|λ′) dλ′. (34)
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The parameter λ lies in the interval

λdown � λ � λup (35)

with the probability (1 − α′ − β′). Due to the equations (33), (34), our modiˇed
frequentist deˇnition (29) is equivalent to the Bayes deˇnitions (3)Ä(5) with �at
prior π(λ) = 1, namely:

λup∫

λdown

P (nobs|λ′) dλ′ = 1 − α′ − β′. (36)

As an alternative to the deˇnition (29) we can require that

1 − α′ �
∞∑

n=nobs

P (n, λ) = −P−(nobs, λ) + 1 + P (nobs, λ) � β′. (37)

The deˇnition (37) leads to the equations (20), (21) for the determination of
λdown and λup. The equations (20), (21) are equivalent to the Bayes equations
with the prior function π(λ) ∼ 1/λ.

The coverage of the deˇnition (29) means the following. For a hypothetical
ensemble of similar experiments, the probability of observing the number of
events n � nobs satisˇes the inequalities (29). As we noted before, the choice
of λdown and λup is not unique. Probably, the most natural choice is the use of
the ordering principle. According to this principle, we require that the probability
density P (nobs|λ) inside the conˇdence interval [λdown, λup] is bigger or equal
to the probability density outside this interval. For the Poisson distribution this
requirement leads to the formula

P (nobs|λdown) = P (nobs|λup), (38)

for the determination of λup and λdown. For such ordering principle α′ and β′

are not independent quantities. It is natural to use α = α′ + β′ as a single free
parameter. Note that the equations (19) and (23) for the determination of an upper
limit λup in frequentist and modiˇed frequentist approach coincide, whereas the
equations (19) and (21) are different. Namely, the equation (21) is equivalent to
the equation

nobs−1∑
n=0

P (n|λup) = α′. (39)

Classical frequentist equation (18) is equivalent to the Bayes equation (5) with
prior π(λ) ∼ 1/λ.
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It is possible to generalize our modiˇed frequentist deˇnition (29), namely:

1 − β′ � P−(nobs|λ; k) � α′, (40)

where

P−(nobs|λ; k) ≡
nobs+k∑

n=0

P (n|λ) (41)

and k = 0,±1,±2, . . .
One can ˇnd that the deˇnitions (40), (41) lead to the Bayes equations (4),

(5) with the prior function π(λ) ∼ λk. Upper limits for three values of k are
shown in Table 1 (α = 0.1), in Table 2 (α = 0.05) and, correspondingly, in
Figs. 2 and 3.

Table 1. Upper limits (λup) for the conˇdence level 90% (α = 0.1)

nobs k = −1 k = 0 k = +1

0 Å 2.30 3.89
1 2.30 3.89 5.32
2 3.89 5.32 6.68
3 5.32 6.68 7.99
4 6.68 7.99 9.27
5 7.99 9.27 10.53
6 9.27 10.53 11.77
7 10.53 11.77 12.99
8 11.77 12.99 14.21
9 12.99 14.21 15.41

10 14.21 15.41 16.60

Table 2. Upper limits (λup) for the conˇdence level 95% (α = 0.05)

nobs k = −1 k = 0 k = +1

0 Å 3.00 4.74
1 3.00 4.74 6.30
2 4.74 6.30 7.75
3 6.30 7.75 9.15
4 7.75 9.15 10.51
5 9.15 10.51 11.84
6 10.51 11.84 13.15
7 11.84 13.15 14.43
8 13.15 14.43 15.71
9 14.43 15.71 16.96

10 15.71 16.96 18.21
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Fig. 2. Upper limits (λup) for the conˇ-
dence level 90% (α = 0.1), k = −1, 0, +1

Fig. 3. Upper limits (λup) for the conˇdence
level 95% (α = 0.05), k = −1, 0, +1

We can further generalize the deˇnitions (40), (41) by the introduction of

P−(nobs|λ; ck) ≡
∑

k

c2
kP−(nobs|λ; k), (42)

where
∑
k

c2
k = 1. Again we require that

1 − β′ � P−(nobs|λ; ck) � α′. (43)

One can ˇnd that our deˇnition (43) is equivalent to the Bayes approach with
prior function

π(λ) =
∑

k

c2
klkλk, (44)

where

lk =
n!

(n + k)!
. (45)

For the case when we have nonzero background, the parameter λ is repre-
sented in the form

λ = b + s. (46)

Here b � 0 is the known background, and s is the unknown signal. In the Bayes
approach, the generalization of the formula (2) reads

p(s|nobs, b) =
P (nobs|b + s)π(b, s)

∞∫
0

P (nobs|b + s′)π(b, s′) ds′
. (47)
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For �at prior, we have

p(s|nobs, b) =
P (nobs|b + s)

∞∫
b

P (nobs|λ′) dλ′
. (48)

So, we see that the main effect of nonzero background is the appearance of the
factor

K(nobs, b) =

∞∫

b

P (nobs|λ′) dλ′ (49)

in the denominator of the formula (48). For zero background K(nobs, b =0)=1.
One can interpret the appearance of additional factor K(nobs, b) in terms of
conditional probability. Really, for �at prior the P (nobs, λ) dλ is the probability
that parameter λ lies in the interval [λ, λ+dλ]. For the case of nonzero background
b parameter λ = b + s � b. The probability that λ � b is equal to p(λ �
b|nobs) = K(nobs, b). The conditional probability that λ lies in the interval
[λ, λ+dλ] provided λ � b is determined by the standard formula of the conditional
probability

p(λ, nobs|λ � b) dλ =
p(λ, nobs)
p(λ � b)

dλ =
p(λ, nobs)
K(nobss)

dλ, (50)

and it coincides with the Bayes formula (48).
In the frequentist approach, the naive generalization of the inequality (29) is

1 − β′ � P−(nobs|s + b) � α′. (51)

One can show that

1 − α′ − β′ =

b+sup∫

b+sdown

P (nobs|λ′) dλ′ �
∞∫

b

P (nobs|λ′) dλ′. (52)

However, the main drawback of the deˇnition (51) is that the probability, that

the signal s lies in the interval 0 � s � ∞, is equal to
∞∫
b

P (nobs|λ′) dλ′ and it

is less than unity for nonzero background s > 0 that contradicts the intuition that
the full probability, that the signal s lies between zero and inˇnity, must be equal
to unity. To cure this drawback, let us require that

1 − β′ � P−(nobs|s + b)
P−(nobs|b)

� α′. (53)
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The inequality (53) leads to the equations for the determination of sdown and sup

which coincide with the corresponding Bayes equations. The generalization of
the inequalities (53) is straightforward, for instance, the inequality (43) reads

1 − β′ � P−(nobs|b + s; ck)
P−(nobs|b; ck)

� α′. (54)

Upper limit on the signal s derived from the inequality (53) coincides with the
upper limit in CLs method [7,8].

Note that frequentist equations (18), (19) for λup = λdown do not satisfy
the evident equality α′ + β′ = 1. One of the possible generalizations of the
equations (18), (19) looks as follows:

P−1(nobs|λup) = α′, (55)

P+1(nobs|λdown) = β′, (56)

where

P−1(nobs|λ) =
nobs−1∑

n=0

P (n|λ) +
1
2
P (nobs|λ), (57)

P+1(nobs|λ) =
n=∞∑

nobs+1

P (n|λ) +
1
2
P (nobs|λ). (58)

Note that
P−1(nobs|λ) + P+1(nobs|λ) = 1 (59)

and α′ + β′ = 1 for λup = λdown. The equations (55)Ä(58) are equivalent to the
Bayes equations (4), (5) with prior

π(λ) =
1
2

(
1 +

nobs

λ

)
. (60)

The modiˇed frequentist deˇnition (29) takes the form

1 − β′ � P−1(nobs|λ) � α′. (61)

To conclude, let us stress our main result. For the Poisson distribution we
have the proposed modiˇed frequentist deˇnition of the conˇdence interval and
have shown the equivalence of the modiˇed frequentist approach and the Bayes
approach. It means that the frequentist approach is in fact nonunique.
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