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BelokurovÄUsyukina loop reduction method was proposed in 1983 to reduce the number of
rungs in triangle ladder-like diagram by one. The disadvantage of the method is that it works in
d = 4 dimensions only and it cannot be used for calculation of amplitudes in ˇeld theory in which we
are required to put all the incoming and outgoing momenta on shell. We generalize the BelokurovÄ
Usyukina loop reduction technique to noninteger d = 4 − 2ε dimensions. In this paper, we show
how a two-loop triangle diagram with particular values of indices of scalar propagators in the position
space can be reduced to a combination of three one-loop scalar diagrams. It is known that any one-
loop massless momentum integral can be presented in terms of Appell's function F4. This means that
particular diagram considered in the present paper can be represented in terms of Appell's function F4

too. Such a generalization of BelokurovÄUsyukina loop reduction technique allows us to calculate
that diagram by this method exactly without decomposition in terms of the parameter ε.

PACS: 13.40.Ks; 12.15.Lk

INTRODUCTION

The main part of the results of multiloop calculus in high-energy physics has
been done as an expansion in terms of ε that is the parameter of dimensional
regularization [1, 2]. However, one-loop massless diagrams can be calculated
in all order in ε and can be represented in terms of Appell's hypergeometric
function [3, 4]. To calculate any loop (in momentum space) integral, it would
be good to have a technique that reduces the number of loops by one in a
recursive manner. Such a method exists in d = 4 space-time dimensions for
triangle ladder diagrams. It was discovered in the early eighties by Belokurov
and Usyukina [5Ä7]. We refer to that construction as to BelokurovÄUsyukina
loop reduction technique. To our knowledge, there was no analog of this loop
reduction procedure in d = 4 − 2ε dimensions. The result of calculation of the
triangle ladder diagrams in d = 4 is UD functions [8Ä10]. Their properties, in
particular the invariance with respect to Fourier transform, have been studied
in [11Ä14] and their MB transforms have been studied in [14,15].
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Fig. 3. Final result

In this paper, we propose generalization of the BelokurovÄUsyukina loop
reduction technique to noninteger dimensions. In particular, we consider a two-
loop triangle diagram in which the propagator indices in the position space are 1−ε
or 1. We use the uniqueness method and method of integration by parts [16Ä
19]. The detailed step-by-step construction for d = 4 space-time dimensions is
presented in [15]. Here we construct analogs of Figs. 2 and 3 of [15] with slightly
modiˇed indices of line in order to apply the uniqueness technique to the case of
triangle ladder diagram in noninteger number of dimensions.

LOOP REDUCTION IN d = 4 − 2ε DIMENSIONS

The result of the reduction is presented in three ˇgures, Fig. 2 is continuation
of Fig. 1, and Fig. 3 is continuation of Fig. 2. The transformations depicted in
the diagrams are integration by parts, triangleÄstar and starÄtriangle relations
(for review of these relations, see [19]). As we can see, the ˇnal result depicted
in Fig. 3 is a sum of one-loop diagrams. Each of the diagrams in the r.h.s. of Fig. 3
can be transformed to the momentum space in which the result for each one of
them is a combination of Appell's functions [4]. To our knowledge, it is the ˇrst
known case where two-loop diagram in noninteger number of dimensions can be
reduced to Appell's function F4 in all order in the regularization parameter ε for
arbitrary kinematic region in the momentum space.

The ˇgures are self-explaining. A new d-dimensional measure Dx ≡
π−d/2ddx introduced in [20] is assumed in the position space to avoid pow-
ers of π in ˇgures. The factor J that appears in Figs. 1Ä3 is

J =
Γ(1 − ε1)Γ(1 − ε2)Γ(1 − ε3)

Γ(1 + ε1 − ε)Γ(1 + ε2 − ε)Γ(1 + ε3 − ε)
.
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This generalizes the corresponding factor J of [15]. The condition for auxiliary
parameters ε1, ε2, ε3 remains the same as in [5, 7, 15],

ε1 + ε2 + ε3 = 0.

At the end of the calculation, we have to take the limit of vanishing these ε-terms.

CONCLUSION

We have shown that the loop reduction in noninteger number of dimensions
apparently exists. The two-loop diagram in d = 4 − 2ε dimensions has been
represented as one-loop diagrams in the same kinematic region in the momentum
space. We have considered an arbitrary kinematic region, and even on-shell ex-
ternal momenta can be taken. In that case the result remains ˇnite and regularized
dimensionally in terms of poles in regularization parameter ε. However, not all
of the indices in the position space are 1 − ε. This index in the position space
means index 1 in the momentum space, which corresponds to the physical case
of momentum propagator in the regularized (4 − 2ε)-dimensional theory.
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