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Using the ˇeld-theoretic renormalization-group technique, the model of a passive vector ˇeld
advected by an incompressible turbulent �ow is investigated up to the second order of the perturbation
theory (two-loop approximation). The turbulent environment is given by statistical �uctuations of the
velocity ˇeld that has a Gaussian distribution with zero mean and deˇned noise with ˇnite correlations
in time. Two-loop analysis of all possible scaling regimes in general d-dimensional space is done
in the plane of exponents ε − η, where ε characterizes the energy spectrum of the velocity ˇeld in
the inertial range E ∝ k1−2ε, and η is related to the correlation time at the wave number k which
is scaled as k−2+η . It is shown that the scaling regimes of the present model of vector advection
have essentially different properties than the scaling regimes of the corresponding model of passively
advected scalar quantity. The results demonstrate the fact that, within the present model of passively
advected vector ˇeld, the internal tensor structure of the advected ˇeld can have nontrivial impact on
the diffusion processes deep inside in the inertial interval of given turbulent �ow.
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INTRODUCTION

One of the main problems in the theory of developed turbulence is to verify
the validity of the basic principles of the classical phenomenological KolmogorovÄ
Obukhov (KO) theory [1Ä3] in the framework of a microscopic model and to
identify and understand possible deviations from its predictions. According to
the KO theory [1Ä6], the statistical properties of random ˇelds deep inside in the
inertial interval l � r � L are independent of the integral scale L (a typical
scale on which the energy is pumped into the system) as well as the viscous
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scale l (a typical scale on which the energy starts to dissipate). This behavior is
usually formulated in the form of the well-known ˇrst and second Kolmogorov
hypotheses. Then, by using a simple dimensional analysis, one obtains the scaling
behavior of correlation functions of the model with deˇnite exponents.

For example, consider experimentally measured single-time structure func-
tions of the velocity ˇeld deˇned as follows:

SN(r) = 〈[vr(t,x) − vr(t,x′)]N 〉, r = |x − x′|, (1)

where vr denotes the component of the velocity ˇeld directed along the vector
r = x − x′. The Kolmogorov hypotheses, together with dimensional analysis,
lead to the following scale-invariant behavior of the structure functions (1):

SN (r) = const × (ε̄r)N/3, (2)

where ε̄ is the mean dissipation rate.
However, both experimental and theoretical studies show the existence of

deviations from the predictions of the KO theory. Namely, the dependence of the
correlation functions on the integral scale L is detected in contradiction with the
ˇrst Kolmogorov hypothesis [4, 6Ä8]. Such deviations, referred to as anomalous
or nondimensional scaling, manifest themselves in a singular dependence of the
correlation functions on the distances and the integral scale L and, as a conse-
quence, the simple scaling representation given in Eq. (2) must be replaced by the
following one:

SN (r) = (ε̄r)N/3RN (r/L), (3)

with some unknown scaling functions RN . The assumption that they have pow-
erlike asymptotic behavior in the region r � L in the form

RN (r/L) ∼ (r/L)qN , (4)

with singular dependence on L in the limit L → ∞ and nonlinearity of the
exponents qN as functions of N , is called ®anomalous scaling¯, and it is ex-
plained by the existence of strong developed �uctuations of the dissipative rate
(intermittency) [4Ä8].

During the last two decades, the problem of anomalous scaling was in-
tensively studied, especially in the framework of various models of passively
advected scalar and vector ˇelds advected by ®synthetic¯ velocity ˇelds with
given Gaussian statistics. The reason for this is twofold. First, it was shown
that the deviations from the classical phenomenological theory are even more
strongly noticeable for passively advected ˇelds than for the velocity ˇeld itself,
see, e.g., [7Ä9], and second, the problem of passive advection is considerably eas-
ier for theoretical investigation. At the same time, many anomalous properties of
genuine turbulent heat or mass transport observed in experiments are reproduced
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by these relatively simple models. Thus, the theoretical study of the models of a
passive scalar or vector advection can be treated as the ˇrst step on the long way
of the investigation of intermittency and anomalous scaling in fully developed
turbulence.

During a long period, the crucial role in the theoretical investigations of
anomalous scaling was played by the simple model of a passive scalar quantity
advected by a random Gaussian velocity ˇeld, white in time and self-similar
in space, the so-called Kraichnan rapid-change model [10]. Namely, in the
framework of the rapid-change model, for the ˇrst time, the anomalous scaling
was established on the basis of a microscopic model and corresponding anomalous
exponents were calculated within controlled approximations in the framework of
the so-called zero-mode approach (see, e.g., [8] and references cited therein).

An effective and powerful method for investigation of self-similar scaling
behavior is the renormalization group (RG) technique [11Ä13]. By using the RG
technique, a considerable progress was also achieved in the understanding of the
anomalous scaling in turbulence. In this respect, in [14Ä16], the ˇeld-theoretic RG
and the operator-product expansion (OPE) were used in the systematic investiga-
tion of the anomalous scaling in Kraichnan's rapid-change model. It was shown
that, in the framework of the ˇeld-theoretic RG approach, the anomalous scaling
is related to the existence in the model of dangerous composite operators with
negative critical dimensions in the OPE (see, e.g., [13, 17] for details). There-
after, the ˇeld-theoretic RG technique was widely used for investigation of the
anomalous behavior of various descendants of the Kraichnan model, e.g., models
with inclusion of small-scale anisotropy, compressibility, models with the ˇnite
correlation time of the velocity ˇeld, and spatial parity violation (helicity) (see,
e.g., [9, 18Ä22] and references cited therein). Besides, advection of the passive
vector ˇeld by the Gaussian self-similar velocity ˇeld (with and without large- and
small-scale anisotropy, pressure, compressibility, and ˇnite correlation time) has
also been investigated, and all possible asymptotic scaling regimes and crossover
among them have been classiˇed and anomalous scaling was analyzed [23Ä31].
A general conclusion of all these investigations is that the anomalous scaling
remains valid for all generalized models.

Let us brie�y describe the general solution of the problem of anomalous
scaling in the framework of the ˇeld-theoretic approach [13,17]. It can be divided
into two main stages. In the ˇrst stage, the multiplicative renormalizability of
the corresponding ˇeld-theoretic model is demonstrated and the differential RG
equations for its correlation functions are obtained. The asymptotic behavior of
the latter on their ultraviolet argument (r/l) for r � l and any ˇxed (r/L)
is given by infrared stable ˇxed points of those equations. It involves some
®scaling functions¯ of the infrared argument (r/L), whose form is not determined
by the RG equations. In the second stage, the behavior of scaling functions
at r � L is found from the OPE within the framework of the general solution of
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the RG equations. There, the crucial role is played by the critical dimensions of
various composite operators, which give rise to an inˇnite family of independent
aforementioned scaling exponents (and hence to multiscaling).

However, one speciˇc model of passively advected vector ˇeld, namely, the
so-called A = 0 model (see the next section for deˇnition of the model), has an
interesting property, namely, it formally resembles the NavierÄStokes turbulence
(see, e.g., [24] and references cited therein). In the framework of this model,
the leading anomalous exponents are determined by the composite operators built
solely of the gradients of the vector ˇeld. It leads to the fact that the number and
the form of the operators that are important for the investigation of the anomalous
scaling of correlation functions of a given order N depend on N . It means that
different correlation (or structure) functions should be studied separately. An
analogous problem exists in the genuine theory of fully developed turbulence
based on the stochastic NavierÄStokes equation. Thus, from this point of view,
the investigation of A = 0 model can be considered as an important next step to
the investigation of anomalous scaling of the structure functions of the velocity
ˇeld in fully developed turbulence. In this respect, the ˇeld-theoretic RG analysis
of the model in the leading order of approximation (one-loop approximation)
was done in [24, 25]. However, it is evident that it is necessary to go beyond
the leading-order approximation to conˇrm the stability of obtained behavior
with respect to the perturbation corrections and to make the predictions more
accurate, especially in the situation when one works in the theory with a strong
coupling. However, unlike the investigations of the anomalous scaling of passive
scalar admixture in the framework of the Kraichnan model, generalized Kraichnan
model [9], as well as in the model with advection by the NavierÄStokes velocity
ˇeld [32], which were done up to the second-order (two-loop) approximation
(in the case of the Kraichnan model also three-loop analysis of the anomalous
exponents has been done [15, 16]), the complete ˇeld-theoretic RG analysis of
the passively advected vector ˇeld, even within the simplest model, the so-called
KazantsevÄKraichnan kinematic magnetohydrodynamics (MHD) turbulence, is
known only to the ˇrst order of approximation. The only exception is recent
studies [33,34], where brief RG discussions of KazantsevÄKraichnan model have
been done in two-loop approximation.

In the present paper, we would like to start with the investigation of the
aforementioned A = 0 model of passively advected vector ˇeld [24, 25] in the
two-loop approximation. In the present paper, we shall concentrate on detailed
analysis of all possible scaling regimes in a generalized model, where the velocity
ˇeld is supposed to have a Gaussian statistics with ˇnite correlations in time [25].
Thus, in the present paper, we shall consider only the ˇrst stage of the solution
of the problem of anomalous scaling in the framework of the ˇeld-theoretic
approach, i.e., we shall establish all possible scaling regimes. The next step will
be to use the obtained results for the investigation of the properties of the scaling
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functions of the structure functions of the advected ˇeld in the OPE to determine
the critical dimensions of the most important composite operators that lead to the
anomalous scaling. However, the problem of anomalous scaling will be studied
elsewhere.

The paper is organized as follows. In Sec. 1, the model of the passively
advected vector ˇeld is introduced and its ˇeld-theoretic formulation is given. In
Sec. 2, the RG analysis of the model is done, and the possible scaling regimes and
their IR stability under the in�uence of helicity are given in Sec. 3. In Conclusion,
the discussion of results is presented.

1. FIELD-THEORETIC FORMULATION
OF THE PASSIVE VECTOR ADVECTION

1.1. The Model. Let us consider the advection of a transverse (solenoidal)
passive vector ˇeld θ ≡ θ(x) (x ≡ (t,x)) by an incompressible velocity ˇeld v ≡
v(x) described by the following advection-diffusion equation (the so-called A = 0
model):

∂tθ = ν0
θ − (v · ∂)θ − ∂P + fθ, (5)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, 
 ≡ ∂2 is the Laplace operator, ν0 represents
the diffusivity (in what follows, a subscript 0 will denote bare parameters of
the unrenormalized theory), and P (x) is the pressure. Thus, both v and θ are
divergence-free vector ˇelds: ∂ · v = ∂ · θ = 0. Due to transversality conditions,
it can be shown that the pressure can be rewritten as the solution of the following
Poisson equation [24]:


P = −∂ivj ∂jθi. (6)

The transverse Gaussian random noise fθ = fθ(x) with zero mean and the
correlation function

Db
ij(x; 0) ≡ 〈fθ

i (x) fθ
j (0)〉 = δ(t)Cij(|x|/L) (7)

represents the source of the �uctuations of the vector ˇeld θ that maintains the
steady state of the system. Here, L is an integral scale related to the corresponding
stirring, and Cij is a function ˇnite in the limit L → ∞. The detailed form of
the function Cij is unimportant here, the only condition which must be satisˇed
is that Cij decreases rapidly for |x| � L. If Cij depends on the direction of the
vector x and not only on its modulus r = |x|, then it can be considered as a
source of the large-scale anisotropy (see, e.g., [24,25]).

Usually, it is supposed that the velocity ˇeld v(x) satisˇes the stochastic
NavierÄStokes equation. However, in what follows, we shall work with the
statistics of the velocity ˇeld given in the form of Gaussian distribution with zero
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mean and correlation function [25,35,36]

〈vi(x)vj(x′)〉 ≡ Dv
ij(x; x′) =

∫
dω ddk
(2π)d+1

Pij(k)D̃v(ω, k)×

× exp [−iω(t− t′) + ik(x − x′)], (8)

with

D̃v(ω, k) =
g0ν

3
0k4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
, (9)

where k = |k| is the wave number; ω is frequency; d is the dimensionality of
the x space. The geometric properties of the velocity correlator are given by the
form of the transverse (due to incompressibility of the �uid) projector Pij(k). In
the full symmetric turbulent system studied here, it has the form of the standard
transverse projector Pij(k) = δij − kikj/k2.

The symmetry of the present vector model also allows one to add to the
advection-diffusion equation (5) the term of the form (θ · ∂)v. In this case,
one comes to an extended KazantsevÄKraichnan model of kinematic MHD (see,
e.g., [25] and references cited therein). The present model without this ®stretch-
ing term¯ can be considered as a linearized NavierÄStokes equation with the
prescribed statistics of the background ˇeld v. Besides, the model is formally
also resembling with the NavierÄStokes turbulence [24]. As was discussed in
Introduction, namely, this similarity with the NavierÄStokes turbulence that is
demonstrated, e.g., in the analogous anomalous behavior of the structure func-
tions of the vector ˇeld θ in the present model and the corresponding structure
functions of the velocity ˇeld v in the NavierÄStokes turbulence, is usually the
main reason for detailed investigation of the vector model (5) with prescribed
statistics of the velocity ˇeld.

The correlator (9) is related to the energy spectrum via the frequency inte-
gral [35,37Ä41]

E(k) � kd−1

∫
dω D̃v(ω, k) � g0ν

2
0

u0
k1−2ε. (10)

Thus, the coupling constant g0 and the exponent ε describe the equal-time veloc-
ity correlator or, equivalently, energy spectrum. Besides, the constant u0 and the
second exponent η are related to the frequency ω � u0ν0k

2−η which characterizes
the mode k [35,37Ä43]. It means that, in our notation, the value ε = 4/3 corre-
sponds to the well-known Kolmogorov ®ˇve-thirds law¯ for the spatial statistics
of velocity ˇeld, and η = 4/3 corresponds to the Kolmogorov frequency. Simple
dimensional analysis shows that the parameters (charges) g0 and u0 are related
to the characteristic ultraviolet (UV) momentum scale Λ (of the order of inverse
Kolmogorov length) by

g0 � Λ2ε+η, u0 � Λη. (11)
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The speciˇc feature of the model given by the Gaussian statistics of the ve-
locity ˇeld given in Eqs. (8) and (9) is that it is not Galilean invariant [36] and,
as a consequence, it does not take into account the self-advection of turbulent
eddies. As a result of these so-called ®sweeping effects¯, the different time cor-
relations of the Eulerian velocity are not self-similar and depend strongly on the
integral scale; see, e.g., [44Ä47]. However, the results presented in [36] show
that the Gaussian model gives reasonable description of the passive advection in
the appropriate frame, where the mean velocity ˇeld vanishes. One more argu-
ment to justify the model (8), (9) is that, in what follows, we shall be interested
in the equal-time, Galilean invariant quantities (structure or correlation func-
tions), which are not affected by the sweeping, and, therefore, as we expect (see,
e.g., [25,35,48Ä50]), their absence in the Gaussian model (8), (9) is not essential.

The model (8), (9) contains two special cases that are interesting themselves.
First of them is the so-called rapid-change model limit (see, e.g., [24] and refer-
ences cited therein). It is obtained for u0 → ∞ and g′0 ≡ g0/u2

0 = const,

D̃v(ω, k) → g′0 ν0 k−d−2ε+η. (12)

The second one is the so-called quenched (time-independent or frozen) velocity
ˇeld limit which is deˇned by u0 → 0 and g′′0 ≡ g0/u0 = const,

D̃v(ω, k) → g′′0 ν2
0 πδ(ω) k−d+2−2ε, (13)

which is mathematically similar to the well-known models of the random walks
in random environment with long-range correlations; see, e.g., [51Ä56].

1.2. Field-Theoretic Formulation of the Model. By using the well-known
MartinÄSiggiaÄRose formalism [57Ä60], the stochastic problem given in Eqs. (5)Ä
(9) can be rewritten into the ˇeld-theoretic model of the double set of ˇelds
Φ ≡ {θ, θ′,v} with the following action functional:

S(Φ) = −1
2

∫
dt1 ddx1 dt2 ddx2 vi(t1,x1)[Dv

ij(t1,x1; t2,x2)]−1×

× vj(t2,x2) +
1
2

∫
dt1 ddx1 dt2 ddx2×

× θ′i(t1,x1)Dθ
ij(t1,x1; t2,x2)θ′j(t2,x2)+

+
∫

dt ddx θ′i[−∂tθi + ν0
θi − vj∂jθi], (14)

where θ′ is an auxiliary vector ˇeld with the same properties as the ˇeld θ,
and Dθ

ij and Dv
ij are correlators (7) and (9), respectively. In the action (14),

all the required integrations over x = (t,x) and summations over the vector
indices are understood. The second and the third integral in Eq. (14) represent
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the DominicisÄJansen-type action for the stochastic problem (5), (7) at ˇxed v,
and the ˇrst integral represents the Gaussian averaging over v.

The pressure term is omitted in the action functional (14) as a result of the
transversality of the auxiliary ˇeld θ′ that gives∫

dx θ′i ∂iP = −
∫

dxP ∂iθ
′
i = 0. (15)

The model (14) corresponds to a standard Feynman diagrammatic perturba-
tion theory with bare propagators (in frequency-momentum representation):

〈θi(ω,k)θ′j(−ω,−k)〉0 =
Pij(k)

−iω + ν0k2
, (16)

〈θ′i(ω,k)θj(−ω,−k)〉0 = 〈θi(ω,k)θ′j(−ω,−k)〉∗0, (17)

〈θi(ω,k)θj(−ω,−k)〉0 =
Cij(k)

| − iω + ν0k2|2 , (18)

〈θ′i(ω,k)θ′j(−ω,−k)〉0 = 0. (19)

On the other hand, the bare propagator 〈vivj〉0 for the velocity ˇeld is given
directly in Eqs. (8) and (9). Cij(k) in Eq. (18) is the Fourier transform of the
function Cij(|x|/L) from Eq. (7). The graphical representation of nonzero prop-
agators is presented in Fig. 1 (the end with a slash in the propagator 〈θiθ

′
j〉0

corresponds to the ˇeld θ′ and the end without a slash corresponds to the ˇeld θ).
The triple (interaction) vertex

−θ′ivj∂jθi = θ′iVijlθjvl, (20)

with the vertex factor (in frequency-momentum representation)

Vijl = iklδij , (21)

is shown in Fig. 2, where the momentum k is �owing into the vertex via the
auxiliary ˇeld θ′.

�� � � �i j 0

�� � �i j� 0

�� � �� �i j 0

Fig. 1. Graphical representation of the
propagators of the model

Fig. 2. The interaction vertex of the model
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The formulation of the problem through the action functional (14) replaces
the statistical averages of random quantities in the stochastic problem deˇned
by Eqs. (5)Ä(9) with equivalent functional averages with weight expS(Φ). The
generating functionals of the total Green's functions G(A) and the connected
Green's functions W (A) are then deˇned by the functional integral [13]

G(A) = eW (A) =
∫

DΦ eS(Φ)+AΦ, (22)

where A(x) = {Aθ,Aθ′
,Av} represents a set of arbitrary sources for the set of

ˇelds Φ, DΦ ≡ DθDθ′ D v denotes the measure of functional integration, and
the linear form AΦ is standardly deˇned as

AΦ =
∫

d x[Aθ
i (x)θi(x) + Aθ′

i (x)θ′i(x) + Av
i (x)vi(x)], (23)

where dx ≡ dt dx.

2. RENORMALIZATION-GROUP ANALYSIS OF THE MODEL

To make the RG analysis of the present model, ˇrst of all, it is necessary
to obtain the information about possible UV divergences which can be found
by the standard analysis of canonical dimensions [11Ä13]. The ˇeld-theoretic
model deˇned by the action functional (14) belongs among the so-called two-scale
models [13, 17] for which the total canonical dimension dQ of some quantity Q
(which plays the same role in the renormalization theory of our dynamical model
as the simple momentum dimension does in static models) is deˇned by two
numbers, namely, the momentum dimension dk

Q and the frequency dimension

dω
Q with the standard normalization conditions dk

k = −dk
x = 1, dω

ω = −dω
t = 1,

dω
k = dω

x = dk
ω = dk

t = 0. In the present model, the total canonical dimension is
given as dQ = dk

Q + 2dω
Q.

The canonical dimensions of the model under consideration are presented
in table, where also the canonical dimensions of the renormalized parameters

Canonical dimensions of the ˇelds and parameters of the model under consideration

Q v θ θ′ m, Λ, μ ν0, ν g0 u0 g, u

dk
Q −1 0 d 1 −2 2ε + η η 0

dω
Q 1 0 0 0 1 0 0 0

dQ 1 0 d 1 0 2ε + η η 0
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are shown. The model is logarithmic for ε = η = 0 (the coupling con-
stants g0 and u0 are dimensionless); therefore, the UV divergences in the cor-
relation functions have the form of the poles in ε, η, and their linear
combinations.

Detailed analysis of the possible divergences of the present model (see,
e.g., [24, 25]) shows that the only superˇcially divergent function of the model
is the one-irreducible Green's function 〈θ′iθj〉1−ir, and the corresponding UV di-
vergence can be removed multiplicatively by the only counterterm θ′i
θj and
it can be explicitly expressed in the multiplicative renormalization of the bare
parameters g0, u0, and ν0 in the following form:

ν0 = νZν , g0 = gμ2ε+ηZg, u0 = uμηZu. (24)

Here, the dimensionless parameters g, u, and ν are the renormalized counterparts
of the corresponding bare ones; μ is the renormalization mass (a scale setting
parameter) in the minimal subtraction (MS) scheme; and Zi = Zi(g, u) are
renormalization constants.

At the same time, the corresponding renormalized action functional has the
following form:

SR(Φ) = −1
2

∫
dt1 ddx1 dt2 ddx2 vi(t1,x1)[Dv

ij(t1,x1; t2,x2)]−1×

× vj(t2,x2) +
1
2

∫
dt1 ddx1 dt2 ddx2θ′i(t1,x1)Dθ

ij(t1,x1; t2,x2)×

× θ′j(t2,x2) +
∫

dt ddx θ′i [−∂tθi + νZ1
θi − vj∂jθi], (25)

where Z1 is the only independent renormalization constant which is related to the
renormalization constants deˇned in Eq. (24) as follows (the terms with correla-
tors Dv

ij and Db
ij , as well as the ˇelds, are not renormalized):

Zν = Z1, Zg = Z−3
ν , Zu = Z−1

ν . (26)

Here, the second and third relations are direct consequence of the absence of the
renormalization of the term with Dv in renormalized action (25), i.e.,

g0ν
3
0 = gν3μ2ε+η, u0ν0 = uνμη. (27)

The renormalization constant Z1, in general, contains poles of linear combina-
tions of ε and η, i.e., Z1 = Z1(g, u, d; ε, η). However, as detailed analysis shows,
to obtain all important quantities as the γ functions, β functions, coordinates of
ˇxed points, and the critical dimensions, the knowledge of the renormalization



536 GLADYSHEV A.V. ET AL.

� �

Fig. 3. The one- and two-loop contributions to the self-energy operator Σθ′θ

constants for the special choice η = 0 is sufˇcient up to two-loop approximation
(see details in [35]). It is important here that the parameter ε alone provides the
UV regularization for the theory; hence, the renormalization constant Z1 remains
ˇnite at η = 0.

The renormalization constant Z1 can be determined by the requirement that
the one-irreducible Green's function 〈θ′iθj〉1−ir must be UV-ˇnite when is written
in the renormalized variables; i.e., it has no singularities in the limit ε → 0
(as was brie�y discussed above, one can put η = 0 in calculations). Using
this condition, the renormalization constant Z1 is determined up to a UV-ˇnite
contribution which is ˇxed by the choice of the renormalization scheme.

On the other hand, one-irreducible Green's function 〈θ′iθj〉1−ir is related
(through the Dyson equation [12, 13]) to the self-energy operator Σθ′θ, which is
expressed via the corresponding set of Feynman diagrams shown in Fig. 3.

The explicit integral expressions for the singular parts of diagrams in Fig. 3
are the following:

A = − Sd

(2π)d

gνp2δij

4u(1 + u)
d2 − 3

d(d + 2)

( μ

m

)2ε 1
ε
, (28)

B1 =
S2

d

(2π)2d

g2νp2δij

16u2(1 + u)3
(d2 − 3)

d(d − 1)(d + 2)

( μ

m

)4ε

×

× 1
ε

[
(d2 − 3)(d − 1)

2d(d + 2)ε
+

Sd−1

Sd

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y1

Z

]
, (29)

B2 =
SdSd−1

(2π)2d

g2νp2δij

16u2(1 + u)2
(d − 2)

d(d − 1)(d + 2)

( μ

m

)4ε 1
ε
×

×
1∫

0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y2

Z
, (30)
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where

Y1 = 4z{−8x6z2 + (1 + z2)2 + x4[6 − 8(d − 3)z2 + 6z4]+

+ u2(1 − 3x2 + 2x4)(1 + z2)2+

+ x2[−9 − 14z2 − 9z4 + 2d(1 + z2)2]+

+ 2u[(1 + z2)2 − 2x2(2 + 3z2 + 2z4) + x4(3 + 4z2 + 3z4)]}, (31)

Y2 = 4(1 + z2){(x2 − 4)(z4 + 1) + 2z2(7x2 − 4)−
− d(x2 − 1)[−(1 + z2)2 − u(1 − 2(x2 − 1)z2 + z4)]+

+ u[−2x4z2 − 4(1 + z2)2 + x2(1 + 16z2 + z4)]+

+ d2(1 + u)[1 + 2(1 − 2x2)z2 + z4]}, (32)

and

Z = [(1 + u)(1 + z2) − 2xz][(1 + u)(1 + z2) + 2xz]×
× (1 − 2xz + z2)(1 + 2xz + z2). (33)

Here, A given in Eq. (28) corresponds to the one-loop contribution (the ˇrst
diagram in Fig. 3), B1 in Eq. (29) is related to the second diagram in Fig. 3,
and B2 in Eq. (30) is the result for the third diagram. In Eqs. (28)Ä(30), Sd =
2πd/2/Γ(d/2) denotes the d-dimensional sphere.

In the end, one comes to the following expression for the renormalization
constant Z1 = Zν :

Zν = 1 − ḡ

ε

d2 − 3
d(d + 2)

1
4u(1 + u)

+
ḡ2

ε2

(d2 − 3)2

d2(d + 2)2
1

32u2(1 + u)3
+

+
ḡ2

ε

Sd−1

Sd

1
d(d − 1)(d + 2)

1
16u2(1 + u)2

[
d2 − 3
1 + u

I1 + (d − 2)I2

]
, (34)

where ḡ = gSd/(2π)d and

I1 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y1

Z
, (35)

I2 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y2

Z
. (36)

The basic RG differential equation, for example, for the renormalized con-
nected correlation functions WR = 〈Φ · · ·Φ〉R (the counterparts of the bare
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connected correlation functions W = 〈Φ · · ·Φ〉) are obtained from the relation
S(Φ, e0) = SR(Φ, e, μ), where e0 stands for the complete set of bare parameters
and e stands for the renormalized one, together with the fact that ˇelds v,b, and
b′ are not renormalized. It leads to the relation

WR(e, μ, . . .) = W (e0, . . .), (37)

where the dots stand for other arguments which are untouched by renormaliza-
tion, e.g., coordinates and times. Further, using the fact that unrenormalized
correlation functions are independent of the scale-setting parameter μ, one can
apply the differential operator μ∂μ at ˇxed unrenormalized parameters on both
sides of Eq. (37), which leads to the basic RG equation

DRGWR(A, e, μ) = 0, (38)

where operator DRG has the following explicit form:

DRG = μ∂μ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν , (39)

where we denote Dν ≡ ν∂ν and the RG functions (the β and γ functions)
are given by well-known deˇnitions, and in our case, using relations (26) for
renormalization constants, they have the following form:

γν ≡ μ∂μ ln Zν , (40)

βg ≡ μ∂μg = g(−2ε − η + 3γν), (41)

βu ≡ μ∂μu = u(−η + γν). (42)

Using the deˇnition of the anomalous dimension γν in Eq. (40) and the
explicit expression for Z1 = Zν as given in Eq. (34), one obtains

γν = −2(ḡA + 2ḡ2B), (43)

where

A = − d2 − 3
d(d + 2)

1
4u(1 + u)

(44)

is the one-loop contribution to anomalous dimension γν and the two-loop one is

B =
Sd−1

Sd

1
d(d − 1)(d + 2)

1
16u2(1 + u)2

[
d2 − 3
1 + u

I1 + (d − 2)I2

]
, (45)

where integrals I1 and I2 are deˇned in Eqs. (35) and (36), and functions Y1, Y2,
and Z are given in Eqs. (31)Ä(33).

The possible asymptotic scaling regimes of the model deep inside in the
inertial interval are given by the IR stable ˇxed points of the RG equations.
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At the same time, the coordinates of all possible ˇxed points g∗ and u∗ are
determined by the requirement of vanishing of the β functions (41) and (42),
namely,

βg(g∗, u∗) ≡ g∗(−2ε − η + 3γ∗
ν) = 0, (46)

βu(g∗, u∗) ≡ u∗(−η + γ∗
ν ) = 0, (47)

where γ∗
ν denotes the function (43) taken at the ˇxed points g∗, u∗.

The main aim of the present paper is to analyze the structure of the ˇxed
points of the model. All possible ˇxed points and the corresponding scaling
regimes will be classiˇed and regions of their IR stability will be studied in the
next section.

On the other hand, the existence of a stable IR ˇxed point means that the
correlation functions of the model exhibit scaling behavior with given critical
dimensions in the IR range. The issue of special interest is multiplicatively
renormalizable equal-time two-point quantities G(r) (see below). The IR scaling
behavior of a function G(r) (for r/l � 1 and any ˇxed r/L), namely,

G(r) � ν
dω

G
0 l−dG

(r

l

)−ΔG

R
( r

L

)
, (48)

is related to the existence of IR stable ˇxed point of the RG equations (38).
In Eq. (48), dω

G and dG are the corresponding canonical dimensions of the func-
tion G (the canonical dimensions of the model are given in table), l = 1/Λ,
L = 1/m, R(r/L) is a scaling function, which cannot be determined by the RG
equations (see, e.g., [13]), and ΔG is the critical dimension deˇned as

ΔG = dk
G + Δωdω

G + γ∗
G. (49)

Here, γ∗
G is the ˇxed point value of the anomalous dimension γG ≡ μ∂μ ln ZG,

where ZG is the renormalization constant of the multiplicatively renormalizable
quantity G, i.e., G = ZGGR [13], and Δω = 2 − γ∗

ν is the critical dimension of
the frequency with γ∗

ν , which is deˇned in (43), taken at the corresponding ˇxed
point. However, from Eqs. (46) and (47), one can immediately ˇnd the exact
values of the γ∗

ν for the corresponding scaling regimes. They are exact one-loop
results; i.e., no higher-loop corrections to the γ∗

ν exist. It also means that the
critical dimension of frequency Δω for the corresponding scaling regime is also
known exactly, as well as the critical dimensions of the ˇelds.

An example of the equal-time quantities built of the vector ˇeld θ are the
equal-time two-point structure functions

SN (r) = 〈[θr(t,x) − θr(t,x′)]N 〉, r = |x − x′|, (50)

studied deep inside in the inertial range l � r � L, where θr denotes the
component of the vector ˇeld θ directed along the vector r = x − x′ [24,25].
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As was already mentioned, in the present paper, we shall concentrate only
on the analysis of the possible asymptotic scaling regimes of the present model,
and the analysis of the so-called anomalous scaling of the correlation (structure)
functions of the model will be given elsewhere.

3. IR STABLE FIXED POINTS
AND THE SCALING REGIMES OF THE MODEL

As was already mentioned in the previous section, possible scaling regimes
of a renormalized model are directly given by the IR stable ˇxed points of the
corresponding system of the RG equations [12, 13]. The ˇxed point of the RG
equations is deˇned by β functions, namely, by requirement of their vanishing.
In the present model, the coordinates g∗, u∗ of the ˇxed points are found from
the system of two equations, namely,

βg(g∗, u∗) = βu(g∗, u∗) = 0 (51)

that are explicitly shown in Eqs. (46) and (47). To investigate the IR stability
of a ˇxed point, it is enough to analyze the eigenvalues of the matrix Ω of ˇrst
derivatives:

Ωij =

⎛
⎜⎜⎝

∂βg

∂g

∂βg

∂u

∂βu

∂g

∂βu

∂u

⎞
⎟⎟⎠. (52)

Possible IR asymptotic behaviors are governed by the IR stable ˇxed points, i.e.,
those for which both eigenvalues are positive.

The possible scaling regimes of the model in the framework of the one-loop
approximation were investigated in [25]. The aim of the present paper is to
analyze the problem in the two-loop approximation and to compare the results to
the corresponding problem of passive scalar advection studied in [20Ä22].

Let us start with the so-called rapid-change limit: u → ∞. Here, it is
convenient to make the transformation to new variables, namely, w ≡ 1/u and
g′ ≡ g/u2 [25,35], with the corresponding changes in the β functions:

βg′ = g′(η − 2ε + γν), (53)

βw = w(η − γν), (54)

and the anomalous dimension γν acquires the following form:

γν = −2(ḡ′A′ + 2ḡ′2B′), (55)
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where ḡ′ = g′Sd/(2π)d. After this transformation, the one-loop contribution A′

acquires the form

A′ = − d2 − 3
d(d + 2)

1
4(1 + w)

(56)

and the two-loop correction B′ is

B′ =
Sd−1

Sd

1
d(d − 1)(d + 2)

1
16(1 + w)2

[
w(d2 − 3)

1 + w
I ′1 + (d − 2)I ′2

]
, (57)

where now

I ′1 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y ′

1

Z ′ , (58)

I ′2 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y ′

2

Z ′ , (59)

with

Y ′
1 = 4z{(1− 3x2 + 2x4)(1 + z2)2 + 2w[(1 + z2)2−

− 2x2(2 + 3z2 + 2z4) + x4(3 + 4z2 + 3z4)] + w2×
× [−8x6z2 + (1 + z2)2 + x4(6 − 8(d − 3)z2 + 6z4)+

+ x2(−9 − 14z2 − 9z4 + 2d(1 + z2)2)]}, (60)

Y ′
2 = 4w(1 + z2){−4 + x2 − 8z2 + 16x2z2 − 2x4z2−

− 4z4 + x2z4 + d2(1 + w)[1 + 2(1 − 2x2)z2 + z4]+

+ d(x2 − 1)[1 − 2(x2 − 1)z2 + z4 + w(1 + z2)2]+

+ w[−4(1 + z2)2 + x2(1 + 14z2 + z4)]}, (61)

and

Z ′ = [1 + z2 + w(1 − 2xz + z2)](1 − 2xz + z2)×
× [1 + z2 + w(1 + 2xz + z2)](1 + 2xz + z2). (62)

However, in the rapid-change limit w → 0 (u → ∞), one comes to the
known result that the two-loop contribution B′ is equal to zero. It is related
to the fact that in the rapid-change limit [24] no higher-loop corrections to the
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self-energy operator exist and the anomalous dimension γν is determined exactly
at the one-loop level of approximation and has the following form:

γν = lim
w→0

(d2 − 3)ḡ′

2d(d + 2)(1 + w)
=

(d2 − 3)ḡ′

2d(d + 2)
. (63)

In the rapid-change limit, one has two different ˇxed points. Let us denote them
as FPI and FPII. The ˇrst ˇxed point is trivial, namely,

FPI: w∗ = g′∗ = 0, (64)

with γ∗
ν = 0, and diagonal matrix Ω with eigenvalues (diagonal elements)

λ1 = η, λ2 = η − 2ε. (65)

Thus, this ˇxed point is IR stable for η > 0 and η > 2ε, as shown in Fig. 4. The
second point is deˇned by the coordinates

FPII : w∗ = 0, ḡ′∗ =
2d(d + 2)

d2 − 3
(2ε − η), (66)

with γ∗
ν = 2ε−η. This is an exact one-loop expression as a result of non-existence

of the higher-loop corrections. The corresponding matrix of ˇrst derivatives is
triangular with diagonal elements (eigenvalues):

λ1 = 2(η − ε), λ2 = 2ε − η, (67)

i.e., this ˇxed point is IR stable if conditions η > ε and η < 2ε are fulˇlled
simultaneously. The region of stability of this ˇxed point is shown explicitly
in Fig. 4.

The second limit of the present model corresponds to the so-called ®frozen
regime¯ with frozen velocity ˇeld with u → 0. To study this transition, it is
appropriate to change the variable g to the new variable g′′ ≡ g/u [25, 35]. In
this case, the β functions are transformed to the following ones:

βg′′ = g′′(−2ε + 2γν), (68)

βu = u(−η + γν). (69)

In this notation, the anomalous dimension γν has the form

γν = −2(ḡ′′A′′ + 2ḡ′′2B′′), (70)

where again ḡ′′ = g′′Sd/(2π)d. The one-loop contribution A′′ is now

A′′ = − d2 − 3
d(d + 2)

1
4(1 + u)

, (71)
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Fig. 4. Regions of the stability for the ˇxed points in one-loop approximation. The regions
of stability for ˇxed points FPI, FPII, and FPIII are exact, i.e., are not in�uenced by loop
corrections. The ˇxed point FPIV is shown in one-loop approximation. The d-dependence
of the FPIV in two-loop approximation is shown in Fig. 5

and the two-loop one, B′′, is given as

B′′ =
Sd−1

Sd

1
d(d − 1)(d + 2)

1
16(1 + u)2

[
d2 − 3
1 + u

I1 + (d − 2)I2

]
, (72)

where integrals I1 and I2 are deˇned in Eqs. (35) and (36), and functions Y1, Y2,
and Z are given in Eqs. (31)Ä(33). In the limit u → 0, the functions A′′ and B′′

acquire the following form:

A′′
0 = − d2 − 3

4d(d + 2)
(73)

and

B′′
0 =

Sd−1

Sd

(d2 − 3)I ′′1 + (d − 2)I ′′2
16d(d − 1)(d + 2)

, (74)

where

I ′′1 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y ′′

1

Z ′′ , (75)

I ′′2 =

1∫
0

dx (1 − x2)
d−1
2

∞∫
1

dz
Y ′′

2

Z ′′ , (76)
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with

Y ′′
1 = 44z{−8x6z2 + (1 + z2)2 + x4[6 − 8(d − 3)z2 + 6z4]+

+ x2[−9 − 14z2 − 9z4 + 2d(1 + z2)2]}, (77)

Y ′′
2 = 4(1 + z2){−4 + x2 − 8z2 + 14x2z2 − 4z4 + x2z4+

+ d(x2 − 1)(1 + z2)2 + d2[1 + 2(1 − 2x2)z2 + z4]}, (78)

and
Z ′′ = [(1 − 2xz + z2)(1 + 2xz + z2)]2. (79)

The system of β functions (68) and (69) exhibits two ˇxed points that are
related to the corresponding two scaling regimes. Let us denote them as FPIII
and FPIV. One of them is again trivial, namely,

FPIII : u∗ = g′′∗ = 0, (80)

with γ∗
ν = 0. The eigenvalues of the corresponding matrix Ω, which is diagonal,

are
λ1 = −2ε, λ2 = −η. (81)

Thus, this regime is IR stable only if both parameters ε and η are negative
simultaneously, as can be seen in Fig. 4. The second, nontrivial, point is

FPIV: u∗ = 0, ḡ′′∗ = − ε

2A′′
0

− B′′
0

2A′′3
0

ε2, (82)

where A′′
0 and B′′

0 are deˇned in Eqs. (73) and (74), respectively, and the anom-
alous dimension γν taken in the ˇxed point is γ∗

ν = ε.
The eigenvalues of the matrix Ω (taken at the ˇxed point) are

λ1 = 2ε

(
1 − B′′

0

A′′2
0

ε

)
, λ2 = ε − η. (83)

The conditions ḡ′′∗ > 0, λ1 > 0, and λ2 > 0 for the IR stable ˇxed point lead to
the following restrictions on the values of the parameters ε and η:

ε > 0, ε > η, εB′′
0 < A′′2

0 . (84)

The region of stability in the plane d−ε is shown in Fig. 5. It is evident that
allowed values of the parameter ε are essentially restricted. For example, for
the most interesting case d = 3, one obtains that for the IR stable ˇxed point,
it is necessary to have ε < 0.85. These two-loop results for the frozen limit of



ADVECTION OF A PASSIVE VECTOR FIELD BY THE GAUSSIAN VELOCITY FIELD 545

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

d

�

Stable regime

2 3 4 5 6 7 8 9 10

Fig. 5. Region of the stability of the ˇxed point FPIV (frozen limit) in two-loop approx-
imation. The IR ˇxed point is stable in the region given in ˇgure. At the same time,
inequalities ε > 0, ε > η must be fulˇlled

the present vector model are essentially different from the corresponding results
obtained for the model of passively advected scalar ˇeld, where the two-loop
calculations give much weaker restriction on parameter ε (see [20Ä22]).

However, the most interesting scaling regime of the present model is the
regime with ˇnite value of the ˇxed point for the variable u. In this case, it is
evident that the system of equations (see also [25,35])

βg = g(−2ε − η + 3γν) = 0, (85)

βu = u(−η + γν) = 0 (86)

can be fulˇlled simultaneously for ˇnite values of g, u only when the parameter
ε is equal to η: ε = η. Thus, in this case, the function βg is proportional to
function βu. As a result, we have not one ˇxed point of this type but a curve of
ˇxed points in the g−u plane. The value of the ˇxed point for variable g in the
two-loop approximation is given as follows (we denote this ˇxed point as FPV):

FPV: ḡ∗ = − 1
2A∗

ε − 1
2
B∗
A3

∗
ε2, (87)

with exact one-loop result for γ∗
ν = ε = η (this is already directly given

by Eq. (86)). Here, A∗ and B∗ are expressions A and B from Eqs. (44) and (45)
which are taken in the ˇxed point value u∗ of the variable u. The possible values
of the ˇxed point for variable u can be restricted as we shall discuss below. The
matrix of the ˇrst derivatives Ω has the following eigenvalues:

λ1 = 0, λ2 = 3ḡ∗
(

∂γν

∂g

)
∗

+ u∗
(

∂γν

∂u

)
∗
, (88)



546 GLADYSHEV A.V. ET AL.

where γν is given in Eq. (43). The vanishing of the λ1 is related to the degeneracy
of the system of Eqs. (85) and (86).

Explicit form of the coordinate ḡ∗ of the ˇxed point as function of the spatial
dimension d and arbitrary ˇxed point value of parameter u∗ is given as follows:

ḡ∗ =
2d(2 + d)u∗(1 + u∗)

d2 − 3
ε +

Sd−1

Sd

2d2(d + 2)2u∗(1 + u∗)
(d − 1)(d2 − 3)3

×

×
[

d2 − 3
1 + u∗

I∗1 + (d − 2)I∗2

]
ε2, (89)

where I∗1 and I∗2 are the integrals deˇned in Eqs. (35) and (36) taken at the ˇxed
point value u∗. To have positive value of the ˇxed point for variables g and
u, one ˇnds restriction on parameter ε: ε > 0. Possible restrictions on the IR
ˇxed point value of the variable u can be found from the condition λ2 > 0. The
explicit form of λ2 is the following:

λ2 =
2 + u∗
1 + u∗

ε − Sd−1

Sd

d(d + 2)ε2

(d − 1)(d2 − 3)2(1 + u∗)2
×

× {u∗(1 + u∗)[(d2 − 3)I∗3 + (d − 2)(1 + u∗)I∗4 ]+

+ [d2(2 + u∗) − 2(3 + 2u∗)]I∗1 + (d − 2)(1 + u∗)(2 + u∗)I∗2}, (90)

where again I∗1 and I∗2 are the integrals deˇned in Eqs. (35) and (36) taken at the
ˇxed point value u∗, and I∗3 and I∗4 are deˇned as follows:

I∗3 =
(

∂I1

∂u

)
∗
, I∗4 =

(
∂I2

∂u

)
∗
. (91)

In Fig. 6, the regions of stability for the ˇxed point FPV in the u−ε plane
for different space dimension d are shown. Thus, one can see again that in
the two-loop approximation a nontrivial d-dependence of IR stability of the ˇxed
point appears in contrast to the one-loop approximation [25]. It is evident that the
strongest restriction on the region of IR stability of this scaling regime is near the
frozen limit. When the ˇxed point value of the parameter u increases, the region
of stability of the scaling regime enlarges too. Besides, again one can conclude
that the region of IR stability, as well as properties of this ˇxed point, is essentially
different for the present vector model in comparison with the corresponding ˇxed
point obtained in the model of passively advected scalar ˇeld.

Thus, having the results of the present section, one can conclude that the ˇrst
stage of the two-loop scaling analysis of the present model is completed; i.e.,
all possible scaling regimes are found and their IR stability is investigated to the
second order of the corresponding perturbation theory. The next step is to analyze
the scaling properties of the scaling functions R(r/L) of important correlation
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Fig. 6. Regions of stability for the ˇxed point FPV in the two-loop approximation. The
d-dependence of the IR stability is shown

functions of the advected vector ˇeld (the single-time two-point structure functions
deˇned in Eq. (50) are an example) by using the OPE. However, this question is
beyond the scope of the present paper and will be studied elsewhere.

CONCLUSION

In the present paper, we have studied the model of advection of a vector ˇeld
by a turbulent environment, where the turbulent �ow is given by the Gaussian
statistics of the velocity ˇeld with ˇnite correlations in time. The advection of the
vector ˇeld is described by the so-called A = 0 model, where the corresponding
stochastic advection-diffusion equation does not contain the ®stretching term¯ of
the form (θ · ∂)v. The complete two-loop analysis of all possible scaling regimes
is done, and the IR stability of the corresponding ˇxed points of the RG equations
is analyzed in detail. It is shown that, although the present model of passively
advected vector ˇeld exhibits the same scaling regimes as the corresponding
model of passively advected scalar ˇeld (see, e.g., [20Ä22]), the properties of the
scaling regimes (the coordinates of the ˇxed points) as well as the regions of their
IR stability are essentially different.

It is shown that the two-loop corrections lead to the rather strong restriction
on the space of parameters, where some of the scaling regimes exhibit IR sta-
bility. This restriction is especially essential for the so-called frozen limit of the
model u∗ = 0, where the velocity correlations are independent in time. Here,
only relatively small values of the parameter ε are allowed for which the scaling
regime is IR stable. On the other hand, when the ˇxed point value of the parame-
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ter u increases; i.e., when the correlations of the velocity become ˇnite in time,
the region of IR stability of the scaling regime enlarges. In the limit u∗ → ∞,
i.e., in the rapid-change limit, the restrictions completely disappear. Thus, we
can conclude that the structure of the scaling regimes of the present model of
passively advected vector quantity is now completely known.

However, from the point of view of the general analysis of the scaling
behavior of the correlation functions of the model, in the present paper only the
ˇrst stage of the solution of the problem is given; i.e., we have established all
possible scaling regimes of the model and discussed their IR stability. The second
stage of the analysis, namely, the investigation of the behavior of the scaling
functions of the important correlation functions of the model deep inside in the
inertial interval by using the OPE technique within two-loop approximation, is still
open. Thus, the next step will be to use the OPE and the results obtained in the
present paper in the two-loop analysis of the scaling functions of the correlation
functions of the advected vector ˇeld to determine the critical dimensions of the
most important composite operators that lead to the anomalous scaling. This open
problem will be studied elsewhere.
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