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Review paper is devoted to the relativistic conˇguration space (RCS) concept, a version
of the relativistic Quantum Mechanics in RCS, the generalization of the DiracÄInfeldÄHall facto-
rization method in the framework of the noncommutative differential calculus natural for RCS,
different versions of the deformed oscillators, emerging as the generalization of the harmonic
oscillator for RCS.

In the formulation of the NewtonÄWigner postulates for the relativistic localized states, the
hypothesis of commutativity of the position operator components is silently accepted as an evident
fact. In the present work, it is shown that commutativity is not necessary condition and the alternative
(noncommutative) approach to the relativistic position operator and localization concept can be realized
in the framework of the physically as well as mathematically comprehensive scheme.

The different generalizations of the DiracÄInfeldÄHall factorization method for this case are
constructed. This method enables us to ˇnd out all possible generalizations of the most impor-
tant nonrelativistic integrable case Å the harmonic oscillator. It is also shown that the relativistic
oscillator= q-oscillator.

PACS: 11.30.Cp; 03.30.+p; 03.65.-w

INTRODUCTION

The concept of the relativistic conˇguration space is based on two premises:
1. The NewtonÄWigner notion of the relativistic localized states. In the

original formulation, the condition of the commutativity of components of the
position operator is accepted without saying [1Ä3]. First premise is to admit the
noncommuting position operators without any change of the postulates of Newton
and Wigner.

2. Consideration of the closure of the algebra of noncommutative position
operators including all commutators which is the Lie algebra of the Lorentz group
SO(3, 1). Transfer to the maximal commuting subalgebra of the corresponding
enveloping algebra, whose elements form the commutative relativistic conˇgu-
ration representation. The ®price¯ of all these modiˇcations is the necessity to
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change the differential calculus, from the standard to the deformed (noncommu-
tative) one∗.

NewtonÄWigner Position Operator. In the formulation of the NewtonÄ
Wigner postulates for the relativistic localized states, the hypothesis of commuta-
tivity of the position operator components is silently accepted as an evident fact.
In the present work, it is shown that commutativity is not necessary condition and
the alternative (noncommutative) approach to the relativistic position operator and
localization concept can be realized in the framework of the physically as well as
mathematically comprehensive scheme.

The concept of localization is one of the most important and most intriguing
problems in quantum theory. The idea of localizability plays principal role in
the physical interpretation of the theory. We cannot avoid this concept when
comparing the measurement results with the theory predictions and considering
the uncertainty relations. The localizability is necessary element in constructing
the initial and ˇnal states when describing the collision phenomena. In the case
of the two-body problem, the question of the localizability of the bound state
must be solved in a transparent way.

In the nonrelativistic case for the potentials V (r) depending only on rela-
tive distance between interacting particles r = |r|, the coordinates of the cen-
ter of mass R and r are separated. The Galilean invariance of the motion
of the system as a whole is respected, the free motion of the bound state (of
the system as the whole) is described by the irreducible unitary representation
of the Galilean group. From this point of view, it would be natural to call
the spherically symmetric potentials V (r) the Galilean potentials. The internal
motion of the system is reduced to the motion of the effective particle with

the reduced mass μ =
m1 m2

m1 + m2
in the ˇeld of potential. We can call the

two-body systems with the spherically symmetric potentials V (r) the Galilean
elementary systems by evident analogy with the relativistic particle localization
concept of E. Wigner [1]. Let us remember also that nonrelativistic compound
quark models of hadrons (with spherically symmetric potentials) are very efˇ-
cient, and they describe the bound states which are the elementary systems. But
there are no doubts that these compound systems are actually relativistic and
it is necessary to ˇnd the comprehensive relativistic potential theory standing
behind.

We stress that keeping in mind the relativistic potential models we seek for
such relativistic analog of the relative coordinate r on which the interaction po-

∗This review is based on the papers [4Ä9]. The reader can ˇnd the references to preceding
papers concerning the development of the ®Snyder quantum space-time¯ which was the precursor of
the approach considered in this paper. The list includes the names of H. Snyder, W. Pauli, Chen Ning
Yang, I. E. Tamm, Yu.A.Gol'fand, V.G.Kadyshevsky and others.
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tential depends so that the total relativistic invariance is respected in analogy with
Galilean invariance of the nonrelativistic two-particle problem with the spherically
symmetric potentials V (r).

This discussion can be continued, but it is clear that old problem of ˇnding
the relativistic position operator still deserves to search for its solution. The
basic ideas on this subject have been expressed by Newton and Wigner [1Ä3].
Their essential result is that for single particles a notion of the localizability and
a corresponding commuting observables are uniquely determined by relativistic
kinematics. On the other hand, no relativistic quantum theory of interaction
based on these ideas was constructed. In the present contribution, we shall con-
sider the possibility of introducing the concept of the noncommuting relativistic
position operators obeying all NewtonÄWigner postulates, having the transpar-
ent physical interpretation and admitting very simple quantum dynamical inter-
pretation.

It must be stressed that the standard quantumÄmechanical position operator
x = i�∇p is connected with the Euclidean structures in terms of which the
localization of a particle is considered. Let us quote here [1]: ®Existence and
uniqueness of a notion of localizability for a physical system are properties which
depend only on the transformation law of the system under Euclidean group, i.e.,
the group of all space translations and rotations. The analysis of localizability
in the Lorentz and Galilei invariant cases is then just a matter of discussing
what representations of the Euclidean group can arise there¯. Both groups Å
Galilean and Poincar�e Å contain the Euclidean group as their subgroup. But
maybe there are another realizations of the Euclidean group in the framework of
the representation theory which allow another deˇnition of the position operator.
We show here that the answer is positive.

The fact that the manifold of the physically realizable states contains only so-
lutions with the positive energy has a number of consequences for the observables.
Consider the solutions of the KleinÄGordon equation ϕ, ψ:

ϕ, ψ ∈ {(+) : pμpμ = (p0)2 − p̃2 = m2c2, p0 � 0}, (1)

with the inner product

(ϕ, ψ) =
∫

(+)

dΩp ϕ(p)ψ(p), dΩp =
dpmc

p0
. (2)

The standard position operator

ˆ̂x = i�∇p (3)
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is non-Hermitian in the metric (2):(
ϕ, ˆ̂xψ

)
=

∫
(+)

dΩp ϕ(p) i�∇p ψ(p) =

=
∫

(+)

dΩp

[(
i�∇p −

i�p
p2 + m2c2

)
ϕ(p)

]
ψ(p). (4)

So the operator i�∇p does not correspond to any observable and cannot be
interpreted as a physical operator. It follows also that the KleinÄGordon wave
function cannot be considered as a probability amplitude to ˇnd the particle at
the point x at the moment of time x0.

The simplest way to obtain the position operator is to accept that the position
operator is the Hermitian part of x̂ = i�∇p:

x̂NW =
1
2

[
x̂ + x̂†] = i�∇p −

i�

2
p

p2 + m2c2
. (5)

Newton and Wigner derived this operator on the basis of a number of conditions
which localized states must satisfy (see [2], the papers [10, 12, 12] also might
be useful).

For the wave function of the localized state (at the moment x0) ψy(x) in the
conˇgurational space, a number of conclusions can be derived from the NewtonÄ
Wigner theory. We indicate two of them:

• The position operator components x̂i
NW commute[

x̂i
NW, x̂j

NW,
]

= 0,
[
x̂i

NW, pj ,
]

= iδij . (6)

• The localized eigenfunction is not δ(x−y) as in the nonrelativistic theory;
it is a function ψy(x) smeared in the spatial region of the size of the Compton
wave length of the particle λ0, because δ(x − y) cannot be constructed from the
positive frequency solutions only:

ψy(x) = const
(mc

�r

)5/4

K5/4

(
r

λ0

)
, r = |x − y|, λ0 =

�

mc
, (7)

Kν(z) is the MacDonald function; λ0 is the Compton wave length of the particle.
Alternative to NewtonÄWigner Approach. Actually we do not consider

an alternative. Rather we consider an independent perspective which is opened
thanks to denial of the commutativity requirement. The NewtonÄWigner the-
ory uses essentially the momentum space. To determine the nonlocal operator
x̂NW (5) directly in the conˇgurational space would be very difˇcult.
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But there is another circumstance essential for formulating the main idea of
the present paper. In [2], the wave functions localized at different points are
connected by translation:

x −→ x + a, eik(x+a) = eikx eika. (8)

The second relation has two mathematical meanings:
1) We consider, as in [2], the translations in the conˇgurational space. Then

the plane waves (exponentials) are the matrix elements of the irreducible unitary
representations of the translation group numbered by the value of momentum k.
Fourier transformation is the expansion in matrix elements of the unitary irre-
ducible representations of the translation group of the conˇgurational space.

2) We consider (in addition to [1, 2]) the translations in the momentum
k-space. Then the same formula (8) describes the matrix element of the product
of two irreps numbered by x and a correspondingly by the vector (of the mo-
mentum space) k. The inverse Fourier transformation is the expansion in matrix
elements of the unitary irreducible representations of the translation group of the
momentum space.

Such a symmetry between transformation within the same representation and
the product of the representations is speciˇc to the Euclidean translations. In the
nonrelativistic theory, the difference between 1 and 2 is formal and unimportant
because the geometries of the conˇgurational and momentum spaces are isomor-
phic (mathematically) and Euclidean. Physical sense of the conˇgurational and
momentum spaces is different of course. The translations of the momentum space
correspond to Galilean transformations:

x −→ x + Vt, ẋ −→ ẋ + V,
(9)

mẋ −→ mẋ + mV p −→ p + k, p = mẋ, k = mV.

The position operator (3) is the generator of translations of the momentum space.
Now we formulate the alternative to the NewtonÄWigner concept. It is based

on the simple observations.
1. From (1), (2) we conclude that the geometry of the momentum space, i.e.,

the manifold of realizable states of the relativistic particle of the positive frequency
is the Lobachevsky space (1). We shall develop the one particle relativistic theory
accepting this as the triggering point. Then we must substitute:

2. Galilean group −→ Lorentz group,
3. Galilean boosts −→ Lorentz boosts

x̂ = i�∇p −→ x̂rel = i�

√
1 +

p2

m2c2
∇p. (10)

Thereby, we consider the components of x̂rel of (10) as the candidates for
the relativistic position operators. But these are noncommuting operators. So
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proceeding along this geometrically natural way, ˇrst what we must do is to give
up with the commutativity of components of the position operator. We stress
that in [2], the commutativity requirement is tacitly contained in the list of basic
natural requirements.

First of all, we note immediately that operators (10) are Hermitian with
the norm (2). After lifting the commutativity condition we can say that the
new position operators are (the simplest) Hermitian operators in this metric.
Now in contrast with the commutative case, the components of the position
operator cannot be measured. But no limitations exist that the very concept of the
conˇgurational space in the relativistic case can be modiˇed as compared with
the nonrelativistic theory. The consequence of such a modiˇcation must be the
change of all the concept of the measuring the position, uncertainty relations, etc.

To make this statements more clear, let us return for a time being to the
nonrelativistic case. As coordinates commute, we can diagonalize simultaneously
all three components of it.

At the same time, many other operators of the universal enveloping algebra
of the Euclidean Lie algebra are also diagonal; for example, the Casimir operator
x̂2 which is invariant operator of the Euclidean group of the momentum space[

x̂2
]
eipx = �p eipx = x2 eipx,

(11)
x̂ieipx = xieipx, 0 � x < ∞, −∞ < xi < ∞.

Important is that the common eigenfunctions of these operators eipx are the
kernels of the Fourier transform connecting the Euclidean momentum space of
the nonrelativistic quantum mechanics and corresponding conˇgurational space.

In the relativistic case it is natural to consider as the momentum space,
adequate from the physical point of view, the space given by (1), i.e., the
Lobachevsky space of the physical solutions of the KleinÄGordon equation. Inte-
gration over this space (with the Lorentz-invariant volume element dΩp) is given
by (2). If we wish to follow the concept presented in the previous paragraph,
we should consider the universal enveloping algebra of the Lorentz group, deter-
mine the maximal set of mutually commuting operators, determine their common
eigenfunctions (new plane waves) and spectrum. The Casimir operator of the
Lorentz group Lie algebra can be chosen in the form

r̂2 = x̂2
rel −

M2

m2c2
− �

2

m2c2
, (12)

where M is the angular momentum operator. The nonrelativistic limit of (12) is
x̂2 (see ()). Spectrum of r for the unitary representations of the Lorentz group
takes continuous and discrete values [21]. All these representations ˇnd the
applications in various models of relativistic interactions. We shall concentrate
on the so-called principal series for which 0 � r < ∞.
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The eigenfunctions of r̂2 are the matrix elements of unitary irreducible rep-
resentations of the Lorentz group or their generating functions Å kernels of
GelfandÄGraev transformations:

r̂2〈p|r〉 = r2〈p|r〉, 〈r|p〉 = 〈p|r〉∗. (13)

They play the role of plane waves in the given relativistic formalism; explicitly

〈r|p〉 =
(

p0 − pn
mc

)−1−irmc/�

, n2 = 1. (14)

The unit vector n gives the sense to the symbol r Å by deˇnition

r = rn. (15)

We shall call the space of vectors r the relativistic conˇgurational space.
The partial expansion for the plane wave (14) is

〈r|p〉 =
∞∑
l=0

il(2l + 1) pl(cosh χ, r)Pl(np · n),

(16)
p0 = coshχ, p = sinh χnp, n2

p = 1,

where

pl(coshχ, r) = (−1)l

√
π

2 sinh χ

Γ(ir + l + 1)
Γ(Ir + 1)

P
−1/2+Ir
−1/2+Ir cosh χ. (17)

The expansion (16) is analogous to the nonrelativistic one

eipr =
∞∑

l=0

il(2l + 1)jl(pr)Pl(np · n), (18)

where jl(pr) =
√

π

2pr
Jl+1/2 are the spherical Bessel functions. In the nonrela-

tivistic limit
pl(coshχ, r) −→ jl(pr). (19)

The orthogonality and completeness conditions for the relativistic plane
waves are

1
(2π)3

∫
〈r|p〉 〈p|r′〉dΩp = δ(r − r′),

1
(2π)3

∫
〈p|r〉 〈r|p′〉dr = δ(p(−)p′) =

p0

mc
δ(p − p′).

(20)
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The relativistic conˇgurational space is an example of the quantum 3-dimen-
sional Euclidean space. The quantum nature of the r-space is predeˇned by the
fact that the Lie algebra of its isometry group is realized in the framework of
noncommutative differential calculus. The momentum operators (generators of
translations) are

H0 = p̂0 = cosh
(

i
∂

∂r

)
+

i

r
sinh

(
i

∂

∂r

)
− �ϑ,ψ

2r2
exp

(
i

∂

∂r

)
,

p̂1 = − sin ϑ cos ψ

[
exp

(
i

∂

∂r

)
− H0

]
−

− i

(
cos ϑ cos ψ

r

∂

∂ϑ
− sinψ

r sin ϑ

∂

∂ψ

)
exp

(
i

∂

∂r

)
,

(21)

p̂2 = − sin ϑ sin ψ

[
exp

(
i

∂

∂r

)
− H0

]
−

− i

(
cosϑ sin ψ

r

∂

∂ϑ
+

cosψ

r sinϑ

∂

∂ψ

)
exp

(
i

∂

∂r

)
,

p̂3 = − cosϑ

[
exp

(
i

∂

∂r

)
− H0

]
+ i

sinϑ

r

∂

∂ϑ
exp

(
i

∂

∂r

)
.

They play the role of inner derivatives in relevant differential calculi. These
operators mutually commute

[p̂μ, p̂ν ] = 0, μ, ν = 0, 1, 2, 3. (22)

But the corresponding differentials of the coordinate functions do not com-
mute with the coordinate functions themselves. For the details we refer the reader
to [8, 9]. Note that the integration in the second formula in (20) is carried over
with the Euclidean volume element dr.

The common eigenfunctions of p̂μ are 〈r|p〉 (13)

p̂μ〈r|p〉 = pμ〈r|p〉, (23)

from which we conclude that the ®plane waves¯ (13) indeed describe the free
relativistic motion with deˇnite value of the 4-momentum. The Relativistic
Schréodinger Equation (RSE) arising here belongs to the deformed (noncommuta-
tive) differential calculus [4,9] (cf. [13,14]). This is a new realization of the Lie
algebra of the Euclidean group which we discussed in Introduction.

Operators p̂μ identically satisfy the relativistic relation between energy and
momentum (1). Important is also to note that these operators solve the problem
of ®extracting the root square¯ in the relation p̂μ =

√
p2 + m2c2:

p̂0〈r|p〉 = p0〈r|p〉 =
√

p2 + m2c2 〈r|p〉. (24)
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In the nonrelativistic limit,

|p| 	 mc, p0 ∼= mc +
p2

2mc
, r � �

mc
, (25)

relativistic plane waves 〈r|p〉 transfer to usual plane waves

〈r|p〉 = exp
[
−

(
1 + ir

mc

�

)
ln

(
p0 − pn

mc

)]
∼=

∼= exp
[
−

(
1 + ir

mc

�

)
ln

(
1 − pn

mc
+

p2

2m2c2
+ . . .

)]
∼=

∼= exp
(

i
p · (rn)

�

)
= exp

(
i
pr
�

)
. (26)

The wave function of the particle can be expanded in the Fourier integral in
the relativistic plane waves

ψ(r) =
1

(2π)3/2

∫
〈r|p〉ψ(p) dΩp. (27)

Particles are localized in the relativistic conˇgurational space in a usual sense.
The position operator r̂ in r-representation acts on a wave function in a usual way

r̂ψ(r) = rψ(r). (28)

The eigenfunctions ψr0(r) of r̂ corresponding to the eigenvalue r0 are ψr0(r) =
δ(r − r0) so that

r̂ψr0(r) = rψr0 · (r). (29)

Eigenfunctions corresponding to different eigenvalues, i.e., the states localized at
different points r0 and r̃0, are orthogonal∫

ψr0ψr̃0dr = δ(r̃0 − r0), (30)

which is the usual localization condition in the new relativistic conˇgurational space.

1. ONE-DIMENSIONAL RELATIVISTIC QUANTUM MECHANICS

In the one-dimensional case, the Lobachevsky space is a hyperbola:

p2
0 − p2 = 1, (31)

and the relativistic plane wave is the exponent

〈x|p〉 = (p0 − p)−ix = eiχx, −∞ < x < ∞, (32)
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where x is the relativistic coordinate, χ is rapidity:

p0 = coshχ, p = sinh χ,

χ = ln (p0 + p) = rapidity, −∞ < χ < ∞, (33)

dΩp =
dp

p0
= dχ.

We use the unit system, in which � = c = m = 1. The wave function ψ(x) is
connected with its momentum space counterpart by Fourier transformation

ψ(x) =
1√
2π

∞∫
−∞

dΩp〈x|p〉ψ(p). (34)

The plane waves obey the following orthogonality and completeness conditions:

1
2π

∞∫
−∞

〈x|p〉 dΩp〈p|x′〉 = δ(x − x′),

1
2π

∞∫
−∞

〈p|x〉 dΩp〈x|p′〉 = δ(χ − χ′).

The free Hamiltonian and the momentum are a ˇnite-difference operators:

H0 = cosh i
d

dx
, p = − sinh i

d

dx
.

The plane wave 〈x|p〉 obeys the free ˇnite-difference RSE equation:

(H0 − p0)〈x|p〉 = 0. (35)

We can write Eq. (35) in the ®nonrelativistic¯ form, using the simple relation of
the hyperbolic trigonometry, the ®half-rapidity relation¯:

coshχ = 1 + 2 sinh2 χ

2
.

The operator of free relativistic kinetic energy takes the form (we restore for the
time being the dimensional quantities)

h0 = 2mc2 sinh2 i�

2mc

d

dx
=

k̂2

2m
= H0 − mc2, (36)

where the corresponding momentum operator was introduced

k̂ = −2mc sinh
i�

2mc

d

dx
, k = 2mc sinh

χ

2
. (37)
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The RSE takes the form:

(h − e)ψ(x) = 0, (38)

where

h =
k̂2

2m
+ V (x), e =

k2

2
. (39)

In this form, RSE is indistinguishable with nonrelativistic Schréodinger equa-
tion, until the explicit form of the momentum operator is ˇxed. Obviously, in
nonrelativistic limit we have

h → − �

2m

d2

dx2
. (40)

2. THE NONRELATIVISTIC FACTORIZATION METHOD

One of the most important integrable cases of usual Schréodinger equation
is the linear oscillator problem. We shall construct the relativistic Hamiltonian
corresponding to this important nonrelativistic problem and see that there are
several ways to do that. It is impossible to introduce the notion of the elastic
forces in the relativistic conˇgurational space. We shall proceed by analogy,
trying to restore all important features of the nonrelativistic quantum mechanical
linear oscillator properties:

1. The integrability. In particular, this property of nonrelativistic oscilla-
tor is re	ected in factorizability of Hamiltonian. This will be exploited by us
intensively.

2. The correct nonrelativistic limit.
3. The symmetry. We shall require the existence of both kinds of the symme-

try: the symmetry of the Hamiltonian and the dynamical symmetry. Of course, it
is obvious from the beginning that in the relativistic case these symmetries must
be in some sense generalized. We see that in our case the ®generalization¯ means
going over to the q-deformed groups SUq(2) and SUq(1, 1) with q given by (66).
By other words, the relativization= q-deformation.

4. The existence of some generalization of the symmetry between the coordi-
nates and momenta, which in the nonrelativistic case follows from the explicitly
symmetric Hamiltonian:

Hnonrel =
P 2 + Q2

2
. (41)

Let us consider the nonrelativistic one-dimensional Hamiltonian

H = −1
2

d2

dx2
+ V (x) (42)
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with the positive-deˇnite ground state wave function

ψ0(x) = e−ρ(x) � 0 (43)

and the lowest energy level E0

Hψ0(x) = E0ψ0(x). (44)

We can express V (x) in terms of ρ(x) and E0:

V (x) =
1
2

[(
dρ(x)
dx

)2

− d2ρ(x)
dx2

]
− E0. (45)

Now Hamiltonian can be written in the factorized form

H − E0 = a+a−, (46)

where

a± =
1√
2

(
∓ d

dx
+

dρ(x)
dx

)
= ∓ 1√

2
e∓ρ(x) d

dx
e±ρ(x). (47)

The commutator of the creation and annihilation operators

[a+, a−] =
d2ρ(x)
dx2

(48)

is simply a function of x and does not contain the derivative operator as a+, a−

themselves do. We stress that in general case the commutator of two ˇrst-order
differential operators is the differential operator of the second order. The absence
of the derivatives in the right-hand side of (48) is the consequence of the speciˇc
construction (47) and, of course, of the Leibnitz rule for differentiation operation:

d

dx
f1(x) · f2(x) =

(
d

dx
f1(x)

)
· f2(x) + f1(x) ·

(
d

dx
f2(x)

)
. (49)

The harmonic oscillator case is singled out. In this case, the right-hand side
of (48) is not a function of x; but a constant ω, the frequency of oscillator:[

a+, a−]
= const = ω. (50)

The ρ(x) takes the form

ρ(x) =
ωx2

2
=

mωx2

2�
, (51)

and a+, a− are

a± =
1√
2

(
∓d

d
+ ωx

)
= ∓ i√

2
(p̂ ± iωx) . (52)
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The Hamiltonian H could be written in different forms:

H =
1
2
{a+, a−} = αa+a− + (1 − α) a−a+ + (2α − 1)E0 = a−a+ − E0,

(53)
E0 =

ω

2
, α Å arbitrary number.

The fact of integrability of the oscillator problem is re	ected in commutation
relations of the creation and annihilation operators with the Hamiltonian [5,7,16]:

[H, a+] = ωa+, [H, a−] = −ωa−. (54)

The relations (54) give us the simple way for constructing the spectrum and the
eigenvectors of Hamiltonian H . If Ψ is an eigenvector of H (HΨ = EΨ), the
functions a+Ψ and a−Ψ (provided that they are nonzero and belong to L2(R))
and the new eigenvectors corresponding to the eigenvalues E +ω and E −ω are,
respectively,

H(a+Ψ) = a+(H + ω)Ψ = (E + ω)a+Ψ,

H(a−Ψ) = a−(H − ω)Ψ = (E − ω)a−Ψ.
(55)

In fact, the integrability is not strictly connected with commutators in left-
hand sides of (54). Suppose we have instead of (54) some other linear combination
of Ha+ and a+H of the form

AHa+ − Ba+H = ωa+. (56)

Obviously, this relation could be used for the constructing the higher and lower
eigenvectors of the Hamiltonian in the same way as (54) was used in (55). Of
course, the spectrum of the Hamiltonian will be different. We shall have such a
situation when we consider the factorization in the relativistic case. The Leibnitz
rule for the ˇnite-difference calculus is different from (49) and we shall see that
integrability of the relativistic oscillator problem is provided by the relation of
the type (56) rather than (55). Ultimately, this will lead us to the deformed
symmetries for the relativistic oscillator [5].

3. THE RELATIVISTIC OSCILLATOR

Let ψ0(x) be the ground state wave function; and e0, the lowest energy level
in Eq. (38). We introduce the relativistic creation and annihilation operators ( [5])

A± = ∓i
√

2α(x) e±ρ(x) sinh
i

2
d

dx
e∓ρ(x). (57)
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The difference between (47) and (57) is originated from the different Leibnitz
rules for the ˇnite-difference operators as compared with the differential one (49):

sinh
i

2
d

dx
(f1(x) · f2(x)) =

(
sinh

i

2
d

dx
f1(x)

) (
cosh

i

2
d

dx
f2(x)

)
+

+
(

cosh
i

2
d

dx
f1(x)

) (
sinh

i

2
d

dx
f2(x)

)
,

(58)

cosh
i

2
d

dx
(f1(x) · f2(x)) =

(
cosh

i

2
d

dx
f1(x)

) (
cosh

i

2
d

dx
f2(x)

)
+

+
(

sinh
i

2
d

dx
f1(x)

) (
sinh

i

2
d

dx
f2(x)

)
.

This new Leibnitz rules naturally suggest a new construction Å the ®q(x)-
mutator¯:

[A−, A+]q(x) = A− ea(x)A+ − A+ e−a(x)A−,
(59)

q(x) = ea(x).

In the explicit form

[A−, A+]q(x) =
α(x)

2
exp

(
i

2
d

dx

)
α(x) sinh Z(x) exp

(
i

2
d

dx

)
+

+ exp
(
− i

2
d

dx

)
α(x) sinh Z(x) exp

(
− i

2
d

dx

)
−

− exp
(

i

2
d

dx

)
α(x) sinh

(
Z(x) + 2ρs/2(x)

)
exp

(
− i

2
d

dx

)
−

− exp
(
− i

2
d

dx

)
α(x) sinh

(
Z(x) − 2ρs/2(x)

)
exp

(
i

2
d

dx

)
, (60)

where the following notations were introduced:

Z(x) = 2ρ(x) + a(x) − 2ρ c
2
(x),

(61)

ρ s
2
(x) = sinh

i

2
d

dx
ρ(x), ρ c

2
(x) = cosh

i

2
d

dx
ρ(x).

The right-hand side of (60) is much more complicated than the right-hand
side of the commutator of the nonrelativistic creation and annihilation operators
a+ and a− (48). We see that the condition that there are no ˇnite-difference
differentiations in the right-hand side of (59) is:

Z(x) = 0. (62)
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This gives us the relation connecting q(x) and ρ(x). For Z(x) = 0, we have

[A−, A+]q(x) = −α(x) sinh
i

2
d

dx

[
α(x) sinh (2ρs/2(x))

]
. (63)

Again, following the example of the nonrelativistic oscillator, we wonder whether
it is possible that the expression in the right-hand side of (63) is equal to a
constant as it was in the case of the nonrelativistic oscillator (see (50)):

[A−, A+]q(x) = const. (64)

This means that we shall consider (64) as an equation for ρ(x). The remarkable
fact is that this problem is solvable, the solution coincides with the nonrelativistic
ρ(x) (51) and obviously does not depend on the velocity of light.

The factor α(x) deˇned from (64) is equal to

α(x) =
1

cos ωx/2c
. (65)

The a(x) and q(x) (see (59)) are now constants:

a(x) = −ω

4
, q(x) = const = q = exp

(
−ω

4

)
,

or in dimensional units

q = exp
(
− ω�

4mc2

)
, (66)

and instead of the q(x)-mutator we have the q-mutator (cf. [22Ä25])

[A−, A+]q = q A−A+ − q−1A÷A−, (67)

and this q-mutator is equal to a constant

[A−, A+]q = 2(q−1 − q) = 4 sinh
ω

4
. (68)

The operators A± can be calculated now in an explicit form

A± = ±i
√

2 exp
(
±ω

8

) (
sinh

i

2
d

dx
∓ i tan

ωx

2
cosh

i

2
d

dx

)
=

∓ 1√
2

exp
(
±ωx2

2

)
D̂ exp

(
−ωx2

2

)
, (69)

where

D̂ = − 2i

cos ωx/2
sinh

i

2
d

dx
. (70)
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The Hamiltonian of the relativistic oscillator has the form [5]

ĥ =
1
2
{A−, A+}q =

1
2

(
q A−A+ + q−1A+A−)

= 2
(
T̂ 2 − cosh

ω

4

)
, (71)

where

T̂ =
1

cos ωx/2
cosh

i

2
d

dx
= q−N−1/2, (72)

and operator N , the analog of the occupation number, was introduced. In [5],
relations (72) between Hamiltonian operator (71), ˇnite-difference operator T̂ and
the ®occupation number operator¯ N were established. It was also shown (see
also [23]) that the eigenvalues of N are equal to 0, 1, 2, . . . The q-mutator of the
creation operator A+ with the Hamiltonian re	ects the integrability property of
the problem considered

[A+, ĥ]q−1 = (q2 − q−2)A+. (73)

The solution of the oscillator RSE

ĥΨ(x) = eΨ(x) (74)

corresponding to the nth energy level e = en has the form

Ψn(x) = exp
(
−ωx2

2

)
hn(x), (75)

where hn(x) are relativistic Hermite polynomials. We refer the reader for the
details to [5] and write down here only the necessary relations for the hn.

• The Rodrigues formula:

hn+1(x) = R̂ hn(x) =
(

1√
ω

)
eωx2 D̂ e−ωx2

hn(x). (76)

It could be easily seen that operator R̂ acting on arbitrary polynomial of nth
degree gives a polynomial of n + 1-th degree.

• The connection of the relativistic Hermite polynomials with the q-Hermite
polynomials Hn(z|q) (cf. [17Ä21]) is given by

hn(x) =
(

4
ω

)n/2

q−
n(n+1)

4 Hn

(
sin

ωx

2
|q

)
, q = e−ω/2. (77)

• The ˇnite-difference equation:

K̂ hn(x) = exp
[
(n + 1/2)ω

4

]
hn(x), (78)

where

K̂ = exp
(

ωx2

2

)
T̂ exp

(
−ωx2

2

)
. (79)
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4. THE INHOMOGENEOUS LATTICE, DOUBLE PERIODICITY
OF RELATIVISTIC HAMILTONIAN AND ORTHOGONALITY

CONDITIONS

We deˇned the factor α(x) as the solution of equation (64), but it is important
to stress that it coincides with the characteristic lattice factor coming from the
general theory of polynomials of the discrete variables (see [16]). It was shown
in the theory of relativistic oscillator [5] that the wave functions, as the solutions
of the ˇnite-difference RSE, are expressed in terms of the relativistic Hermite
polynomials with characteristic dependence on the lattice argument sin ωx/2. On
the other hand, it was stressed in ( [5]) that hn-s are q-generalizations of the usual
Hermite polynomials (see [18Ä20] and references therein). The explicit form of
the natural argument of the relativistic Hermite polynomials is deˇned by the
lattice. In other words, it is the lattice, which indicates the speciˇc change of
variables in ˇnite-difference RSE for generalized Hermite polynomials.

In usual differential calculus, changing the argument of the function

f(x) = f(s(x)), (80)

we have the following formula for the derivative in the new argument:

df

ds
=

df/dx

ds/dx
. (81)

Analogous formula for ˇnite-difference differentiation has the form:

sinh
i

2
d

dx
f(x) =

sinh
i

2
d

dx
f(s(x))

sinh
i

2
d

dx
s(x)

. (82)

Taking into account that

sinh
i

2
d

dx
sin

ωx

2
= i sinh

ω

4
cos

ωx

2
, (83)

we convince that (70) is indeed the ˇnite-difference differentiation operator in
terms of lattice variable sin ωx/2.

Another important feature of RSE is that in the theory of relativistic oscillator,
the lattice factor α(x) is also connected with the cutting factor of the oscillatory

wave function or the ground state wave function e−(ωx2)/2. We see

cosh
i

2
d

dx
e−(ωx2)/2 = eω/8 cos

ωx

2
e−(ωx2)/2 =

1
α(x)

e−ωx2/2. (84)
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We see now clearly that lattice plays nontrivial role in the ˇnite-difference rela-
tivistic quantum mechanics. But this is only the beginning of the story.

Maybe the most difˇcult problem connected with this change of variables
in ˇnite-difference RSE is to understand the role which plays the periodicity of
the argument of relativistic Hermite polynomials sin ωx/2. In particular, this
problem is re	ected in the orthogonality condition for the wave functions of the
relativistic oscillator (75).

This orthogonality condition is written as
∞∫

−∞

hn(x)hm(x)μ1(x)dx = δnmJn, (85)

where
μ1(x) = e−ωx2

cos
ωx

2
,

(86)

Jn =
(π

ω

)1/2
(

8
ω

)n

exp
[
ω

8

(
n2 + n − 1

2

)] n∏
j=1

sinh
ω

4
j.

In fact, equation (85) is not the orthogonality relation, because the quantity
cos ωx/2 is not positively deˇnite and could not be considered as a measure.
At the same time, the consideration of the inˇnite interval is necessary from the
physical point of view, because this interval is one-dimensional physical space in
which the Schréodinger equation is written. There is obvious contradiction between
the probabilistic interpretation of the wave function in full physical space and the
explicit form of the exact solutions of the Schréodinger equation. On the other
hand, in the theory of the q-polynomials (see [18Ä20] and references therein) the
orthogonality condition is written as integral over the ˇnite interval (−π/ω, π/ω)
(where cos ωx/2 is positive deˇnite)

π/ω∫
−π/ω

hn(x)hm(x)μ2(x) dx = δnm Jn (87)

with different well-deˇned measure:

μ2(x) = Θ4

(
2πix, e−4π2/ω

)
e−ωx2

cos
ωx

2
=

= Θ4

(
2πix, e−4π2/ω

)
μ1(x), (88)

where Θ4(2πix, e−4π2/ω) is the theta-function [19].
Trying to understand the role of the inhomogeneous lattice s(x) = sin ωx/2,

the nature of the change of variables (80), and the related problem of the orthog-
onality condition for the relativistic Hermite polynomial, we consider the peri-
odicity properties of the Hamiltonian (71) for the relativistic oscillator and the
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corresponding properties of the oscillator wave functions. The Hamiltonian (71)
has two different periodicity properties:

1. The First Periodicity Property. The step of ˇnite-difference RSE (38) (as
well as the step in the free equation (74)) is equal to i/2. This means that any
function α(x), periodical with the period i/2, i.e.,

α

(
x +

i

2

)
= α(x) (89)

®is a constant in respect to RSE¯. In other words, if ψ(x) is the solution of RSE,
then α(x)ψ(x) is also the solution of the same equation. The step of difference
operators D̂ (70), T̂ (72), and K̂ (79) also equals i/2.

2. The Second Periodicity Property. The Hamiltonian (71) is periodic opera-
tor, with the period 2π/ω:

ĥ

(
x +

2π

ω
, cosh

i

2
d

dx

)
= ĥ

(
x, cosh

i

2
d

dx

)
. (90)

The operators D̂ (70), T̂ (72), and K̂ (79) are quasi-periodic in respect to
shifts by 2π/ω:

D̂
(

x +
2π

ω
, sinh

i

2
d

dx

)
= −D̂

(
x, sinh

i

2
d

dx

)
, (91)

T̂

(
x +

2π

ω
, cosh

i

2
d

dx

)
= −T̂

(
x, cosh

i

2
d

dx

)
, (92)

K̂

(
x +

2π

ω
, cosh

i

2
d

dx

)
= K̂

(
x, cosh

i

2
d

dx

)
. (93)

These periodicity properties of the oscillator RSE are very important. They
actually deˇne the characteristic inhomogeneous lattice s(x) = sin ωx/2, the
speciˇc dependence on this variable of the relativistic Hermite polynomials, the
form of orthogonality conditions described earlier and the connection of the theory
considered with Θ-functions.

The periodicity properties of the Hamiltonian are re	ected in the measures
μ1(x) and μ2(x) and relativistic Hermite polynomials hn(x):

1.

μ1

(
x +

2π

ω

)
= −e−4πx e−4π2/ω μ1(x). (94)

2. The theta-function is quasi-doubly-periodic function of x [19]

Θ4

(
2πi

(
x +

2π

ω

)
, e−4π2/ω

)
= −e4πx e4π2/ω Θ4

(
2πix, e−4π2/ω

)
, (95)
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sinh
i

2
d

dx
Θ4

(
2πix, e−4π2/ω

)
= 0. (96)

We write the i-periodicity condition (96) for Θ4(2πix, e−4π2/ω) in the form,
emphasizing that it is a ®constant¯ in the ˇnite-difference analysis:

μ2

(
x +

2π

ω

)
= μ2(x), (97)

hn

(
x +

2π

ω

)
= (−1)nhn(x). (98)

The periodicity property (97) is the consequence of (94), (95) and deˇni-
tion (88). It is important that the multiplier in the quasi-periodicity property of
cut-off factor e−ωx2/2 (75), deˇning the behavior of the oscillator's wave function
at inˇnity, is just inverse of the quasi-periodicity multiplier of the theta-function.

Now we shall derive the orthogonality condition for the relativistic Hermite
polynomials (87), using the RSE (74), its periodicity properties and well-known
properties of the theta-function [19]. Let us rewrite equation (78) in the form

exp
(

n + 1/2
4

ω

)
ψn(x) cos

ωx

2
= cosh

i

2
d

dx
ψn(x). (99)

We introduce the i/2 Å periodic functions

λ(±x, ω) =
∞∏

n=1

(
1 − exp

[
−4π2

ω
(2n − 1)

]
e∓4πx

)
(100)

and transfer to new wave functions

φn(x) = λ(x, ω)ψn(x), (101)

φ̃n(x) = λ(−x, ω)ψn(x). (102)

The λ-functions transform under the x → x + 2π/ω as follows:

λ

((
x +

2π

ω

)
, ω

)
=

−e4π2/ω e4πx(
1 − e4π2/ω e4πx

) λ(x, ω), (103)

λ

(
−

(
x +

2π

ω

)
, ω

)
=

(
1 − e4π2/ω e4πx

)
λ(−x, ω). (104)

The new wave functions (101) and (102) obey the same equation (99) for
initial wave function ψ(x), because the i-periodic functions λ(±x, ω) could be
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inserted under the sign of the ˇnite-difference differentiation in that equation.
We have

exp
(

n + 1/2
4

ω

)
φn(x) cos

ωx

2
= cosh

i

2
d

dx
φn(x), (105)

exp
(

m + 1/2
4

ω

)
φ̃m(x) cos

ωx

2
= cosh

i

2
d

dx
φ̃m(x). (106)

Multiplying the ˇrst equation from the left by (102), the second one by (101),
subtracting the second expression from the ˇrst one and integrating in the limits
(−π/ω, π/ω), we come to the following relation:

(
exp

(
2n + 1

8
ω

)
− exp

(
2m + 1

8
ω

)) π/ω∫
−π/ω

hn(x)hm(x)μ2(x) dx =

= G−1

π/ω∫
−π/ω

Θ4

(
2πix, e−4π2/ω

)
Rnm(x, ω), (107)

where

Rnm(x, ω) = e−ωx2/2

(
hn(x) cosh

i

2
d

dx
e−ωx2/2 hm(x)−

−hm(x) cosh
i

2
d

dx
e−ωx2/2 hn(x)

)
. (108)

The following relation was used [19]:

Θ4

(
2πix, e−4π2/ω

)
= Gλ(x, ω)λ(−x, ω), (109)

where

G =
∞∏

n=1

(
1 − exp

(
−8π2 n

ω

))
. (110)

The orthogonality condition for the relativistic Hermite polynomials in the
form (87) will be proved, if we show that for n �= m the right-hand side of (107)
vanishes. For n − m odd, it is obvious due to the relation [5]

hn(−x) = (−1)nhn(x). (111)

For n − m even, the only way is to use the ˇnite-difference analogue of the
partial integration, which is valid only for inˇnite limits of integration [5]. Let
us consider the integral

J =

∞∫
−∞

Rmn(x) dx. (112)
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We can represent it as the sum

J =
∞∑

k=−∞

2π/ω(k+1/2)∫
2π/ω(k−1/2)

Rnm(x) dx. (113)

Changing the variable of integration in the kth integral

x → x +
2kπ

ω
,

we come to the expression

J =
∞∑

k=−∞

π/ω∫
−π/ω

Rnm

(
x +

2kπ

ω

)
dx. (114)

It is easy to verify that Rnm(x, ω) obeys the following quasi-periodicity condition:

Rnm

(
x +

2kπ

ω
, ω

)
= (−1)k e−4πxk exp

(
−4π2k2

ω

)
Rnm(x, ω). (115)

Substituting this to (114) and using the relation

Θ4

(
2πix, e−4π2/ω

)
=

∞∑
k=−∞

(−1)k exp
(
−4π2k2

ω

)
e−4πxk, (116)

we come to required equality

π/ω∫
−π/ω

Θ4

(
2πix, e−4π2/ω

)
Rnm(x, ω) =

∞∫
−∞

Rnm(x, ω) dx. (117)

As was shown in [5], for n �= m, the integral in right-hand side vanishes. Closing
this section, it is worthwhile to stress that the doubly-periodicity properties of the
oscillator RSE and the existence of two different orthogonality conditions (85)
and (87) can have an interesting physical sense. The relation (117) shows that
the essential part of the oscillator wave function is accumulated (conˇned) in a
small region

Δ =
(
−πc

ω
,
πc

ω

)
. (118)

Let us call it the conˇnement area. The wave function normalization integral (=1,
the full probability) is saturated on this interval. This means that particle must be
conˇned in this area. The values of wave function outside the conˇnement area
could be obtained by periodicity, but there is no probabilistic interpretation of the
relativistic wave function in all physical space (−∞ < x < ∞). We stress also
that it is easily seen from (118) that in nonrelativistic limit the conˇnement area
coincides with all physical space and all effect disappears.
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5. DIFFERENT FACTORIZATIONS

The remarkable property of the nonrelativistic oscillator is the symmetry of
its Hamiltonian (41) under the substitution

p � xω. (119)

In the relativistic case, the existence of this symmetry is not evident. Let us
consider together with A± another couple of operators B± introduced by the
following relations (for comparison we write them down together with A±):

B+ =
√

2δ−qN/2â+, A+ =
√

2δ−q−N/2â+,
(120)

B− =
√

2δ−â−qN/2, A− =
√

2δ−â−q−N/2,

where
δ− = q−1 − q. (121)

Operator N is given by (72). The q-mutators of A± and B± are

[B−, B+]q−1 = q−1 B−B+ − q B+B− = 2δ−, (122)

[A−, A+]q = q A−A+ − q−1 A+A− = 2δ−. (123)

The operators A± and B± are connected by the relations

B+ = qN A+, B− = A− qN , (124)

A± = ± i
√

2
cos (ωx/2)

e±ω/8

(
cos

ωx

2
sinh

i

2
d

dx
∓ i sin

ωx

2
cosh

i

2
d

dx

)
,

B± = ∓ i
√

2

cosh
i

2
d

dx

e∓ω/8

(
cos

ωx

2
sinh

i

2
d

dx
∓ i sin

ωx

2
cosh

i

2
d

dx

)
.

(125)

The lattice factor for the operators B, which are inverse operators with
respect to cosh (i/2)(d/dx), is better understood if we transfer to the conjugated
χ-representation. Using (34) we can pass to conjugated variables (rapidities) in
which the operators B± take the form

B± = ∓ i
√

2
cosh χ/2

e±χ2/2ω sinh
i

2
d

dχ
e∓χ2/2ω. (126)

The Hamiltonian for the creation and annihilation operators B± has the form

hB =
1
2
{B−, B+}q−1 =

1
2
(q−1B−B+ + qB+B−). (127)
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It could be easily seen that Hamiltonians (71) and (127) are not symmetric in
respect to interchange (119). But now it is easy to ˇnd the symmetric Hamiltonian
for the relativistic oscillator. It has the form (cf. [24])

hs =
1
2
{a−, a+} =

1
2
(a−a+ + a+a−) =

=
1

4δ−
(A−B+ + A+B−) =

1
4δ−

(B−A+ + B+A−). (128)

We see that there are different possibilities to obtain factorized relativistic os-
cillator Hamiltonians. The origin of this fact lies in the ˇnite-difference character
of the relativistic momentum operator (37). Indeed, let us return for a moment to
the nonrelativistic QM. The free energy operator is the second derivative which
can be splitted in two factors by only one way, if we do not consider the fractional
degrees of differentiation operators:

H0 =
p2

2m
= − 1

2m

d2

dx2
= − 1

2m

(
d

dx

) (
d

dx

)
.

In the relativistic case, the free Hamiltonian is the ˇnite-difference operator
given by (36). Using the deˇnition of the hyperbolic function sinh z:

sinh
i

2
d

dx
=

1
2

(
exp

(
i

2
d

dx

)
− exp

(
− i

2
d

dx

))
and the relation

exp
(
± i

2
d

dx

)
〈x|p〉 = e∓χ/2〈x|p〉,

we can write the free RSE in different forms:(
1 − exp

(
−i

d

dx

))2

〈x|p〉 = 2 eχ sinh2 χ

2
〈x|p〉, (129)

(
1 − exp

(
i

d

dx

))2

〈x|p〉 = 2 e−χ sinh2 χ

2
〈x|p〉, (130)

(
1 − exp

(
i

d

dx

)) (
1 − exp

(
−i

d

dx

))
〈x|p〉 = −2 sinh2 χ

2
〈x|p〉. (131)

It is easily seen that (129)Ä(131) exhaust all the possibilities because we always
must have in the left-hand side a term which does not contain the sift operators
e±i(d/dx). Let us consider the case (129). Acting by analogy with Sec. 2, we
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introduce the operators

η+ = − i√
2

eρ1(x)

(
1 − exp

(
−i

d

dx

))
e−ρ2(x),

η− =
i√
2

e−ρ3(x)

(
1 − exp

(
−i

d

dx

))
eρ4(x)

(132)

and construct the q(x)-mutator, which has no shift operators ei(d/dx) in its right-
hand side. This is achieved by matching the ρi(x) and a(x). If we require that
the right-hand side of this q(x)-mutator is a constant (the oscillator case), we
obtain again the q-mutator rather than q(x)-mutator and can deˇne ρi(x). In fact,
the subscripts of the exponents ρi(x) stand for presence of imaginary parts of
these functions. The linear parts of these exponents play here the role analogous
to α(x) of Sec. 2 and are connected with lattice, which in turn is bound to the
quadratic real part of ρi(x). This function is the same for all i-s and coincides
with ρ(x) of (51).

So the function eρi(x) must be understood as the product of the ground state
wave function and analogue of the lattice factor α(x). From the dimensional
considerations, the requirement of having correct nonrelativistic limit, and the
fact that term (mωx2)/2� does not contain the velocity of light, we can conclude
that ρi(x) have the form

ρi(x) =
ωx2

2
+ iζix, (133)

where ζi are some constants which we must deˇne.
Again we construct the q(x)-mutator (cf. (59))[

η−, η+
]
q(x)

= η−q(x)η+ − η+q−1(x)η−. (134)

This is rather long expression

[η−, η+]q(x) =
1
2

eρ1+ρ4−ρ2−ρ3 [e−a − ea]−

−
[
e−ρ3 exp

(
−i

d

dx

)
eρ1 ea − eρ1 exp

(
−i

d

dx

)
e−ρ3 e−a

]
eρ4(x)−ρ2(x)−

− eρ1(x)−ρ3(x)

[
eρ4 exp

(
−i

d

dx

)
e−ρ2 ea − e−ρ2 exp

(
−i

d

dx

)
eρ4 e−a

]
+

+ e−ρ3 exp
(
−i

d

dx

)
eρ1+ρ4 ea exp

(
−i

d

dx

)
e−ρ2−

− eρ1 exp
(
−i

d

dx

)
e−ρ2−ρ3 e−a exp

(
−i

d

dx

)
eρ4 . (135)



FACTORIZATION METHOD FOR SCHRéODINGER EQUATION 849

As we wish to have a constant in the right-hand side of (134), it is clear that the
ˇrst term in (135) is a constant different from zero, and all other terms (containing
the shift operators e−i(d/dx) or e−2i(d/dx)) must vanish. We have from the ˇrst
part of this statement

a(x) = const (136)

and

ρ1(x) + ρ4(x) − ρ2(x) − ρ3(x) = 0.

or, taking into account (133),

ζ1 + ζ4 − ζ2 − ζ3 = 0. (137)

Terms containing e−i∂ and e−2i∂ must cancel separately. Inserting in these
conditions the explicit expressions for ρi(x) from (133) we obtain equations
connecting a and ζi:

2a + 2ω = (ζ1 + ζ3 − ζ2 − ζ4), 2a = (ζ3 − ζ4), 2a = (ζ1 − ζ2). (138)

Equation (138) involves (137). Excluding ζ1 and ζ4 and introducing new notations

iωξ = −ζ2, iωκ = ζ3,

we come to the resulting expressions for η±

η+ =
i√
2

exp
[
ωx2

2
− ixω(2 + ξ)

][
1 − exp

(
−i

d

dx

)]
exp

(
−ωx2

2
+ ixωξ

)
,

(139)

η− = − i√
2

exp
[
−ωx2

2
− ixωκ

][
1 − exp

(
−i

d

dx

)]
exp

[
ωx2

2
+ ixω(2 + κ)

]
.

If we require that (η±)† = η∓, then ξ = κ, and we have

η+=
i√
2

e−iωx(ξ+2)

[
1 − exp

(
i
ωx

2

)
exp

(
−i

d

dx

)
exp

(
i
ωx

2

)]
eiωxξ,

(140)

η−= − i√
2
e−iωxξ

[
1 − exp

(
−i

ωx

2

)
exp

(
−i

d

dx

)
exp

(
−i

ωx

2

)]
eiωx(ξ+2).

In this case, the value of q is
∼
q= eω.
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The q-mutator is

[η−, η+]∼
q

=
∼
q η−η+−

∼
q
−1

η+η− =

= eωη−η+ − e−ωη+η− =
1
2

(
∼
q −

∼
q
−1

)
= sinh ω.

Another couple of the creation and annihilation operators γ± comes out if we
start with the free Hamiltonian in the form (131):

γ+ =
i√
2

exp
[
−i(2 + ζ)

d

dx

]
×

×
[
1 − exp

(
−i

ωx

2

)
exp

(
i

d

dx

)
exp

(
−i

ωx

2

)]
exp

(
iζ

d

dx

)
,

(141)

γ− =
i√
2

exp
(

iζ
d

dx

)
×

×
[
1 − exp

(
−i

ωx

2

)
exp

(
−i

d

dx

)
exp

(
−i

ωx

2

)]
exp

[
i(2 − ζ)

d

dx

]
.

The value of q is
≈

q=
∼
q
−1

= e−ω,

and the q-mutator is[
γ−, γ+

]
∼
q
−1 =

∼
q
−1

γ−γ+−
∼
q γ+γ− =

= e−ωγ−γ+ − eωγ+γ− =
1
2

(
∼
q −

∼
q
−1

)
= sinh ω.

The relation between η± and γ+ is similar to the relation between A± and
B± and realizes the symmetry between coordinates and momenta. For ξ = 0,
operators η± coincide with ˇnite-difference creation and annihilation operators b
and b† introduced in [23] (see there relations (30) and (31)).

6. DIMENSIONAL QUANTITIES

Trying to understand how deformations are related to physical objects, it is
very instructive to analyze the dimensional quantities entering into the theory.
The deformation parameter q is dimensionless. At the same time, we expect it
to have physical meaning, i.e., q must depend on the dimensional parameters of
the theory considered. This means that different parameters (at least two) of the
same dimensionality must be inherent in the theory, entering into the operators,
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wave functions, etc. That could be the quantities of any dimensionality. Here, for
us it is most natural to consider the lengthes. For example, the q plane structure

XY = qY X (142)

could be realized by simple operators

X = exp
(

A
d

dx

)
, Y = ex/B, q = eA/B, (143)

where A and B are constants of the dimension of length.
In the case of nonrelativistic oscillator, we have only one quantity of the

dimension of length:

l =

√
�

mω
. (144)

And there is no possibility for a structure like (142), (143) to arise in this case.
Transferring to the relativistic theory we acquire another (second) length, the
Compton wave length of the particle:

λ0 =
�

mc
(145)

and obviously an inˇnite number of quantities of the same dimensionality of
length which could be constructed from (144) and (145). For us important will
be the quantity

λ =
l2

λ0
=

c

ω
. (146)

As we see, the typical objects of the ˇnite-difference RQM are (37) or

exp
(

i�

2mc

d

dx

)
and ®lattice objects¯:

sin
ωx

2c
, cos

ωx

2c
, or exp

(
i
ωx

2c

)
.

We can consider the relations like (142), (143) with

A =
i�

2mc
=

iλ0

2
, B = −i

2c

ω
= −2iλ,

q = eA/B = e−λ0/4λ = exp
(
− ω�

4mc2

)
.

So the q-plane structure is inherent in this theory from the beginning.
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It is instructive to write down the spectra, corresponding to Hamiltonians
h (71), hB (127) and hs (128), notations are evident, dimensional quantities were
restored:

en = 2mc2

(
exp

(
2n + 1

4
ω�

mc2

)
− cosh

ω�

4mc2

)
, (147)

enB = 2mc2

(
− exp

(
−2n + 1

4
ω�

mc2

)
+ cosh

ω�

4mc2

)
, (148)

ens = 2ω�
sinh (ω�/4mc2)(n + 1/2)

sinh (ω�/8mc2)
. (149)
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