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INCLUSIVE τ-LEPTON DECAY:
THE EFFECTS DUE TO HADRONIZATION

A. V. Nesterenko∗

Joint Institute for Nuclear Research, Dubna

Theoretical description of inclusive τ -lepton hadronic decay is performed in the framework of
dispersive approach to QCD. The signiˇcance of effects due to hadronization is demonstrated. The
approach on hand is capable of describing experimental data on τ -lepton hadronic decay in vector
and axial-vector channels. The vicinity of values of QCD scale parameter obtained in both channels
testiˇes to the self-consistency of developed approach.

PACS: 13.35.Dx

INTRODUCTION

The τ lepton is the only lepton which is heavy enough to decay into hadrons.
This feature enables one to use this process in tests of Quantum Chromodynam-
ics (QCD) and entire Standard Model. The theoretical description of inclusive
τ -lepton hadronic decay, similarly to the case of electronÄpositron annihilation
into hadrons, requires no such phenomenological models as, for example, the so-
called parton distribution functions, which are inherently involved in the analysis
of deep inelastic scattering processes. It is worthwhile to note also that the ex-
perimental measurements of τ -lepton decay are of a high accuracy. But the most
interesting feature of this process is that it probes the hadron dynamics at energies
below the mass of τ lepton.

The experimentally measurable quantity here is the ratio of the total width
of τ -lepton decay into hadrons to the width of its leptonic decay, which can be
decomposed into three parts, speciˇcally

Rτ =
Γ(τ− → hadrons− ντ )

Γ(τ− → e− ν̄e ντ )
= Rτ,V + Rτ,A + Rτ,S. (1)

In the right-hand side of this equation, the ˇrst two terms account for the hadronic
decay modes involving light quarks (u, d) only and associated with vector (V )
and axial-vector (A) quark currents, respectively, whereas the last term accounts
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for the decay modes which involve strange quark. Each of the ˇrst two terms
can be further decomposed into two parts according to the angular momentum in
the hadronic rest frame, namely

Rτ,V = RJ=0
τ,V + RJ=1

τ,V , Rτ,A = RJ=0
τ,A + RJ=1

τ,A . (2)

In what follows, we shall restrict ourselves to the consideration of parts RJ=1
τ,V

and RJ=1
τ,A of ratio Rτ (1).

1. THEORETICAL DESCRIPTION OF τ -LEPTON DECAY

The theoretical prediction for the quantities on hand (2) reads

RJ=1
τ,V/A =

Nc

2
|Vud|2 Sew

(
ΔV/A

QCD + δ′ew
)
, (3)

where Nc = 3 is the number of colors; |Vud| = 0.9738 ± 0.0005 is CabibboÄ
KobayashiÄMaskawa matrix element [1]; Sew = 1.0194 ± 0.0050 and δ′ew =
0.0010 stand for the electroweak corrections (see [2Ä4]), and

ΔV/A
QCD = 2

M2
τ∫

m2
V/A

f

(
s

M2
τ

)
RV/A(s)

ds

M2
τ

(4)

denotes the QCD contribution. Here Mτ = 1.777 GeV is the mass of τ lepton [1];
mV/A stands for the total mass of the lightest allowed hadronic decay mode of
τ lepton in the corresponding channel, f(x) = (1 − x)2 (1 + 2x), and

RV/A(s) =
1

2πi
lim

ε→0+

[
ΠV/A(s + iε) − ΠV/A(s − iε)

]
=

=
1
π

Im lim
ε→0+

ΠV/A(s + iε), (5)

with ΠV/A(q2) being the hadronic vacuum polarization function. In what follows,
the indices ®V ¯ and ®A¯ will only be shown when relevant.

In general, it is convenient to perform the theoretical analysis of inclusive
τ -lepton hadronic decay in terms of the Adler function [5]

D(Q2) = −d Π(−Q2)
d ln Q2

, Q2 = −q2 = −s. (6)

In the framework of perturbation theory, the ultraviolet behavior of this function
can be approximated by power series in the strong running coupling αs(Q

2)

D(Q2) � D
(�)
pert(Q

2) = 1 +
�∑

j=1

dj

[
α(�)

s (Q2)
]j

, Q2 → ∞, (7)
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where at the one-loop level (i.e., for � = 1) α
(1)
s (Q2) = 4π/(β0 ln z), z = Q2/Λ2,

β0 = 11−2nf/3; Λ denotes the QCD scale parameter; nf is the number of active
�avors (nf = 2 will be assumed hereinafter), and d1 = 1/π, see papers [6Ä8] and
references therein for the details. It is worth noting also that the function R(s) (5)
and the Adler function (6) can be expressed in terms of each other by making
use of the following relations (see [5, 9, 10] for the details):

R(s) =
1

2πi
lim

ε→0+

s−iε∫
s+iε

D(−ζ)
dζ

ζ
←→ D(Q2) = Q2

∞∫
m2

R(s)
(s + Q2)2

ds. (8)

In the ˇrst of these equations the integration contour in the complex ζ plane lies
in the region of analyticity of the integrand.

It is important to outline here that all the mentioned above is only valid for
®genuine physical¯ hadronic vacuum polarization function Πphys(q

2) and Adler

function Dphys(Q
2). However, as it often happens, one has to deal with their per-

turbative approximations Πpert(q
2) and Dpert(Q

2), which are valid in the ultraviolet
asymptotics only. Besides, expressions Πpert(q

2) and Dpert(Q
2) are inconsistent

with dispersion relation (8), which is determined by the kinematics of physical
process on hand.

Thus, one faces the fact that the results of perturbation theory need to be
merged with relevant dispersion relations. This objective can be achieved in the
framework of Dispersive approach to QCD, which will be brie�y overviewed
in Sec. 3. The analysis of inclusive τ -lepton hadronic decay within perturbative
approach will be discussed in Sec. 2, whereas the theoretical description of this
process within dispersive approach will be performed in Sec. 3.

2. PERTURBATIVE APPROACH

In this Section, we shall study the massless limit, that implies that the masses
of all ˇnal state particles are neglected. In this case, by making use of def-
initions (5) and (6), integrating by parts, and employing Cauchy theorem, the
quantity ΔQCD (4) can be represented as

ΔQCD =
1
2π

π∫
−π

D(M2
τ eiθ)(1 + 2 eiθ − 2 ei3θ − ei4θ)dθ, (9)

see, e.g., papers [2, 11Ä13] and references therein. In general, in Eqs. (5) and (6)
it is convenient to handle the leading contributions (i.e., the terms of 0th order
in the strong running coupling) separately from the contributions due to strong
interaction, namely

R(s) = r(0)(s) + r(�)(s), D(Q2) = d(0)(Q2) + d(�)(Q2). (10)

In what follows, we shall restrict ourselves to the one-loop level (� = 1).
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In fact, the only available option within perturbative approach is to directly
use in the theoretical expression for ΔQCD (despite of remarks given in Sec. 1) the
perturbative approximation of hadronic vacuum polarization function Πpert(q2)
instead of its unknown ®genuine physical¯ expression Πphys(q2). For the case of
functions (9) and (7), this prescription eventually results in (see [14, 15] for the
details):

r(0)(s) = 1 ←→ d(0)(Q2) = 1, (11)

Δpert = 1 +
4
β0

π∫
0

λA1(θ) + θA2(θ)
π(λ2 + θ2)

dθ, (12)

where λ = ln (M2
τ /Λ2) and

A1(θ) = 1 + 2 cos (θ) − 2 cos (3θ) − cos (4θ),
A2(θ) = 2 sin (θ) − 2 sin (3θ) − sin (4θ).

(13)

Let us proceed now to the comparison of oneÄloop perturbative result (12)
with corresponding experimental data. First of all, it is worth emphasizing here

that perturbative approach gives identical predictions for functions ΔV/A
QCD (4) in

vector and axial-vector channels (i.e., ΔV
pert ≡ ΔA

pert). However, their experimental
values extracted from data presented in [13,16Ä18] are different, namely,

ΔV
exp = 1.224± 0.050, ΔA

exp = 0.748± 0.034. (14)

These quantities are juxtaposed with perturbative result (12) in Fig. 1. As one can
infer from this ˇgure, for vector channel the corresponding value of QCD scale

Fig. 1. Comparison of the one-loop perturbative expression Δpert (12) (solid curves)
with relevant experimental data (14) (horizontal shaded bands). The leading-order terms
of Δpert (12) are denoted by horizontal dashed lines. The solution for QCD scale parame-
ter Λ (if exists) is shown by vertical dashed band. The a and b plots correspond to vector
and axial-vector channels, respectively
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parameter is Λ = (474+122
−133) MeV (formally, there is also the second solution,

Λ = (1645+23
−26) MeV, which will not be considered hereinafter). As for the

axial-vector channel, the perturbative approach fails to describe experimental data
on τ -lepton hadronic decay, since for any value of Λ the function Δpert (12)

exceeds ΔA
exp (14).

3. DISPERSIVE APPROACH

It is crucial to emphasize that the analysis presented in Sec. 2 entirely leaves
out the effects due to hadronization, which play an important role in the stud-
ies of strong interaction processes at low energies. Speciˇcally, the mathe-
matical realization of the physical fact, that in a strong interaction process no
ˇnal state hadrons can be produced at energies below the total mass of the
lightest allowed hadronic ˇnal state, consists in the fact that the beginning
of cut of corresponding hadronic vacuum polarization function Π(q2) in com-
plex q2 plane is located at the threshold of hadronic production, but not at
the point q2 = 0. Such limitations are inherently embodied within relevant
dispersion relations, which, in turn, impose stringent physical nonperturbative
constraints on the quantities on hand. Obviously, these restrictions should cer-
tainly be accounted for when one is trying to go beyond the limits of pertur-
bation theory.

The nonperturbative constraints, which dispersion relation (8) imposes on
the Adler function (6), have been merged with perturbative result (7) in the
framework of dispersive approach to QCD, that has eventually led to the fol-
lowing integral representations for functions (5) and (6) (see [19Ä21] for the
details):

D(Q2) = d(0)(Q2) +
Q2

Q2 + m2

∞∫
m2

ρ(σ)
σ − m2

σ + Q2

dσ

σ
, (15)

R(s) = r(0)(s) + θ

(
1 − m2

s

) ∞∫
s

ρ(σ)
dσ

σ
, (16)

where θ(x) is the unit step-function (θ(x) = 1 if x � 0 and θ(x) = 0 other-
wise), and ρ(σ) denotes the so-called spectral density. It is worth mention-
ing that in the massless limit (m → 0) expressions (15) and (16) become
identical to those of the so-called analytic perturbation theory [22Ä25]. But
it is essential to keep the hadronic mass m nonvanishing within the approach
on hand.

Let us proceed now to the description of inclusive τ -lepton hadronic de-
cay within dispersive approach [19Ä21] (see also papers [26, 27] and references
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therein). It is worthwhile to note here that there are two distinctions between
the approach on hand and the massless perturbative approach presented in Sec. 2.
Speciˇcally, the ˇrst distinction is the incorporation of effects due to hadroniza-
tion (i.e., the use of expressions (15) and (16) instead of their perturbative ap-
proximations), and the second one is the expression for the one-loop spectral
density

ρ(σ) =
4
β0

1
ln2(σ/Λ2) + π2

+
Λ2

σ
, (17)

see papers [14, 15, 28Ä30] and references therein. In the right-hand side of
Eq. (17), the ˇrst term is the one-loop perturbative contribution whereas the
second term represents intrinsically nonperturbative part of the spectral den-
sity.

In what follows, we shall employ the ®smooth kinematic threshold¯ for the
leading-order term of function R(s), see papers [14,15] and references therein:

r
(0)
V/A (s) =

(
1 −

m2
V/A

s

)3/2

←→ d
(0)
V/A (Q2) =

= 1 +
3
ξ

{
1 + u(ξ) ln

√
1 + 2ξ

[
1 − u(ξ)

]}
, (18)

where u(ξ) =
√

1 + ξ−1 and ξ = Q2/m2
V/A. Eventually, this has led to the

following expression for the quantity ΔV/A
QCD (4) within dispersive approach:

ΔV/A
QCD =

√
1 − ζV/A

(
1 + 6ζV/A − 5

8
ζ2
V/A +

3
16

ζ3
V/A

)
+

+

∞∫
m2

V/A

H

(
σ

M2
τ

)
ρ(σ)

dσ

σ
− 3ζV/A

(
1 +

1
8
ζ2
V/A − 1

32
ζ3
V/A

)
×

× ln
[

2
ζV/A

(
1 +

√
1 − ζV/A

)
− 1

]
, (19)

where ζV/A = m2
V/A/M2

τ and

H(x) = g(x) θ(1−x)+g(1) θ(x−1)−g(ζV/A), g(x) = x(2−2x2+x3), (20)

see papers [14,15] and references therein for the details.
The comparison of obtained result (19) with experimental data (14) yields

nearly identical solutions for QCD scale parameter Λ in both channels, see Fig. 2.
Namely, Λ = (414 ± 30) MeV for vector channel and Λ = (446 ± 34) MeV
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Fig. 2. Comparison of expression (19) (solid curves) with relevant experimental data (14)

(horizontal shaded bands). The leading-order terms of Δ
V/A
QCD (19) are denoted by horizon-

tal dashed lines. The solutions for QCD scale parameter Λ are shown by vertical dashed
bands. The left and right plots correspond to vector and axial-vector channels, respectively

Fig. 3. (Color online). The solutions for QCD scale parameter Λ obtained within dispersive
approach (19) for vector and axial-vector channels (vertical dashed green bands) and
perturbative solution (12) corresponding to vector channel (vertical dashed light-blue band)

for axial-vector one. Besides, as one can infer from Fig. 3, both these so-
lutions for QCD scale parameter agree very well with perturbative solution
Λ = (474+122

−133) MeV obtained in Sec. 2 for vector channel.

CONCLUSIONS

The signiˇcance of effects due to hadronization in the theoretical descrip-
tion of inclusive τ -lepton decay is convincingly demonstrated. The dispersive
approach to QCD proves to be able to describe the experimental data on τ -lepton
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hadronic decay in vector and axial-vector channels. The vicinity of values of
QCD scale parameter Λ obtained in both channels testiˇes to the self-consistency
of developed approach.
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