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The proposed by Symanzik approach for the modeling of interaction of a macroscopic material
body with quantum fields is considered. Its application in quantum electrodynamics enables one to
establish the most general form of the action functional describing the interaction of two-dimensional
material surface with photon field. The models are presented that make it possible to calculate the
Casimir energy, Casimir—Polder potential, characteristics of scattering processes and investigation of
magneto- and electrostatic phenomena for thin films from nonideal conducting material. The specific
of regularization and renormalization procedures used by calculations and the physical meaning of
obtained results are discussed.
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INTRODUCTION

The models of quantum field theory describing interaction of elementary par-
ticles are considered usually in the homogeneous infinite space-time [1]. However,
if one tries to construct a theory for investigation of phenomena of quantum fields
interaction with macroscopic bodies, then at least its form must be presented in
the model. This space-time inhomogeneity can change essentially many physical
properties of vacuum and excited states of the system. The study of this problem
is important both from the theoretical point of view and for possible application
in nanotechnology, micromechanics and biophysics.

First quantitative results for quantum field theory model with space-time inho-
mogeneity were obtained by H. Casimir in 1948. He predicted [2] macroscopical
attractive force between two uncharged conducting plates placed in vacuum. The
force appears due to the influence of the boundary conditions on the electromag-
netic quantum vacuum fluctuations. Nowadays, the Casimir effect is verified by
experiments with a precision of 0.5% (see [3] for a review).

The properties of vacuum fluctuations in curved spaces, the scalar field mod-
els with various boundary conditions and their application to the description of
real electromagnetic effects were actively studied throughout the last decades (see
discussion and references in [4-8]). However, it was well understood from the
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beginning that boundary conditions must be considered just as an approximate
description of a complex interaction of quantum fields with the matter. A general-
ization of the boundary conditions method has been proposed by Symanzik [9]. In
the framework of path integral formalism he showed that the presence of material
boundaries (two-dimensional defects) in the system can be modeled with a surface
term added to the action functional. Such singular potentials with §-type profile
functions concentrated on the surface (defect) reproduce some simple boundary
conditions (namely Dirichlet and Neumann ones) in the strong coupling limit.
The additional action of the defect should not violate basic principles of the bulk
model such as gauge invariance (if applicable), locality, and renormalizability.

The quantum field theory systems with J-type potentials are mostly investi-
gated for scalar fields, see, for instance, [10]. In [11-16], the Symanzik approach
was used to describe similar problems in complete quantum electrodynamics
(QED), and all §-potentials consistent with the QED basic principles were con-
structed. In this paper we present typical problems which are solved for nonideal
conducting materials in this approach on the cases of Casimir energy for two
parallel plane films [11] and the spherical surface [14], Casimir—Polder potential
for the atom near a plane [15], scattering of electromagnetic waves on an infinite
plane film [16], interaction of the plane film with a parallel to it straight line
current and with a point charge [11].

1. FORMULATION OF THE MODEL

The proposed by Symanzik action functional describing the interaction of the
quantum field with material body has the form

S(p) = Sv(p) + Saet (),

where

Sv(p) = / L(p(x)) P, Saut(p) = / Laat(p(a)) d”'z,

T

and I is a subspace of dimension D’ < D in D-dimensional space [9].

From the basic principles of QED — gauge invariance, locality, renormaliz-
ability — it follows that for thin film (without charges and currents) which shape
is defined by equation ®(z) = 0, x = (zo,x1,x2,23), the action describing its
interaction with photon field A, () reads

Se(A) = g /6)\/“//) W@ (x) Au(z) Fop(z) 6(2(x)) de, (1)

where F,,(z) = 0,4, — 0,A.; g MwP denotes totally antisymmetric tensor
(€923 = 1); a is a constant dimensionless parameter. Expression (1) is the
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most general form of gauge invariant action concentrated on the defect surface
being invariant in respect to reparameterization of one and not having any para-
meters with negative dimensions. The full action functional for electromagnetic
field in the space-time with film defect including the usual free action of the
photon field is written as

S(A, ®) = So(A) + Sa(A4), So = _i / PP (@) F(2). ()

In this paper, we consider stationary defects. In this case, dy®(z) = 0, and
the action S3(A) can be written as

Sa(A) = g / d*2 6(®(2)){2i Ao (v)La A(z) + OD[A(x) x oA ()]},

where Lg = i[@® x 8]. For the sphere with radius rg:

D(x) =y/x?+2i+2%i—ry, OP(z)= % = n(x),
Lq> = %Z[X X 8] = LL

[x x|

For the plane x3 = [, the defect action reads
Sp = g / d* x5 (xy — 1) A, () OnAw ().

The limit a — oo corresponds to ideal conducting surface with conditions
nHFNW‘VLg =0.

The quantitative description of all physical phenomena caused by interaction
of the photon field with film and classical charges and currents can be obtained if
the generating functional of the Green functions is known. For gauge condition
¢(A) =0, it is of the form

G()=C / I SADHIA 54 4)) dA, 3)

where S(A, ®) is given in (2), and the constant C' is defined by normalization
condition G(0)[,—0 = 1, i.e., in pure photodynamics without defect In G(0)
vanishes. The first term in the right-hand side is the usual action of photon field.
The full action S(A,®) (2) of the system can be written as S(A,®) =
1/2A,KL"A,. The integral (3) is Gaussian and is calculated exactly:

1 1
G(J) = eXp{§ Tr In(DgeD ') — §JD¢J} ,

where Dg is the propagator Dg = i K L of photodynamics with defect in gauge
¢(A) = 0, and D is the propagator of free photon field in the same gauge.
For the static defect, function ®(z) is time-independent, and In G(0) defines the
Casimir energy.
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2. REGULARIZATION AND EUCLIDEAN ROTATION

To remove the ultraviolet divergencies in G(J), we introduce the Pauli—
Willars regularization:

So — Sor = —i / d*xF™ (x)(1 + M 2050 F,. (z),

S(A) - ST(A) = SO’I“ + Sdef-

For performing the calculations, it is convenient to use the Euclidean version of
the action Sg, which is obtained by replacement

ro — —ixg, Oy — 10y, Ag— 14y, a — ia.
In this case,
F(2)F,, (2) — Fu(z)F(2), d'z — —id'z,
2iAo(z)LoA(z) + 0P [A(x) x DoA(x)] —
— —2A0(z)Lo A(z) + 0P [A(z) x o A(z)].
Thus, 7.5, — —SEg,, where

SET = i /d4${M_2F‘;u/(x)(M2 - 82)FHV(x)+

+ 2iad(®(x)) (240(x) Lo A(z) — idD[A(z) X 80A(x)])}.

3. CASIMIR ENERGY

In the considered model, the Casimir energy Fc,s is obtained by calculation
of Gaussian functional integral describing the interaction of vacuum fluctuation
with defect:

_ _l _ _i —S(A,®)
Ea.s = TlnG(O)f Tln [C/e DA| .

It holds 1
Ecas = —?Trln (DDyY),

where D is the propagator in the model with defect, and Dy is the propagator for
the model in homogeneous space.

For the simplest case of two plane parallel infinite films, the Casimir energy
was calculated in [11]. If the defects are concentrated on planes x3 = 0 and
x3 = r, the defect action (1) has the form

1
Su=Sp =3 / (16(x3) + asd(ws — 1)) 9P A, () Fyp () dv.
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For this geometry, it is convenient to use a notation like x = (x,z1, T2, 23) =
(Xa (Eg).

The defect action Sop was considered in [18] in substantiation of Chern—
Simons type boundary conditions chosen for studies of the Casimir effect in
photodynamics. This approach based on boundary conditions is not related di-
rectly to the one we present. The defect action (1) is the main point in our model
formulation, and no any boundary conditions are used.

The action S;p is translationally invariant with respect to coordinates x;,
1 =0,1,2. The propagator Dg(x,y) is written as

1 )
D2P (l‘, y) = W /DQP (k; x3, ?JB) ezk(x_y) dka

and Dop(k, x3,ys3) can be calculated exactly. Using Latin indices for the com-
ponents of four-tensors with numbers 0, 1, 2 and notations

klkm
2
(¢ is the Kronecker symbol), one can present the results for the Coulomb-like
gauge Oy A° 4+ 0, A' + 9, A% = 0 as follows:

P™(k)(M; + M.
s ) = PO )

le(k) _ 5lm _ le(k) _ elmn3kn

L' (k) (N1 — N»)
2|k[2[(1 + arag(e2klr — 1))2 + (a1 + az)?] ,
Dl2?}3(k7 T3,Y3) = Dgg(k,(ﬁg,yg) =0,

—i5($3 - yg)
D3} (k,w3,y3) = — o M= kS — k2 — k2,
with
M (araz — a2a3(1 — e2ikIr))(eilkl(lzalHlya—r]) 4 gilkl(lza—rl+lys))) gilklr
1 =

[(1 + alag(e%\k\r — 1))2 + (a1 + QQ)Q}
_ ei\k\\ﬂﬂs*ySl’
My = [(a2 + a?a(1 — c2iKIr)) ilkl(lesl +lus) |
+ (a2 + a2a3(1 - e2i\k\r)) eilkl(lmrrlﬂyrrl)] ~
x [(1+ araz (™" — 1)) 4 (a1 + a)?] ",
Ni = araz(a; + aQ)(eilkl(lxsl-i-\ys—fl) + ei\k\(\xs—fl-i'\ys\))ei\k\f’

Ny = as(1 + ar(ay + ag e2IKIr)) Iz —xlHlus—rl) |

+ a1 (1 + as(az + ar €214y ikl zsl+us),
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The energy density Fop of defect is defined as
1
In G(0) = 5 Tr In (DepD™ ') = —iTSEsp,

where T' = f dxg is the time of defect duration, and S = f dxq dxg is the area of
one. It is expressed in an explicit form in terms of polylogarithm function Lis(x)
in the following way:
2
1
EQP:ZEj+ECaS) Ejza/ln(l‘f'a?)

j=1

dk
(271_)3 ) J Y k)

2
1 . a102
Beas = —————=Y L : .
€8s = T 62 kz:; 1 <a1a2 +i(=1)*(ay +ag) — 1>

Here E; is an infinite constant, which can be interpreted as a self-energy density
on the jth planes, and Ec,s is an energy density of their interaction. Func-
tion Liy(x) is defined as

: — 2"
Liy(z) = Z i
k=1

For identical defect planes (a1 = a2 = a), the force Fop(r,a) between them is
given by

N | =

/k2 In(1—xze")dk.
0

OFEcas(r,a) w2
F = — = — .
2p(r0) ar 510747 (@
f@ Function f(a) is plotted in the Fi-
1.0+ .

] gure. It is even (f(a) = f(—a))
0.8 and has a minimum at |a| = a,, =
0.6 0.5892 (f(am) ~ 0.11723), f(0) =
04 f(ap) = 0 by ap ~ 1.03246, and

] lim f(a) = 1. For 0 < a < ap

0.2 a0 . . .
1 (a > ap), function f(a) is negative

0_ A (positive). Therefore the force Fhp
—024 is repulsive for |a| < ag and attrac-
0o 5 4 & 8 1o o ftivefor |a] > ag. For largfa |a , it is

a the same as the usual Casimir force

Function f(a) determining Casimir force be-

between perfectly conducting planes.
tween parallel planes

This model predicts that the maximal
magnitude of the repulsive Fyp (about 0.1 of the Casimir force magnitude for
perfectly conducting planes) is expected for |a| =~ 0.6.

For two infinitely thick parallel slabs the repulsive CF was predicted also
in [19].
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4. DIVERGENCES AND RENORMALIZATION

For the spherical defect, Ec,s diverges by M — oo. For large M, the
asymptotics of the regularized Casimir energy of the spherical defect with radius
ro has the form

F 1
Ecas = M3r2A(a) + M B(a) + (@) +0 (—) ,
o M

with
2 1 +oo
Fla) = 22 + =S @+ 1)x

T 6416+ a2 27

X de <1n 4 = a*Gi(p) Ru(p) n a?(20 + 1) > |

16 + a2 (16 + a2) (4p% + (20 + 1)2)?

Here the following notations are used:

Gi(z) = Il+% (x)KH% (),

Rio) = (313 @) + 13 @) (3H0ey 0+ KLy @)

with Bessel function I;/5(x), Kj11/2(x).

It is finite for finite M but diverges for removing of regularization M — oo.
This problem is solved by the renormalization.

For a — oo, we obtain

+oo

3 1
Foo = F(a)lamoo = o7 + 5 > @21+ 1)x

o0
21+ 1)
0
It is the result for ideal connecting sphere Fcas = Foo /70, coinciding with one
obtained by Boyer.
For removing of the divergences of Casimir energy in the framework of usual
multiplicative renormalization procedure, one needs to add to the action the terms
without photon field with Lagrangian

La(z) = (A'r2 + B') 6(|x| — o),
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having two constant parameters A’, B’. Making renormalization of them one can
cancel the divergences and obtain the finite renormalized Casimir energy

F
Ecas = 47r7"8a + 06+ —(a),
To

with finite parameters «, 3 of dimension of surface energy density and energy.
If « > 0 and F(o) > 0O, then the function Ec,s has minimum with ro =

Y F(o)/8ma.

5. CASIMIR-POLDER EFFECT

Casimir—Polder effect was predicted theoretically in 1948 [17]. Casimir and
Polder found the energy of a neutral atom in its ground state in the presence of
a perfectly conducting infinite plane. In the case of a perfectly conducting plane,
one can say that the interaction of a fluctuating dipole with the electric field of
its image yields the Casimir—Polder potential.

In our model, the interaction of the plane defect x3 = 0 with a quantum
electromagnetic field A,, is described by the action:

Saet(A) = a / P13 A, (2) D5 A, (2) §(23) da.

We will use Latin indices for the components of four-tensors with numbers
0, 1, 2 and also the following notations:

le (k) _ glm _ kjlkm/kQ,
L'™(k) = €™k, /|k|, k*=k2—kI—k3,
where |k| = Vk2, and g is the metric tensor.

The atom is modeled as a localized electric dipole at the point (1, z2, x3) =
(0,0,1), which is described by the current J,(z):

3
JQ(J?) = Zpi(t) 815(.131) 5(%‘2) 5(.133 — Z),
i=1
Jl(l') = —pi(t) 5(([;1)5(1’2)5(%3 —l), 7= 1,2,3.
The condition of the current conservation holds:

9" =0,
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p;(t) is a function with a zero average and the pair correlation function

20 —iw(ti—t2)
. e_ 1—t2
sttt =i [ 5

— 00

ajip(w) dw,

where o (w) for w > 0 coincides with the atomic polarizability.
The aim is to calculate the interaction energy E of the atom with a plane,
and we will use the following representation for the energy:

o %<{ln/exp (iS(A) + JA) DA — ln/eXp (iS(A)) DA}(a)>,

{-+*}(a) means that the a = 0 value of the a-dependent function has to be
subtracted: {f(a)}) = f(a) — f(0).

The ground state energy of a neutral atom in the presence of a plane with
Chern-Simons interaction is obtained in the form [15]

+o0o
1 a’ —2wl :
E= QT ke < / dwe™*'2(1 + 2wl) gz (iw)+
0

+oo
+ / dwefQ“’l(l + 2wl + 4w212) (an(iw) + agg(iw))> +
0

+oo

! a —2wl iw) — o (iw
0/ dwe Zw(l +2wl) (alg(zw) 21 ( ))

+ 647212 1+ a?

It yields the well-known Casimir—Polder potential [17] in the limit a — +o0.
The part of the formula with diagonal matrix elements of matrix ;i (iw) is
equal to a?/(1 + a?) times the Casimir-Polder interaction of a neutral atom
with a perfectly conducting plane. The last line of the formula is odd in a
and contains the antisymmetric combination of the off-diagonal elements of the
atomic polarizability. It is interesting to analyze the contribution in the energy F
from the off-diagonal elements of the atomic polarizability to the potential in
more detail. The atomic polarizability can be expressed in terms of dipole matrix
elements:

aju(w) = Z<<0|djln><n|dk|o> N <0|dk|n><n|dj|0>>’

~ Wno — W — 1€ Wno +w — 1€

wno 1s a transition energy between the excited state |n) of the atom and its ground
state |0), d is a dipole moment operator in the Schrodinger representation. The
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symmetric a5, (w) and antisymmetric oy (w) parts of ajx(w) = a5y (W) +af) (w)
can be written as follows:
2wno Re M j"k

s S
aj(w) = § ——— = o, (w)
J ~ wio 2 J\“)
2tw Im M,
A _ ik _ A
ajp(w) = Z 2w —aj; (W),

Mjj, = (0ld;|n)(n|d|0).

Thus, the contribution of afk (w) to the potential is different from zero when
matrix elements of a dipole moment operator have imaginary parts.

Consider the system with a nonzero a;‘k (w) and assume, for simplicity, the
one mode model of the atomic polarizability with a characteristic frequency wiy.
Then afy(w) = iwCs/(2(w?, — w?)), where Cy is a real constant. In the limit of
large separations wipl > 1, we obtain

~ad® an(0) +an(0) +az3(0) a Cy
1+ a? 32m2[4 1+ a2 32m2w3, 15"

“)

E|w01l>>1 =

At large enough separations, the first term in E|,,, ;1 always dominates. As-
suming, for simplicity, a11(0) = a22(0) = a33(0) = C1/(3wip), C1 is a positive

. . alC
constant, one can see from (4) that if the condition l|Cy < 1 holds, then for
|Ca
: C . . :
separations [ < | ||C‘2| the term with off-diagonal elements of the atomic
a|Ciwio

polarizability (the second term in E|,,,;1) dominates.
In the limit of short separations (b = wiol < 1) we obtain

+oo
1 a? ) . .
Elopi<1 = R PCTEE g / dw (an(zw) + ago(iw) + 2a33(zw)) —
0

CQ a

T s
- = (1—=b+22 - +...) ~
327r2131+a2( 2 + 2 + )

1 a? T a
~ e ——C = —C)f b— 0.
3277213(1+a2 13Ty et e
. .. JaCiw . .
Hence, if the condition G| 3 < 1 holds, then the term with off-diagonal
2

elements of the atomic polarizability dominates in F|.,,;«1 in the limit of short
separations. Thus, if we consider the one mode model for the atomic polarizability
and if the criterion |a| < |C2|/C1 holds, then the antisymmetric part of the atomic
polarizability plays a dominant role in the interaction of the atom with the Chern—
Simons plane.
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6. MODIFICATION OF MAXWELL EQUATIONS

The interaction of electromagnetic field with the thin film changes the dy-
namical equation of the field. The modified homogeneous Maxwell equations are
obtained as the Euler—Lagrange equations by variation of the action functional
S(A, ®) in (2). For the plane defect ®(x) = x3, they are written as follows:

5S(A)
A,

Equations (5) were solved in [11]. To solve them, it is convenient to use the
Fourier transform over coordinates xg, x1, x2 for the vector-potential A,,:

= 0, F" +ae®°PF,,0(x3) = 0. )

1 _
Au(r) = 2n)ie /eWAu(x?n]?) dp,
1 o (6)
A“(J?g,]_)) = W /e_szAH(l‘) df

Here and later we use the notation p for vector p = (po, p1, p2), P> = pg —p? — D3,
DT = poxo—p121 —p2z2. It follows from the second equation in (6) and reality of
A, (x) that A*(z3,DP) = A(zs, —p). Using this relation we can obtain an integral
representation

Aulz) = W /9(1?0) [ePF A, (x3,D) + e PF Ay (23,P)] dp =

2Re

= @ / 0(po) [P A (x3,D)] dp, (7)

where Re denotes the real part.

Action S(A, ®) and Euler-Lagrange equations (5) are invariant in respect to
the gauge transformation A, (z) — A,(x) + 9,¢(x). Thus, the solution of (5)
is defined up to a gauge transformation, and we can fix it by a gauge condition.
We make calculations in the temporal gauge Ag = 0, where electric and magnetic
fields E, H are expressed through the vector-potential A = (0, A) by relations
E = 0pA, H = 8 x A, and we can rewrite equations (5) for A(x3,D) in the form

PPA® — P (ip1 Ay +ipaAs) =0, (8)
P (ip1 Ay +ipa Ay + 93A3) — 2a(p1As — paA1)d(x3) =0, (9)
(—p 83)141 +ipt(ip1 Ay 4 ipaAs + 03A3) + 2aipgAsd (x3) =0, (10)

(=p* — 03)A? +ip®(ip1 A1 + ipaAs + 03A3) — 2aipgA16(x3) = 0. (11)

These linear homogeneous equations describe electromagnetic waves interact-
ing with the material plane x3 = 0. The general solution of (8)—(11) is constructed
in [11] and the most characteristic features of scattering processes on the defect
are investigated.
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7. SOLUTION OF THE EULER-LAGRANGE EQUATIONS

Let us denote A;(0,p) = a1(p), A2(0,P) = az(p). Then it follows from (9)

that

p1a2 — pa2a1

———d(x3),
Po

and in virtue of (10), (11), the fields A;, Ao satisfy the equations

ip1 Ay + ipsAs + 0343 = 2a

(]_)2+8§)Ai+ci5(x3) =0, 2=1,2,

in which
21a 2 2 2ia 2 2
a=—"—[(p] —pj)az — pp2ar], c2="— [(p3 —p3)ar — pipaz] . (12)
Po Po
General solution of the equation
O + k*) +cd(t) =
is
. . —iklt|
W(t) = dy e+ dy e 4
2p1
where d;, do are arbitrary constants. Hence,
1) (1) ¢y e iPlzs]
Ay(w3,) = dV eires 1 gD g=iems A€ T (13)
2ip
An(ay ) = dP 6o 1 o) v 1 217 (14)
) 2Zp )

where p = \/p?, and dgj ), i,7 = 1,2 are functions of p. We can obtain the field
Aj directly from Eq. (8):
s e—tplzsl

AB(£37 )_d3) ipT3 —l—d(B —’L/):F3+6( ) 5
p

: (15)
where

1 1 1
¥ = —;(Pldgl)ﬂLP 2dY), dY) = ;(P1d§1)+272d(2)) c3 = ;(P1C1 +paca),

and €(x3) = x3/|rs|. We assume that the components of the vector-potential
A(x3,Dp) are limited for any value z3. That is possible only if * > 0. Therefore,
we consider only the case p > 0.
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Putting x5 = 0 in (13), (14) and denoting D; = d\) + di, j = 1,2, we
obtain the relations

a; = d? +d¥ + ;Z—Jp j=12 (16)

In virtue of (16) and (12), a1, ao satisfy the system of linear equations

a1(pop — apips) + aaz(p? — pa) = Dipo,
(17)
aay (p3 — pg) — az(pop + ap1p2) = —Dapo.

Thus, it follows from (17), (12) that
aDs(p? — p?) + D1(apips + pop)

a; = :
! pop?(a® +1)
g = aDl( — p3) + Da(apip2 — pop)
pop?(a?+1) ’
and
o =— 2ai[D1 (apop — p1p2) — Da(p3 — p?))]
pop(a? +1) ’
cy = — 2ai[Da(apop + p1p2)] + D1 (ph pg)]

pop(a? +1)

We denote a = (a1, az,a3), ¢ = (c1,¢2,¢3)/(2ip), dj = (d\7,d\?,d?),
7 = 1,2, and rewrite (13)—(15) in a compact form:

A(z3,p) = di(p) 8 + dy(p) e~ + R(x3)c(p) e 173!, (18)

where R(x3) — diagonal matrix with elements Rjq1(z3) = Raa(zs) = 1,
R33(£L'3) = 6(%3).

Thus, using (7), (18), we obtain the following presentation for solution of
Euler—Lagrange equations of our model:

0(z3)2Re (PE— o _
Ale) = D5 [0 { )T 1 [ + e )] T

0(—z3)2Re 3 NS I
+W/ 0(po){ [d1 () + Te (5)] ' P7+7%) + da(p) P72} dp.

(19)

Here T is a diagonal matrix with elements 777 = Thy = —T33 = 1. The first

terms in the integrands in (19) describe waves moving in the negative direction
of the third axis, and the second ones correspond to waves moving in the positive
direction.
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8. SCATTERING ON THE DEFECT

For the wave falling on the plane 3 = 0 from the half space with negative
coordinate x3, we should have in a half space x3 > 0 only the transmitted wave,
moving from the plane z3 = 0 in positive direction of the third axis. Hence,
in (19) we must set d; = 0. As a result, we obtain

2R L
A(x) = 3/26 /9 P0) A (D) €' P72 5t

0(—x3)2Re

+ (27T 3/2

/9 po A ot (PT+pz3) + A ot (PT— pxs)}d—

where vector amplitudes Ai,(P), A, (D), A (P) of the incident, transmitted, and
reflected waves can be written as

Ain(p) = d2(p), Ar(p) =Tc(p), Aw(p)=d2(P)+c (D). (20
In virtue of (20), they satisfy the relation
A, =T(Ay — Ai). 21

Thus, the vector amplitude of the reflected wave is obtained from the difference
between the amplitudes of the incident and transmitted waves by changing the sign
of its third component. It follows from (21) that there are only two independent
vector wave amplitudes which determine the third.

9. EIGENMODES

We call eigenmodes the waves for which the amplitudes of the incident and
transmitted waves are proportional to each other:

A (p) = M (D). (22)
For them, it follows from (21), (22) that
AP) =\ —DTAn®D), a1 =", as=d?.

Two last relations considered as a system of linear homogeneous equations for
d$", d$?, have a nontrivial solution if (a2 + 1)A2 — 2A+ 1 = 0. Thus, there are
two eigenmodes with

7 7
= A, A()—91V17 A= = Ao, A~(2)_92V27 (23)

A: =
i—a in i+a in
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where

Vi = (p5 — pi, —ipop — p1p2, —ipop2 + p1p), o8
Vy = (p(Q) - p%, ipop — P1P2, iPoP2 + P1pP),

and g1, go are arbitrary functions of p. Using the notations of (23), (24), we
can write the eigenmode vector amplitudes Ai, (p), A, (P), A (p) of incident,
reflected, and transmitted waves in the form

A = 0. B)WV;3), AY =g, EVTV, (),
AD = g EDV,m), j=1,2

Here we used the notations

K(l):ia—l—aQ @) _ —ia + a? (1) _ 1—1a @) _ 1+1a

" 1+4+a2’ " 14+a2’ tr 14 a2’ tr 1+4+a2?’
The obtained characteristics of eigenmodes satisfy the following relations: Ay =
A, Vo = Vi, ViVi = 0, [Vi? = |Va® = 208(0 — p}). K¢ = K,
KP = kD"

10. PLANE WAVES

Choosing the functions g1 (p), g2(p) in (23), we can represent in general case
the amplitude of incident plane wave as a linear combination of eigenmodes

A, = Ai(i) +AY =gV, + 92 Vi = fiU1 +if2Us.

n

We used the notations f1 = g1 + g2, fo = g1 — g2,
U, =RV = (p — pi, —pip2, p1p), Uz = Vi = (0, —pop, —pop2)-

It is easy to see that [U;| = |Uz| = |Vy]|/2, U;Uz = 0. If we denote Y; =
aU; — Uy, Yo = aUjy 4 Uy, then for the amplitudes of reflected and incident
waves, we have

.A.r: a

1+ a2 (flTYl + Z'fQTYQ)v Atr =

m(lez —ifaYq).

The plane wave is characterized by its propagation direction n and frequency
w, which are expressed through the components of the momentum p = (po, p):
po = w,p = wn. In virtue of (7), the vector potentials Aiy, (pin; ), A,(pr; ),
Ay (per; ) of incident reflected and transmitted waves have the form

Ain(pin; (E) =aia Uy — ﬂinU2; Ar(pr; , (E) =a,TY; — ﬁrTYQ;
Ay (pirs ) = Yo + B Y,

where pin, = pir = (Po, P1,D2, p)s Pr = (Do, P1, D2, —P),
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2| f1 a  2|f
Qin = @np2 cos (pin® + $1), ar = 1+ a2 (2m)3/2 cos (pr@ + ¢1),
1
Qty = — 5 Qjn,
¢ 1+ a2
2lfo] . a 2| .
Bin = W sin (pinx + ¢2)a Br = 1+ a2 W s (prx + ¢2)a
1
Ber = mﬁin7

and ¢; = —iln f;/|fi], i =1,2.
In the gauge Ay = 0, the electric field E is the derivative over z( of the
vector potential A

o Bulfil in|f2| >
Ein, = p0< |f2| Ut |f1| U2

E, = —po <ﬁr|f1|TY1 + ar|f2|TY2> :

| f2] | f1]
_ ﬁtr|f1| _ atr|f2| )
For = p0< | f] Yo | f1] Yi)

The magnetic field is calculated by the formula H = [@ x A], from which we
obtain immediately the following result:
in Ein r Er r E r
Hin:_[p X ]7 Hr:_[p X ]’ Htr:_[pt X t].
Po Po Po

For the intensities I;n, I, I;, of the incident, reflected, and transmitted waves
we have

;=A@ e!Prmrrs) |2 | Ay (7)) L — A (p))? L — |Aw(P))?
in = 3 - 3 9 r — 3 9 tr — 3 .
2 21 21 21
Therefore,
a? 1
r = Iinv I r = Iin~
1+ a2 i 1+ a2

Hence, the reflection K. = I,./I;, and transmission coefficients Ky, = I, /I, for
flat waves scattering on the plane do not depend on the frequency and incidence
angle and can be expressed through the characterizing the scattering material
coupling constant a:




CHERN-SIMONS POTENTIAL IN MODELS OF INTERACTION 895

Let us consider the movement of waves along the axis x3. In this case,
p1=p2 =0, p=po,

. 1
E, = HE in, in, 0 ’ E = Ein s
Po(=in, @in, 0) i 1+ a? + 1—|—a2Q
3 apg
Q = py(in, Bin, 0), E, = 1+ a2 (=Bra — ar, aya — B, —0),

and replacing in E, the sign of 23 on the opposite one, we obtain

a2 a

TE, = Ein —
1+ a2 1+ a2

Q.

We see that by the scattering of waves moving perpendicular to the plane, apart
from the usual for process of scattering waves, there are waves with electric field
rotated by an angle 7/2 (E;,Q = 0).

11. EXTERNAL CLASSICAL CHARGE AND CURRENT

The classical charge and the wire with current near defect plane are mod-
eled by appropriately chosen 4-current J in (3). The mean vector potential A,
generated by J and the plane x3 = 0, with a; = a can be calculated as

57,

= iDhpJu]ay=a,a2=0- (25)

ar1=a,a2=0

Using notations F;;, = 0;Ar — Or.A;, one can present electric and magnetic
fields as E = (Fo1, Foz, Fos), H = (Fas, Fs1,F12). For charge e at the point
(z1,22,23) = (0,0,1), I > 0, the corresponding classical 4-current is

Ju(x) = dmed(z1) 6(x2) §(xs — 1) dop-

In virtue of (25), the electric field in considered system is the same as one
generated in usual classical electrostatics by charge e placed on distance [ from
infinitely thick slab with dielectric constant € = 2a® -+ 1. The defect plane induces
also a magnetic field H = (Hy, Ho, H3):

eary eaxs ea(|zs| +1)

H=-——= Ho=-———7T"—, H3= =,
@48 TP @+ T (@4 1)p8

where p = (27 + 23 4 (o3| +1)2)'/2. It is an anomalous field which does not
arise in classical electrostatics. Its direction depends on sign of a. A current with
density j flowing in the wire along the x; axis is modeled by

Ju(x) = 4mjo(zs — 1) 0(x2) dpr-
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For magnetic field from (25) we obtain usual results of classical electrodynamics
for the rectilinear current parallel to infinitely thick slab with permeability p =
(2a + 1)1, There is also an anomalous electric field E = (0, Es, E3):

2ja o _ 2ja |w3|+1

EFy= — = =
2T 21y STy 2

where 7 = (22 + (|z3| +1)?)*/2. Comparing both formulae for parameter a, we
obtain the relation € x = 1. It holds for material of thick slab interaction which
with point charge and current in classical electrodynamics was compared with
results for thin film of our model. The speed of light in this hypothetical material
is equal to one in the vacuum. From the physical point of view, it could be
expected, because interaction of film with photon field is a surface effect which
cannot generate the bulk phenomena like decreasing the speed of light in the
considered slab.

CONCLUSION

Most essential features of presented results are the following. The considered
approach enables one to investigate, in the framework of one model with small
number of parameter, many physical phenomena. In this model, the interaction
of thin film with the electromagnetic fields is described by the defect action (1)
obtained by most general assumptions consistent with locality, gauge invariance
and renormalizability. Thus, basic principles of quantum electrodynamics are used
essentially for investigation of interaction effects between quantum and classical
degrees of freedom in considered systems.

For plane films, it was demonstrated that the Casimir force is not universal
and depends on properties of the material presented by the interaction constant a.
For a — oo, one obtains the usual force for ideal conducting planes. In this
case, the model coincides with photodynamics considered in [20] with boundary
condition eijk’?’ij =0 (¢ = 0,1,2) on orthogonal to the x3-axis planes. For
sufficiently small a, the Casimir force appears to be repulsive. Interaction of
plane films with charges and currents generates anomalous magnetic and electric
fields which do not arise in classical electrodynamics.

The Casimir energy was calculated for spherical films interacting with quan-
tum electromagnetic field. The result obtained in the framework of multiplicative
renormalization procedure depends on three parameters. One of them is dimen-
sionless and is a coupling constant of the sphere with photon field. If it is given,
the 1/rg-contribution to Casimir energy is calculated exactly. The renormalization
procedure requires the presence in the model of two complementary parameters,
which make two additional terms to Casimit energy: one independent of the
radius 7o and one proportional to rZ.
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Thus, the Casimir energy appears to be nonuniversal and dependent on the
properties of material. The presented approach can by applied for the problem of
stability of fullerenes and nanotubules.

In the framework of quantum electrodynamics with the Chern—Simons poten-
tial describing the interaction, a two-dimensional plane with neutral atom (mole-
cule), the energy of the system as a function of the atom distance from the plane,
was calculated. In the limit @ — +oo for coupling constant, the result coincides
with the Casimir-Polder potential [17] for the energy of interaction of a neutral
atom with a perfectly conducting plane. The essential feature of the result is
the term depending on the antisymmetric part of a dipole correlation function for
finite values of the parameter a. The criterion of its dominance in terms of imag-
inary and real parts of dipole matrix elements of the atom and the parameter a of
the Chern—Simons ponential was presented.

The scattering processes in the model of the Chern—Simons interaction with
the coupling constant a between electromagnetic field and the material plane
were investigated. The Euler—Lagrange equations of the model are the modified
Maxwell equations including the parameter a characterizing the material of the
scattering plane. They were solved in the temporal gauge Ap = 0. For the spatial
part of the vector potential, the result is represented as a linear combination of two
orthogonal eigenmodes of the scattering problem. For the case of a monochro-
matic plane wave with arbitrary polarization, the vectors of electric and magnetic
fields of the reflected and transmitted waves, and also the transmission and reflec-
tion coefficients are obtained in an explicit form. The transmission and reflection
coefficients Ky,, K, are expressed through coupling constant a: Ky, = (1+a2)*1,
K, = a*(1+a?)~1. They do not depend on the wave frequency and propagation
direction. For waves propagating in the orthogonal to the plane direction by
small a, the electric field vector of the reflected wave is rotated on the close to
/2 angle with respect to its direction for the case of a perfectly conducting plane
(a — o0). Electric field vector of the transmitted wave, vanishing for large a,
turned toward his direction in the incident wave on an angle close to /2.

The presented effects may be used for experimental determination of the
parameter a of material of thin films. The measurement of the Casimir force and
Casimir—Polder potential for thin material films, studies of scattering on them of
electromagnetic waves, investigation of magneto- and electrostatic properties of
films would give the possibility to verify the correctness of the proposed in [11]
approach for the theoretical investigation of the nanophysical phenomena.

One can expect that quantum Hall effect systems, graphene, fullerene two-
dimensional magnetoelectric materials [21], sharp boundaries of material bod-
ies [22] are the most promising from known materials for this aim. The mea-
surements of the antisymmetric part of the atomic polarizability by means of the
Casimir—Polder effect can be an independent possibility for the study of antisym-
metric parts of atomic polarizabilities in various atomic and molecular systems.
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