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Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we
give a brief overview of the basics of the theory of generalized parton distributions and their rela-
tionship with simpler phenomenological functions, viz. form factors, parton densities and distribution
amplitudes. Then, we discuss recent developments in building models for GPDs that are based on
the formalism of double distributions (DDs). A special attention is given to a careful analysis of the
singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a
singular Regge behavior. Within the developed DD-based approach, we discuss the structure of GPD
sum rules. It is shown that separation of DDs into the so-called «plus» part and the D-term part may
be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an
alternative prescription based on analytic regularization.

PACS: 24.85.4+p

1. INTRODUCTORY REMARKS

The basic role played by the generalized parton distributions (GPDs) [1-7]
is to access the fundamental physics related to the structure of hadrons. This is
a rather general statement, and one may wish to confront it with a more specific
one. A classic example of such a specific case is the celebrated search for the
Higgs boson (HB) performed currently at the Large Hadron Collider (LHC). The
motivation for the search is that HB is supposed to be responsible for generation
of fermion masses, in particular, quark masses.

Now, with the announced discovery [8,9] of the Higgs particle, can we say
that the problem of generation of visible mass is completely solved? Unfortu-
nately, no! In fact, by far the largest part of the visible mass is due to the nucleons,
and out of 940 MeV of the nucleon mass, the origin of less than 30 MeV (current
quark masses) may be related to the Higgs boson. The remaining more than 97%
of the nucleon mass is due to gluons — which are represented as massless fields
in the QCD Lagrangian!

This is a characteristic illustration of the situation in hadron physics:

i) All the relevant particles are already established: no «higgses» to find.

ii) The QCD Lagrangian is known.



914 RADYUSHKIN A. V.

iii) However, we still need to understand how QCD works, i.e., to understand
hadronic structure in terms of quark and gluon fields. The evident thing to do is
to project quark and gluon fields ¢(z1), ¢(22), . .. onto hadronic states |p, s). This
gives matrix elements:

(0120 (21) gs(22) [ M (p), 5),  (0lga(21) 45(22) ¢5(23)) [ B(p),s) (1)

that can be interpreted as hadronic wave functions (Fig. 1). In particular, in the
light-cone (LC) formalism [10], a hadron is described by its Fock components in
the infinite-momentum frame. For the nucleon, one can schematically write:

|P) = Voqqla(z1 P, k11)q(w2 P, k21 )q(z3 P k31 )) + WggeclqqaG)+
+ \Ijqqqéq|qqq(jQ> +..., (2
where x; are momentum fractions satisfying > xz; = 1; k;, are transverse mo-
menta, »_ k;; = 0. In principle, solving the bound-state equation HP) = E|P)

K2
one should get the wave function | P) that contains complete information about the
hadron structure. In practice, however, the equation (involving an infinite number
of Fock components) has not been solved yet in the realistic 4-dimensional case.
Moreover, the LC wave functions are not directly accessible experimentally.

Z]

2

22

Baryon—quark matrix element Meson—quark matrix element

Fig. 1. Hadron-to-quarks matrix elements

The way out in this situation is the description of hadron structure in terms
of phenomenological functions. Among the «old» functions used for a long time
we can list form factors, usual parton densities, and distribution amplitudes. The
«new» functions, generalized parton distributions (for reviews, see [11-15]), are
hybrids of form factors, parton densities and distribution amplitudes. Furthermore,
the «old» functions are limiting cases of the «new» ones.

The relation of GPDs to more simple «old» functions is an essential element
in constructing realistic models of GPDs. One of the most restrictive constraints
is imposed by the formula [2] relating GPDs to the usual parton densities, which
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may be treated as a «forward» limit of GPDs. A nontrivial observation here
is that GPDs contain contributions which are «invisible» in the forward limit,
such as the D-term [16]. In addition to the requirements of reproducing «old»
functions in specified limits («reduction relations»), such models should satisfy
other constraints, such as polynomiality [11], and correspondence with Regge
behavior of usual parton densities in the region of small parton momenta.

The polynomiality constraint is highly nontrivial, but it is automatically satis-
fied if GPDs are built from the so-called «double distributions» [1,4,6]. However,
imposing on DDs the constraints dictated by correspondence with the Regge be-
havior, one faces rather singular functions, and this raises a lot of questions
related to the singularity structure of GPDs in general.

The goal of the present paper is, first, to give a brief overview of the ba-
sics of the theory of generalized parton distributions and their relationship with
previously used phenomenological functions, and, second, to describe a recent de-
velopment [17] in modeling GPDs based on their formulation in terms of double
distributions, with emphasis on careful disentangling their singularity structure.
To this end, in Sec.?2, we start with an overview of «old» phenomenological func-
tions. Their relation with generalized parton distributions is discussed in Sec. 3.
The formalism of double distributions is outlined in Sec.4. Before switching to
the discussion of more technical issues related to modeling GPDs within DD for-
malism, a brief summary of the content of Secs.2-4 is given in Sec.5. A specific
problem of building model GPDs with a Regge behavior is addressed in Sec. 6.
The model described there provides a particular example of singularities that one
may encounter in GPD construction. It also gives a nontrivial example of a situ-
ation when the part of the D-term (that is formally invisible in the forward limit)
comes from a term generated by the correspondence with the usual («forward»)
parton densities. As shown in recent papers [18-22], the D-term also appears as
a subtraction constant in dispersion sum rules for GPDs. In Sec. 7, we study these
sum rules within the DD formalism used in previous sections, in particular, we
show that separation of DDs into the so-called «plus» part and the D-term part
may be treated as a renormalization procedure for the GPD sum rules. In Sec. 8,
we compare it to the alternative prescription based on analytic regularization used
in [20,23,24]. Our conclusions are formulated in Sec.9.

2. «OLD» PHENOMENOLOGICAL FUNCTIONS

2.1. Form Factors. The form factors are defined through matrix elements of
electromagnetic (EM) and weak currents between hadronic states. In particular,
the nucleon electromagnetic form factors are given by

vV v

(o', 8" 7(0) | p, s) = ulp’,s") |y Fa(t) +

2mN FQ(t) U(p, S)a (3)
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where r = p — p/ is the momentum transfer and ¢ = 2

current is given by the sum of its flavor components:

TH(z) = epthp(2) yMbs(2). 4)
f

. The electromagnetic

The nucleon helicity nonflip form factor Fj(t) can also be written as a sum
> efFif(t). A similar decomposition holds for the helicity flip form factor
f

Fy(t) = )" epFap(t). Att =0, these functions have well-known limiting values.
)
In particular, Fi(t = 0) = ey = ) Nyey gives total electric charge of the
f

nucleon (Ny is the number of valence quarks of flavor f) and Fa(t = 0) = Ky
gives its anomalous magnetic moment. The form factors are measurable through
elastic e N scattering.

2.2. Usual Parton Densities. The parton densities are defined through for-
ward matrix elements of quark/gluon fields separated by light-like distances. In
particular, in the unpolarized case we have

(pl Ya(—2/2)7"Va(2/2)P)| oy =

1

:217“/[ef“”(pz)fa(x)—ei“’(pz)f(—l(x) dz. (5)
0

In the local limit z = 0, the operators in this definition coincide with the operators
contributing into the nonflip form factor Fj. Since ¢ = 0 for the forward matrix
element, we obtain the sum rule for the numbers of valence quarks:

1
/M@—mezm. ©)
0

The definition of parton densities has the form of the plane wave decompo-
sition. This observation allows one to give the momentum space interpretation:
Ja(@)(z) is the probability to find a(a)-quark with momentum xp inside a nucleon
with momentum p. The classic process to access the usual parton densities is
deep inelastic scattering (DIS) v*N — X.

Using the optical theorem, the v* N — X cross section is given by the imag-
inary part of the forward virtual Compton scattering amplitude. The momentum
transfer g is space-like ¢> = —Q?, and when it is sufficiently large, perturbative
QCD factorization works. At the leading order, one deals with the so-called
handbag diagram, see Fig.2. Through simple algebra,

1 1 _O(x—xp)

—Im ~
m  (q+xp)? 2(pq)

3
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—z/2 z/2

xp xp

/

p p p p

Fig. 2. Matrix element defining parton densities, their momentum-space interpretation and
lowest order pQCD factorization for DIS

one finds that DIS measures parton densities at the point x = =, where the parton
momentum fraction equals the Bjorken variable 5 = Q2?/2(pq). Comparing
parton densities to form factors, we note that the latter have a point vertex instead
of a light-like separation and p # p’.

2.3. Distribution Amplitudes. Another example of nonperturbative functions
describing the hadron structure are the distribution amplitudes (DAs). They can
be interpreted as light-cone wave functions integrated over transverse momen-
tum, or as (0|...|p) matrix elements of light-cone operators. In the pion case,
we have

1
<0|1/7d(—2/2)757’“‘wu(2/2)|7r+(p)>\z2=0:ip”fw/ e W20 () da, (7)
21

with 1 = (1 + «)/2, 22 = (1 — «)/2 being the fractions of the pion momen-
tum carried by the quarks. The distribution amplitudes describe the hadrons in
situations when the pQCD hard scattering approach is applicable to exclusive
processes. The classic example is the v*y — 70 transition; its amplitude is
proportional to the 1/(1 — &) moment of ¢, (a), see Fig. 3, right.

(+a

X;p xip L\”\ﬁ 2 P

xop

x3p Xop r
Baryon D4 @ (g, X3 X3) Meson DA ¢ (X7, x2) JJf < ; ” p

Fig. 3. Left: baryon and meson distribution amplitudes. Right: lowest-order pQCD fac-
torization for v*y — 7 transition form factor
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3. GENERALIZED PARTON DISTRIBUTIONS

The classic process that requires the description of the hadron structure in
terms of the generalized parton distributions is the deeply virtual Compton scat-
tering (DVCS) v*N — ~yN. It is convenient to visualize DVCS in the v*N
center-of-mass frame, with the initial hadron and the virtual photon moving in
opposite directions along the z-axis. When the momentum transfer ¢ is small, the
hadron and the real photon in the final state also move close to the z-axis. This
means that the virtual photon momentum ¢ = ¢’ — zgp has the component —zgp
canceled by the momentum transfer r. In other words, the momentum transfer r
has the longitudinal component 7+ = 2pp™, where x5 = Q?/2(pq) is the DIS
Bjorken variable. One can say that DVCS has a skewed kinematics in which the
final hadron has the «plus» momentum (1 — ¢)p* that is smaller than that of the
initial hadron. In the particular case of DVCS, we have ( = zp.

3.1. Nonforward Parton Distributions. The parton picture for DVCS has
some similarity to that of DIS, with the main difference that the plus-momenta
of the incoming and outgoing quarks in DVCS are not equal; they are Xp*
and (X — ¢)p™, see Fig.4. Another difference is that the invariant momentum
transfer ¢ in DVCS is nonzero: the matrix element of partonic fields is essentially
nonforward.

q —&p q

Fig. 4. Lowest-order DVCS in terms of nonforward parton distributions

Thus, the nonforward parton distributions (NFPDs) F¢(X,t) describing the
hadronic structure in DVCS depend on X (the fraction of p™ carried by the
outgoing quark), ¢ (the skewness parameter characterizing the difference between
initial and final hadron momenta), and ¢ (the invariant momentum transfer). In
the forward » = 0 limit, we have a reduction formula

g:O(XatZO):fa(X) (8)

relating NFPDs with the usual parton densities. The nontriviality of this relation
is that F¢(X,t) appear in the amplitude of the exclusive DVCS process, while
the usual parton densities are measured from the cross section of the inclusive
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DIS reaction. The local limit relates NFPDs to form factors:

jfg(X,t) dX = F{(t) (1— g) ©)
0

3.2. Off-Forward Parton Distributions. The description in terms of NFPDs
has the advantage of using the variables most close to those of the usual parton
densities. However, the initial and final hadron momenta are not treated symmet-
rically in this scheme. X.Ji [2] proposed to use symmetric variables in which
the plus-momenta of the hadrons are (1 + &)P* and (1 — £)P*, and those of
the active partons are (z + &)P™T and (z — £)PY, P being the average momen-
tum P = (p + p’)/2, see Fig.5. The relevant functions were called originally
«off-forward parton distributions» (OFPDs). At present, most researchers use
OFPDs, referring to them simply as GPDs. (When the NFPDs conventions are
used, the functions are still called GPDs, but specifying that the variables X, (
correspond to definitions of [6].) In the simplified case of scalar fields, the GPD
parameterization of the nonforward matrix element is

(P + /2 ¥(—2/2)0(/2)|P — r/2) :/e "(P2) (2, €) du + O(=?).  (10)

To take into account the spin properties of hadrons and quarks, one needs
four generalized parton distributions H, F, H, E, each of which is a function of
z, &, and t. The skewness parameter £ = rT / 2P can be expressed in terms of
the Bjorken variable, £ = x5 /(2 — xp), but it does not coincide with the latter.

Xp X-Op (x+&)P (x-8§P

p (-0p (q+&p u-&r
Fig. 5. Comparison of NFPDs and OFPDs

Depending on the value of x, each GPD has 3 distinct regions. When
¢ < x < 1, GPDs are analogous to usual quark distributions; when —1 < x < —&,
they are similar to antiquark distributions. In the region —¢ < x < &, the
«returning» quark has a negative momentum and should be treated as an outgoing
antiquark with momentum (§ — z)P. The total ¢G pair momentum r = 2£P is
shared by the quarks in fractions (1 + z/£)/2 and r(1 — x/£)/2. Hence, a
GPD in the region —¢§ < x < ¢ is similar to a distribution amplitude ® (o) with

a=z/E
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4. DOUBLE DISTRIBUTIONS

4.1. Double Distributions as Hybrids of Parton Densities and Distribution
Amplitudes. The main idea behind the double distributions [1,4,5,25,26] is a
«superposition» of Pt and r+ momentum flows, i.e., the representation of the
parton momentum k™ = B3PT + (14 «)r* /2 as the sum of a component P due
to the average hadron momentum P (flowing in the s-channel) and a component
(1+ )r™ /2 due to the t-channel momentum r, see Fig. 6. In the simplified case
of scalar fields, the DD parameterization reads

(P —r/2[¢(=2/2)¢(2/2)|P+1/2) =
= /F(B, @) e"WBP2)=a(r2)/2 45 do + O(2%).  (11)
Q

x+&P x-&P PP+ +a)r/2 pP-(1-a)r/2

u+&p u-or P+1/2 P—1/2
Fig. 6. Comparison of GPD and DD descriptions

Thus, the double distribution f(3, ) (we consider here for simplicity the ¢ = 0
limit) looks like a usual parton density with respect to 3 and like a distribution
amplitude with respect to «. The support region {2 is specified by |5] + |o] < 1.
The connection between the DD variables 3, a and the GPD variables z,§ is
obtained from r+ = 2£P*, which results in the basic relation z = § 4 £a. The
formal connection between DDs and GPDs is

Hw,6) = [ F(B.0)5(a - 5~ 60 d3 do. (12
Q
4.2. Local Operators and DDs. The definition of DDs may also be given

through parameterization of symmetric-traceless part w(o){gm Eun}zp(o)
(denoted by { }) of the composite local operators resulting from the Taylor
expansion of the bilocal operator used in the definition given above. For a scalar
target, one may write

(P+1/210(0){ 00y -+ D JO(0)|P —1/2) =

oo [n-—1
= Z Z Awd Py P Tpnien T b+ Apndrps om0 (13)
= =0
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In the momentum representation, the derivative @, converts into the average

ky = (ku +k;,)/2 of the initial k and final k" quark momenta. After integration

over k, (k)" should produce the P and r factors in the r.h.s. of the equation
above. In this sense, one may treat (k)™ as (3P +ar/2)™ and define DDs through

n!

=D /F(ﬁ,a)ﬁ”‘lo/ dBda = Ay (14)

Q

as a function whose " ‘a! moments are proportional to the coefficients A,,;.

4.3. D-Term, Scalar Quarks. Parameterizing the matrix element (13), one
may wish to separate the A,, terms that are accompanied by tensors built from
the momentum transfer vector r only (and, thus, invisible in the forward » = 0
limit), and introduce the D-term [16]

1

/D(a)(a/?)” doa = Ann (15)

—1

as a function whose («/2)™ moments give A,,,. Within the DD-parameterization,
the separation of the D-term can be made by simply using

e PP = [e7B(P2) _ 1] 4 1.

The D-term is then given by
1—|ev|
D)= [ F(g.0)ds, (16)
—1+4]||

and the DD-parameterization converts into a «DD plus D» parameterization

(P—r/2p(=2/2)¢(2/2)|[P+71/2) = /[F(ﬁ, )]y e PEDTRUD2 45 dayt
Q

—l—/D(a)e_m(”)ﬂda—i—(’)(zz), 17
el

where
1—|af

[ﬂ@@h=F@a%ﬁ@>/’Fmam7 (18
~1}al
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is the DD with subtracted D-term. Mathematically, [F(53, )]+ is a «plus distri-
bution» with respect to 3. It satisfies the condition

1-|a|

[F(ﬁaa)]erﬁ = Oa (19)
—1+]||

guaranteeing that no D-term can be constructed from [F'(3, a)]+.

4.4. Spin-1/2 Quarks: Two-DD Representation. In the simple model with
scalar quarks discussed above, one may just use the original DD F'(3, o) without
splitting it into the «plus» part and the D-term. In models with spin-1/2 quarks,
it is more difficult to avoid an explicit introduction of extra functions producing a
D-term. The basic reason [16] is that the matrix element of the bilocal operator,
even in the case of spin-0 hadrons, should have two parts

<P - 7"/2|1/_)(_Z/2)’Yu?/1(2/2)|P + r/2>|twist72 -
=2P,f((Pz),(r2),2%) + r,g((P2), (rz),2%). (20)

This suggests to introduce a parameterization with two DDs corresponding to f
and g functions [16]. For the matrix element (20) multiplied by z* — which is
exactly what one obtains doing the leading-twist factorization for the Compton
amplitude [27] — this gives

AP —1/21(=2/2)mu(2/2)|P +1/2) =

_ / ¢i0P)=ia(r2)/2 [9(PLYF(B,0) + (r2)G (B, )] dB da + O(2). (21)
Q

The separation into F- and G-parts in this case is not unique: expanding the
exponential in powers of (Pz) and (rz), one may obtain the same (Pz)™(rz)!
term both from the F-type and G-type parts. This leads to possibility of «gauge
transformations»: one can change [28]

F (8,0 — F(g0) + 20, 22
G(50) = G(p.e) - X, @3

using a gauge function (3, ) that is odd in «. Still, the terms (Pz)°(rz)!
cannot be produced from the F-type contribution. The maximum of what can
be done is to absorb all m # 0 contributions into the F-type term. As a result,
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Eq.(21) is converted into a «<DD plus D» parameterization [16] in which the term
in the square brackets is substituted by the

2(Pz) Fp(B, ) + (rz) 6(8) D(e) 24

combination, with D(«) given by the S-integral of G(3, ) and Fp(53, «) related
to the original DDs through the gauge transformation (cf. [28]).

4.5. Spin-1/2 Quarks: Single-DD Representation. In fact, since the Dirac
index y is symmetrized in the local twist-two operators ¥{~,, 5“1 5“77/}1#
with the u; indices related to the derivatives, one may expect that it also pro-
duces the factor 3P, + ar,/2. As shown by the authors of [29], this is pre-
cisely what happens. In their construction, not only the exponential produces the
z-dependence in the combination 5(Pz) + a(rz)/2, but also the pre-exponential
terms come in the 3(Pz)+«(rz)/2 combination, i.e., the result is a representation
in which

2(Pz) F(B,a) + (rz) G(A, o) = [26(Pz) + a(r2)]f (5, @), (25)

that corresponds to F'(3, «) = Bf (5, @) and G(5, o) = af (B, ). Thus, formally,
one deals with just one DD f(f,«). In principle, though, this single function
may be a sum of several components, e.g., 6(a) f(8)/8+6(8)D(«)/« (the result
of the pioneering D-term paper [16] for the pion DD in an effective chiral model

corresponds o f1="(3,a) = 3(a)/|8] — 6(8)/lal).
In the two-DD approach, GPDs are introduced through

H(x.€) = / [F(8,0) + £G(5,a)] 6z — B — Ea)dBda,  (26)
Q

which converts into

H(§) = [ 1(5.0)8(c - 5~ ¢a)adda @7
Q
in the «single-DD» formulation. The D-term in the single-DD case is given by
1—|a
Da)=a [ f(s.a)ds (28)
—1+]af

and one may write f(3,«) as a sum

f(B0) = [F(B,)l4 + 6(B) D(a) /ex (29)

of its «plus» part [f(5, a)]+ (cf. Eq.(18)) and D-term part §(5)D(a)/cv.
4.6. Getting GPDs from DDs. The relation between DDs and GPDs can be
illustrated on the DD support rhombus |5| + |a] < 1 (Fig. 7).
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a The delta-function in Eq.(27) speci-
fies the line of integration in the {3, a}
plane. To get H(x,&;t), one should inte-
grate f(0,«) over « along a straight line
0 = x — £a. Fixing some value of &, one
deals with a set of parallel lines intersect-

ﬁ ing the J-axis at § = x. The upper limit
of the a-integration is determined by in-
tersection of this line either with the line
0+ a =1 (this happens if z > £) or with
the line —G+a =1 (if z < £). Similarly,
the lower limit of the a-integration is set
by the line § —a =1 for z > —¢€ or by

Fig. 7. Support region for double distrib- the line § + o = —1 for x < —¢. The

utions and lines producing f(x), H(z,£) lines corresponding to x = +& separate

(for x > & and = < &), H(§,&), and  the thombus into three parts generating the

H(—=¢,¢) three components of H (z,&;t):

H(-§ &)

Ha(z,651) =0(§ <z < 1) fa(z — o, ) dat

T~

-
H
8

-
+
|

+0(-E<z<f) fa(z = &a, ) dat

3 \

-
|
8

+0(-1<z<=¢ / falz — &, ) da.  (30)

For x > £ > 0, the integration lines lie completely inside the right half of
the rhombus. The line producing GPD at the «border» point x = ¢ starts at its
upper corner, while the lines corresponding to |z| < & cross the line § = 0. Thus,
one deals with the «outer» regions = > ¢ and = < —¢ (in this case, the whole
line is in the left half of the rhombus) and the central region —¢ < z < £, when
the integration lines in the (3, «) plane lie in both halves of the rhombus and
intersect the 5 = 0 line.

The forward limit » = 0 corresponds to & = 0, and GPD H (z,£) converts
into the usual parton distribution f(x). Using DDs, we may write

1—|z| 1—|z|

/Fxozdoz—x / f(z,a)d (€1))
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Thus, the forward distributions f(z) are obtained by integrating DDs over vertical
lines § = z in the (3, ) plane. For nonzero £, GPDs are obtained from DDs
through integrating them along the lines 5 = = — &« having 1/¢ slope, i.e., the
family of H(x,&) functions for different values of £ is obtained by «scanning»
the same DD at different angles.

In GPD variables (x,¢), the momentum fraction x — £ carried by the final
quark is positive for the right outer region, and negative for the central region,
i.e., in the latter case it should be interpreted as an outgoing antiquark rather than
incoming quark [4], i.e., GPD in the central region describes emission of a quark—
antiquark pair with total plus-momentum 7+ shared in fractions (1 + x/£)/2 and
(1 —2/€)/2, like in a meson distribution amplitude.

From this physical interpretation, one may expect that the behavior of a
GPD H(z,€) in the central region is unrelated to that in the outer region. But,
since the GPD in both regions is obtained from the same DD, one may expect,
to the contrary, that the set of GPDs for all «outer» z’s and all £’s contains
the same information as the set of GPDs for all central x’s and all £’s. This
«holographic» picture (cf. [20,23]) may be violated by terms contributing to
GPDs in the central region and not contributing to GPDs in the outer regions: by
the terms with support on the 5 = 0 line, i.e., those proportional to §(3) (and, in
principle, its derivatives), in particular, by the D-term. For this reason, the usual
approach is to build separate models for the D-term and for the remaining part
of DD.

Recall that integrating the DD f(z,a;¢ = 0) over a vertical line gives the
usual parton density f(x). To get the t = 0 GPDs, one should scan the same DD
along the lines having a ¢-dependent slope. Thus, one can try to build models
for SPDs using information about usual parton densities. Note, however, that the
usual parton densities are insensitive to the meson-exchange type contributions
Hys(z,&;t) coming from the singular x = 0 parts of DDs. Thus, information con-
tained in GPDs originates from two physically different sources: meson-exchange
type contributions Hys(x,&;t) and the functions Hyy(x,&;t) obtained by scan-
ning the = # 0 parts of DDs f(x,«;t). The support of exchange contributions
is restricted to |z| < £ Up to rescaling, the function Hjs(x,&;t) has the same
shape for all &, e.g., war(z/&;t)/|€|. For any nonvanishing &, these exchange
terms become invisible in the forward limit £ — 0. On the other hand, interplay
between x and ¢ dependences of the component resulting from integrating the
x # 0 part of DDs is quite nontrivial. Its support in general covers the whole
—1 < = < 1 region for all ¢ including the forward limit £ in which they convert
into the usual (forward) densities f%(z), f%(x). The latter are rather well known
from inclusive measurements at small ¢.

4.7. Factorized DD Ansatz. The reduction formula (31) suggests a model

f(B,0) = h(B, ) f(B)/B, (32)
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where f(() is the forward distribution, while (3, ) determines DD profile in
the o direction and satisfies the normalization condition

1-gl
h(B, ) da = 1. (33)
—1+(8|
Since the plus component of the momentum transfer r is shared between the

quarks in fractions (1+«)/2 and (1—«)/2, like in a meson distribution amplitude,
it was proposed [25,26] to model the shape of the profile function by

[(A—18])% = o®]¥
(1= g2+t

hn (B, a) ~ (34)
that vanishes at the sides of the support thombus |«| + || < 1, with N being a
parameter governing the width of the profile.

Such a factorized DD Ansatz (FDDA) was originally applied [25,26] to an
analog of the F (0, ) function of the two-DD formalism, which corresponds to
a model F'(3,a) = f(6)h(B, ) and G(B,) = 0. Later, it was corrected by
addition of the D-term [16], which formally corresponds to the «gauge» (23) in
which G(8,a) — Gp(B,«) = 6(8)D(w), and F(B3,a) — Fp(f,a). Note that
if F = (f and G = af, the model Fp(5,a) = f(8) h(8,«) does not coincide
with the model f(5,a) = f(8)h(8,a)/B, since the gauge function xp(8, «)
(see Eq.(22)) is nontrivial.

Thus, there is a question whether the FDDA should be applied to Fp (3, «)
(as it was done so far) or to the DD f(f3,«) of the single-DD formulation. It
should be confessed that no enthusiasm has been observed to use FDDA in the
form of the single-DD formula (32). This observation has a simple explanation:
the function f(3)/0 is not integrable for 5 = 0, even if f(53) is finite for 8 = 0.
The reason is that the DVCS amplitude contains singlet GPDs, which are odd
functions of 8. Hence, f(5)/0 should be an even function, and the principal
value prescription does not work. Moreover, for small 3 one would expect that
the forward distribution f(/3) has a singular f(8) ~ 1/3% Regge behavior, which
makes the problem even worse. We will address these questions in the second
part of our review. Before proceeding to it, we give below a brief summary of
the first part.

5. GPDs AND PHENOMENOLOGICAL FUNCTIONS

Hadronic structure is a complicated subject, and it requires a study from
many sides and in many different types of experiments. The description of
specific aspects of hadronic structure is provided by several different functions:
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form factors, usual parton densities, distribution amplitudes. Generalized parton
distributions provide a unified description: all these functions can be treated as
particular or limiting cases of GPDs H(x, &, t).

Usual parton densities f(x) correspond to the case £ = 0,t = 0. They
describe a hadron in terms of probabilities ~ |¥|2. However, QCD is a quantum
theory: GPDs with £ # 0 describe correlations ~ Wi Ws. Taking only the point
t = 0 corresponds to integration over impact parameters b; — information about
the transverse structure is lost.

Form factors F(t) contain information about the distribution of partons in
the transverse plane, but F'(¢) involve integration over momentum fraction x —
information about longitudinal structure is lost.

A simple «hybridization» of usual densities and form factors in terms of NPDs
F(x,t) (GPDs with £ = 0) shows that the behavior of F'(¢) is governed both by
transverse and longitudinal distributions. GPDs provide adequate description of
nonperturbative soft mechanism. They also allow one to study transition from
soft to hard mechanism.

Distribution amplitudes p(z) provide quantum-level information about the
longitudinal structure of hadrons. In principle, they are accessible in exclusive
processes at large momentum transfer, when hard scattering mechanism domi-
nates. GPDs have DA-type structure in the central region |z| < &.

Generalized parton distributions H(x,&,t) provide a 3-dimensional picture
of hadrons. GPDs also provide some novel possibilities, such as «magnetic
distributions» related to the spin-flip GPD E(z,&,t). In particular, the structure
of nonforward density E(x,& = 0,t) determines the ¢-dependence of Fy(t).
Recent JLab data give Fy(t)/Fy(t) ~ 1/y/—t rather than 1/t expected in hard
pQCD and many models — a puzzle waiting to be resolved. The forward
reductions %(z) of E(z,&,t) look as fundamental as f*(z) and Af(z): Ji’s
sum rule involves x%(x) on equal footing with f(z). Magnetic properties of
hadrons are strongly sensitive to dynamics providing a testing ground for models.
Another novel possibility is the study of flavor-nondiagonal distributions, e.g.,
proton-to-neutron GPDs accessible through processes like exclusive charged pion
electroproduction, proton-to-A GPDs (they appear in kaon electroproduction),
and proton-to-A GPDs — these can be related to form factors of proton-to-A
transition. The GPDs forN — N + soft 7 processes can be used for testing the
soft pion theorems and physics of chiral symmetry breaking.

An interesting problem is the separation and flavor decomposition of GPDs.
The DVCS amplitude involves all four types of GPDs, H, F, H, E/, so we need
to study other processes involving different combinations of GPDs. An important
observation is that, in hard electroproduction of mesons, the spin nature of pro-
duced meson dictates the type of GPDs involved, e.g., for pion electroproduction,
only H, F appear, with E dominated by the pion pole at small ¢. This gives an ac-
cess to (generalization of) polarized parton densities without polarizing the target.
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Summarizing above discussion, we want to emphasize that the structure of
hadrons is the fundamental physics to be accessed via GPDs. GPDs describe
hadronic structure on the quark—gluon level and provide a three-dimensional
picture («tomography») of the hadronic structure. GPDs adequately reflect the
quantum-field nature of QCD (correlations, interference). They also provide new
insights into spin structure of hadrons (spin-flip distributions, orbital angular mo-
mentum). GPDs are sensitive to chiral symmetry breaking effects, a fundamental
property of QCD. Furthermore, GPDs unify existing ways of describing hadronic
structure. The GPD formalism provides nontrivial relations between different
exclusive reactions and also between exclusive and inclusive processes.

6. MODELING GPDs

6.1. Preliminaries. The general idea of extracting GPDs from experiments
is to build some models for GPDs, and fix the parameters of such models by
comparing their predictions with experimental data.

There are two approaches used to model GPDs. One is based on a di-
rect calculation of parton distributions in specific dynamical models, such as
bag model [30], chiral soliton model [31], light-cone formalism [32], etc. An-
other approach [25,33,34] is a phenomenological construction based on reduction
formulas relating GPDs to usual parton densities f(z), Af(z) and form factors
Fi(t), Fa(t),Ga(t), Gp(t). The most convenient way to construct such models
is to start with double distributions f (53, «;t).

Let us concentrate on the limiting case ¢ = 0. As we discussed earlier,
the interpretation of the (J-variable as the fraction of the P momentum and the
reduction formula (31) stating that the integral of f, (53, @) over « gives the usual
parton density f,(3) suggests the factorized DD Ansatz (32) in which f(3,a) =
h(B,«) f(B), where the function h(3, ) describes the a-profile normalized to 1
according to Eq.(33). The profile function should be symmetric with respect to
a — —a because DDs f(3, «) are even in « [26,33]. For a fixed 3, the function
h(B3, «) describes how the longitudinal momentum transfer r* is shared between
the two partons. Hence, the shape of h(/3, «) should look like a symmetric meson
distribution amplitude ¢(«). Recalling that DDs have the support restricted by
o] < 1 — ||, to get a more complete analogy with DAs, it makes sense to
rescale a as o« = (1 — |B])7y introducing the variable ~ with 8-independent limits:
—1 < v < 1. The simplest model is to assume that the y—profile is a universal
function g(v) for all 5. Possible simple choices for g(y) may be d(v) (no
spread in v-direction), (3/4)(1 —~?) (characteristic shape for asymptotic limit of
nonsinglet quark distribution amplitudes), (15/16)(1 —~2)? (asymptotic shape of
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gluon distribution amplitudes), etc. In the variables 3, «, this gives

B (8,0) = 6(a),  hD(G,a) = S LB —o

COeEr
15 [(1 - |8])2 — a2)2
M) = o

These models can be treated as specific cases of the general profile function

. TEN+2) (1] e
T PN 1) (1 g

W5, a) : (36)
whose width is governed by the parameter N.

6.2. Simple Models. Let us analyze the structure of GPDs obtained from these
simple models. In particular, taking f(°) (8, o) = 6(a)f(53) gives the simplest
model H()(z,¢;t = 0) = f(z) in which OFPDs at ¢ = 0 have no ¢-dependence.
In case of the b = 1 and b = 2 models, simple analytic results can be obtained
only for some explicit forms of f(x). For the «valence quark»-oriented ansatz
(M (B, ), the following choice of a normalized usual density

r—a) ,_

WPy = ="~ 3721 -3)3 37
0 = g —a 00 37
is both close to phenomenological quark distributions and produces a simple
expression for the double distribution since the denominator (1 — 3)® factor in
Eq. (35) is canceled. As a result, the integral in Eq. (30) is easily performed and
we get [34]

Hy (2,8)]j0)3¢ = gi?» (1 - %) ([2-a)e — 2)(a2" + 2279 +
+ (€@ —0)@ " =22 )] 0@ > + (x — —2)} (38

for x| > ¢ and

HY (@, Oljsi<e = 75 (1~ 2) (22712 ~ )1 —2) + (& — )] + (& — )}

£ 4
(39)
in the middle —¢ < = < & region. We use here the notation
r+& x—£
Ty = , T = . 40
T 1 ¢ (40)

To extend these expressions onto negative values of &, one should substitute
& by |£]. One can check, however, that no odd powers of |¢| would appear
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in the 2 moments of H(z,£). Furthermore, these expressions are explicitly
nonanalytic for z = ££. This is true even if a is integer. Discontinuity at
x = =&, however, appears only in the second derivative of H‘l/(x,g), i.e., the
model curves for H{ (z,£) look very smooth (Fig. 8).

A N s

Fig. 8. Valence quark distributions H{-(z,£) with @ = 0.5 for several values of ¢ =
xBj/(2 — wpj) corresponding to values zgj = 0.1, 0.2, 0.4, 0.6, 0.8. Lower curves
correspond to larger values of zg;j

For a = 0, the x > £ part of GPD has the same z-dependence as its forward
limit, differing from it by an overall £-dependent factor only,

(1 —[x))?
(1-¢2)?

The (1 — |z[)® behavior can be trivially continued into the |z| < & region.
However, the actual behavior of H(z,£)|4—o in this region is given by a different
function. In other words, H{(x,&)|,—o can be represented as a sum of a function
analytic at border points and a contribution whose support is restricted by |z| < &.
It should be emphasized that despite its DA-like appearance, this contribution
should not be treated as an exchange-type term. It is generated by the regular
B # 0 part of the DD, and, unlike the o(x/£)/¢ functions its shape changes
with &, the function becoming very small for small &.

For the singlet quark distribution, the DDs f“(3,a) should be odd func-
tions of §. Still, we can use the model like (37) for the 5 > 0 part, but take
2(8,0) g0 = AfM(|B],a)sign(B). Note, that the integral (30) producing
H®(x,€) in the || < & region would diverge for a — z/¢ if a > 1, which

£4+2—-32%/¢

H‘l/(l‘,f”a:o = 4 (1 + 5)2

0(lz| =€) +2 0(lz[ <&). (4D



TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS 931

is the usual case for standard parameterizations of singlet quark distributions for
sufficiently large Q2. However, due to the antisymmetry of f°(/3, «) with respect
to § — —( and its symmetry with respect to & — —q, the singularity at & = x /¢
can be integrated using the principal value prescription which in this case pro-
duces the x — —x antisymmetric version of Egs.(38) and (39). For a = 0, its
middle part reduces to

362 — 222¢ — 22
£1+¢)?
The shape of singlet GPDs in this model is shown in Fig.9.

H(2,6)j2<.0=0 = 2 (42)

0.25 0.5 0.75

Fig. 9. Model for singlet quark distribution H(z,€) for values of & corresponding to xp;
equal to 0.2, 0.4, 0.6. Lower curves correspond to larger values of xg;

It should be noted that explicit calculations of generalized parton distribu-
tions performed within the chiral soliton model [31] show that the middle region
behavior of SPDs strongly resembles that of distribution amplitudes.

6.3. GPD Model with Implanted Regge Behavior. The assumptions used in
the factorized DD Ansatz are based on the experience with calculating DDs for
triangle diagrams [6] and form factors in the light-front formalism models with
power-law dependence of the wave function on transverse momentum [35] (see
also [36]).

The simplest triangle diagram (see Fig. 10, a) in the scalar model correspond-
ing to Eq. (13) may be used as an example of a model for GPD

d*k 6(x — (kn)/(Pn))
H6)~ [ g (P

(43)

Though the ¢-dependence is not immediately visible here, it appears after inte-
gration over k through the (rn)/2(Pn) ratio. The DD F(f3, «) generated by this
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0 (x = (km)) / (Pn))
k]

kj=k+r2 ky=k—1/2

P+r/2 P—r/2
P+r/2 P—r/2

Fig. 10. a) Triangle diagram model for GPD; b) hadron—quark scattering amplitude

diagram is just a constant, see [6], which corresponds to a flat N = 0 profile
RO (B8,a) ~1/(1—3) and f(B) ~ 1 — /3 forward distribution.

The calculation [35] of overlap integrals for light-front wave functions with
a power-law behavior 9 (z,k ) ~ 1/(k% )1 resulted in expressions equivalent
to using DDs with N = k profile in Eq. (34) and forward distributions behaving
like (1 — 8)**1. The same profile arises [35] if one differentiates a scalar
triangle diagram ~ times with respect to masses (squared) of each active quark,
i.e., substitutes

1 1

— .
(mi —k2)(m3 —k3)  (m} — k)1 (m3 — k3)1+r

(44)

It should be emphasized that x # 0 models the softer-than-perturbative behavior
expected for the transition amplitude relating a bound state with its constituents.

The triangle diagrams, however, do not generate the Regge f(8) ~ 1/4%
behavior for small 5. The latter may be obtained, in particular, by infinite
summation of higher-order ¢-channel ladder diagrams (see, e.g., [37]). A simpler
way was proposed in [38], where the spectator propagator was substituted by
a parton-hadron scattering amplitude T'(P,r, k) (see Fig.10,b) written in the
dispersion relation representation. To avoid divergencies generated by the Regge
behavior, the subtracted dispersion relation

oo

T(P,r,k) — T((P — k)? To+/dap { (; e %} (45)

0

was used. The spectral function p(o) here should be adjusted to produce a desired
Regge-type behavior with respect to s = (P — k)2

In the light-front formalism, the starting contribution corresponds to a triangle
diagram in which the hadron—quark vertices are substituted by the light-front
wave functions v (z, k, ) that bring in an extra fall-off of the integrand at large
transverse momenta k. The authors of [38] intended to reflect this physics in
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their covariant model. To introduce form factors bringing in a faster fall-off of
the k-integrand with respect to quark virtualities k7 and k2, it was proposed to
use higher powers of 1/(m? —k?) instead of perturbative propagators, which may
be achieved by differentiating the triangle diagram with respect to m?.

The model of [38] assumes spin-1/2 quarks. It was argued that the Dirac
structure of the hadron—parton scattering amplitude in this case should be given
by ¥, which provides EM gauge invariance of the DVCS amplitude. Thus, the
model scattering amplitude has the structure

FT((P— k)
(m — k)Nt (m3 — k3N
To treat the two quarks on equal footing, we take m; = mg, and the model GPD
analyzed below is given by

(46)

1 NiINo!
@8 = S
></ (kn) d*k §(x — (kn)/(Pn))
(Pn) [m? — (k +7r)? N1+ [m? — (k — r)?]N2+t

7 1 1
0

The overall factors were introduced here for future convenience. The T subtrac-
tion term gives the D-term-type contribution

R OGN

XG(E‘ < 1) (48)

that vanishes outside the central region and, hence, is invisible in the forward limit.
In what follows, we will concentrate on the terms generated by the dispersion
integral, but one should remember that the Dy-term can always be added to GPD
H(z,¢), i.e., in all formulas below one should be ready to change H(x,&) —
H(x,&) 4+ Do(x/€).

6.4. The Model and DD Representation. For equal Ny = Ny, = N, we
obtain

1

00 1-p
T 1— ﬁ 2 _ 042 N
H({E, ) = 92N +1 /do—p(o—)/dﬁ / dov (BU[(+ (1 _)ﬁ)mQ)]QN-i-l X
0

0 -1+

x {5 (x— 8- af) - 75((196__ ;;ﬁ) } . (49)
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Taking £ = 0, one obtains the usual (forward) parton distributions:

0 1 1-8
1-8)2—a?Nd
H(z,6=0)= 221\$7+1 /dJP(J)/dﬁ / (B[(U"‘ (1)_ ﬁ)(;]z)zNil X

0 0 —148

x {5@: - 7(15_("%)2 } . (50)

Treating z0(x) as zero, we obtain the representation
oy e [ do p(o)
1@ = Gyt : / (o + @ —aymepn O

0

Now, using Eq.(51), we substitute the o-integral through forward distribution
to get

1 1-8

z (2N +1)! 1-08)2 -2V (B
H(z,¢) = 22N+1( (N!)Q) /dﬁ / da - (1—)6)2“1] (B)X
0 -1+
d(x —af)
X {5(3:—6—@5) @ ﬁ)Q } (52)

This trick allows one to avoid choosing a specific form of the spectral den-
sity p(o). It is easy to notice that the factor

_ 1 N+ -6)?-a?
N(B,a) = 92N+1 (N!)Q (1— 5)2N+1

(33)

is a normalized profile satisfying Eq. (33). Thus, we can rewrite Eq. (52) as

1 1-8
= 0 doo —=—= hn (0, a) %
v 0/ f{ﬁ g

x {5 (2 — B —af) - 75((1””__ ;;? } (54

The first term here coincides with the factorized DD Ansatz for H(z,£)/z in
which it is reconstructed from its forward limit f(z)/x. The relevant double
distribution is given by f(3,a) = hn(8,a)f(5)/5. The total contribution is
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then given by

1 1-8
H(z,¢)

= [ dg dad (z — B — af) x
’ 0/ 1[5

1—-|af

x 4§ f(B,a) =4(9) / dvé(ji’j)é . (55)
0

Thus, the model of [38], first, corresponds to the single-DD representa-
tion (27), and, second, it has the structure of the factorized DD Ansatz (32).
6.5. Results for GPDs. For the model forward distribution

fa(B) = (1= p)*/B° (56)
and the profile function
31— B)? —a?
hi(B,a) = 1 1-ppF (57)

we obtain, for x > &:

e )

d —

HOlee = 3 & m—fl{(l—mz—(”ﬁf) } 59)
B1

Calculating H (&,€), i.e., the GPD at the border point = £, one gets here the
[(1 - )%= (1—p3/¢?] ~ 3 factor from the profile function, and this factor
changes the strength of singularity for 5 = 0. As a result, the integral over
converges as far as a < 1. This outcome is a consequence of using a profile
function that linearly vanishes at the sides of the support rhombus. In its turn,
the N = 1 profile is generated by the assumed 1/(k?k3)? dependence of the k-
integrand for large parton virtualities. If one takes the NV = 0 profile, the factor in
the curly brackets should be substituted by 1/(1 — (3)), and the integral producing
H(¢,¢€) diverges. For small, but nonzero x — &, one obtains the behavior propor-
tional to 1/8¢ ~ (x — &)~%. Turning now to the |z| < £ region, we get for the
N =1 profile:

3
H(z,8)|jz<e = 1

B2
g z? g x?
+o/@{1_52<1—ﬁ>2}“_2)‘ | {1_§2<1—ﬁ>2} Y
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H(x 3] H(x, &)

isse ‘
03_—-&%\<V£j '/01 02 03 10

Fig. 11. Model singlet GPD Hg(z,&) with N = 1 (a) and N = 2 (b) DD profile for
a = 0.5 and £ = 0.05, 0.1, 0.15, 0.2, 0.25

Note that as far as |z| is strictly less than &, the profile function does not vanish
at the singularity point § = 0. The mechanism of softening singularity to 1/5*
strength is now provided by the 1/o subtraction term of the original dispersion
relation. To get a model for singlet GPDs, one should take the antisymmetric

combination

The resulting GPDs are shown in Fig. 11,a. For positive z, they are peaking at
x = £. The functions Hg(z,§) in this model are continuous at x = +¢&, but
the derivative dHg(x,£)/dx is discontinuous at these points. In a similar way,
one can calculate model GPDs for the N = 2 profile. The resulting GPDs are
shown in Fig. 11, b. For positive z, they are peaking at points close to x = £. In
the model with N = 2 profile, both the functions Hg(x,&) and their derivatives
dHg(z,£)/dx are continuous at x = ££.

6.6. Results for D-Term. In Eq.(55), we deal with the regularized double

distribution
1-|a|

fr8(8,0) = f(B, ) — 6(f) / Mﬂﬂ%m
0

=7

However, due to the 1/(1 — )2 factor in the subtraction term, f™°2(3,a) does
not coincide with f (8, «). Their difference induces the D-term

1-|af

D(a) =« b/ dﬂ%h(ﬂ,a){l—%}.

(61)

1-p)?

Taking the same model forward distribution f(3) = (1 — 3)3/3% and N = 1
profile function gives
1-la]

pN=1h) = 34 / 451 [ o }(ﬂ—Q). (62)
0

l\DIOJ
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A similar expression for the D-term is obtained in the N = 2 profile model:

- 2
DIN=2) (o _ﬁ [ __ } (3 —2). (63)
T

As one can see in Fig. 12, the two curves are rather close to each other.

D (o)

Fig. 12. The D-terms in N = 1 and N = 2 profile models for a = 0.5

H(x,§)-D (x/§)

b

1.5 3
Hx§-D( &)
1.0 2 —x
0.5 1
P B PR N M|
0.2 ) 06 08 1.0 . . . 1.0
-0.5 x -1
1o D(x/8) s
-15

Fig. 13. a) GPD H(zx,&) and D-term D(z/€) for &€ = 0.5 and positive z. b) Difference
between GPD H (z,§) and D-term D(x/§) in the case of the N = 1 profile for { = 0.5
and positive x. The same function divided by z is also shown

The comparison of the total GPD H(x,&) and its D-term part is shown in
Fig. 13, a. The difference between GPD H (z, ) and D-term D(z/£) corresponds
to the term H (z, &) obtained from the «plus» part [f (3, a)]+ of DD. The shape
of the difference for £ = 0.5 is shown in Fig.13,b. Note that, despite the
fact that the forward distribution in this model is positive, there is a region,
where the contribution to H(x,&) coming from [f(0, )]+ is negative. This is
due to the §(3) subtraction term contained in [f(5,«)]+. Also shown is the
ratio Hy (z,£)/x. Looking at the figure, one may suspect that the z-integral of
H, (z,§)/x vanishes. In the next section, we show that this, indeed, is the case.
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7. GPD SUM RULES

7.1. Sum Rules. The D-term determines the subtraction constant in the dis-
persion relation for the DVCS amplitude [18-22]. In particular, it was shown [19]
that the original expression for the real part of the DVCS amplitude involving
H(z,£), and the dispersion integral involving H(x,x) differ by a constant A
given by the integral of the D-term function D(«):

1

P/H(x$;_§(x§ B /1

-1

(64)

Here, P denotes the principal value prescription. In [19], this relation was derived
using polynomiality properties of GPDs. It was also pointed out there that it can
be obtained by incorporating representation of GPDs in the two-DD formalism
(which is basically again the use of the polynomiality).

Taking £ = 0, one formally arrives at the sum rule

1

/H(x,x) - H(w,0) /1 f)fa)

-1

(65)

Since both H(x,0)/x and H(z,z)/x are even functions of z, their singularities
for x = 0 cannot be regularized by the principle value prescription. Moreover,
there are no indications that singularities of these two functions may cancel each
other. On the contrary, as emphasized in [39], there are arguments that the ratio
H(z,z)/H(x,0) does not tend to 1 for small x.

7.2. «Plus + D» Decomposition. To begin with, we remind the basic
formulas:

Hw,9)/fs = [ 1(5,0)5a - 5 - (o) dida. (66)
Q
the expression producing GPDs from DDs, and the decomposition of DD
D
18,00 = (B )] (8) + 2 (67

into the «plus» part [f (3, )]+ and the D-term part §(5)D(«)/cv.
Correspondingly, we split GPD into the part coming from the «plus» part
of DD

H+F;a€) = /f(67 a) |:(5(J) -3 _fa) — 5(3: — foz) df do (68)
Q
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and that generated by the D-term

1
Hp(@,§) _ / Mé(m — ¢a)da. (69)
x o
1
Another important relation
1
Hp(z,0) _ D(a)

is obtained by taking £ = 0. Now, Eq. (69) gives

W - 5(3:)/%@. 1)

Note that both Hp(z,0)/x and Hp(z,x)/x are proportional to 6(z), with
the coefficients given by integrals of D(«). This means that, unlike the functions
H(z,0) and H(z,z), which, for x # 0, are insensitive to changes of D(«) in
the 6(8)D(«)/c term, the (mathematical) distributions H(z,0)/x and H(z,z)/x
contain information about such a D-term.

Our next step is to study contributions from different parts of the GPDs
involved in the sum rule (65).

7.3. «Secondary» Sum Rule. One can easily see from Eq. (68) that

1
/ % dz =0 (72)
21

for any &, including £ = 0. Since the integrand is an even function of z, the
vanishing of this integral means that we also have

1
/ % dz = 0. (73)
0

Thus, H, (x,&) should be negative in some part of the central region, and this
negative contribution should exactly compensate the contribution from the regions,
where H, (z,£) is positive. In other words, on the (0,1) interval, H, (z,§)/x
has the same property as a «plus distribution» with respect to x. Note, that this
does not mean that Hy (x,£)/x necessarily contains singular functions like §(x).
For finite &, the function H (x,&)/x is pretty regular for all = values (Fig. 14).
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H+x,&)/x

20f

10

—10F

Fig. 14. Function H4(z,&)/x in the N = 1 profile model for £ = 0.2,0.3,0.5 and
positive x

The negative (x) function appears only in the £ = 0 limit, i.e.,

Hy(2,0) _ f(x) _5(:5)/1%@ _ {@] , (74)
T J +

xT xT

For the integral involving the border function, we get

/H+ dm—/dm/db’dafﬁ, {[( )_ﬂ]_%}.(m

The integrals coming from the two delta-functions cancel each other, and we have

1
/ W da =0, (76)

just like for Hy (x,£)/x. Unlike H, (z, ), however, the combination H (z, x)/x
explicitly contains the §(z) subtraction term, i.e., it is a genuine «plus distribution»
with respect to x, namely, Hy(x,x)/x = [H(z,z)/x]+.

Summarizing, the «plus» parts of both functions entering into the sum
rule (65) separately produce vanishing contributions into the z-integral. Further-
more, these zero contributions are due to the fact that H, (z,0)/x and Hy (z,z)/x
are «plus distributions», which results in zero integrals irrespectively of the form
of the forward distribution f(x) and the border function H(x,x).

Let us now turn to the D-parts. First, we have

e [0,
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for any fixed &, including £ = 0. This result may be obtained by integrating over
x the §(z — &) factor in the integral representation (69).
For the integral involving the border function, we use Eq. (71), which gives

1
/de:/al)&da' (78)
1

As a result,

1 1
/de_/mdx:/w do. (79)
1 1

Combining this outcome with zero contributions from the «plus» parts, one obtains
the sum rule (65).

Thus, our construction confirms the sum rule. Our derivation shows also that
the «plus» parts of both terms simply do not contribute to the sum rule whatever
the shapes of f(x) and H(x,x) are. Only the D-parts contribute, so there is no
surprise that the net result can be expressed in terms of D(«).

An essential point is that both Hp(z,0)/x and Hp(x,x)/z are proportional
to the d(x)-function, with the coefficients given by integrals of the D-term func-
tion D(«). In this sense, H(x,0)/x and H(x,x)/x «know» about the D-term.

A simple consequence is that all 27 moments of Hp(x,0) and Hp(x,z) with
7 = 0 vanish, and one cannot get the D-part of the sum rule (65) by an analytic
continuation of the #/ moments of Hp(z,0) and Hp(z,z) to j = —1, i.e., using
the procedure of [20,23,24]. In fact, 27 moments of Hp(z,0) and Hp(z, ) are
proportional to the Kronecker delta function §; 1, a nonanalytic function of j.

7.4. Need for Renormalization. Since H (z,0)/x is given by integrating the
DD f(f,«) over « along vertical lines § = x, a subsequent integration over all
x gives DD f(f3, «) integrated over the whole rhombus:

_/1 20 _/1d9/dﬁdf(ﬁ, )3z - 5)

1
:/f(ﬁ,a)dﬁdaz/@da. (80)

Q -1

On the last step, we used that the S-integral of f(3,a) formally gives D(a)/c.
However, if f(3,a) ~ 1/8'*9, being even in [3, one needs a regularization for
the [-integral. The «DD + D» separation (66), as we have seen, provides such
a regularization. It works like a renormalization: the divergent integral formally
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giving the D-term is subtracted from the «bare» DD, and substituted by a finite
«observable» function D(«)/«.
In a similar way, we can treat the second integral:

1H(x,x) x o T — -z
/1 : /d/dﬁdfﬁ,)( 5 - va) =

21
f( D(«
/a(l da. (81)

Q —1

Again, the last step requires a subtraction of the infinite part of the S-integral.
The advantage of using the «DD + D» separation as a renormalization pre-
scription is that it is applied directly to the DD. Hence, it is universal, and may
be used for other integrals involving f(3, a).
7.5. Generic Sum Rule. Finally, let us apply the «DD+ D» separation
to the generic relation (64). For the «plus» part, representing 1/(z — &) =
1/z+ (§/x)/( £) and usmg Egs. (73), (76), we have

p H+x:v —P/f

-1

x / £(B,0) dB da[5(z(1 — a) — ) — 5(z(1 - )]

Q
¢ 1
_p f(@a)dﬁda[ & L] s
Q/ Ftl-a) (1-a
and
1H+(x ) / dx
P_/1 p de_/lgx_fx
x / f(8, ) dB da[6(z — B — €a) — 5(x — £a)] =
Q
_ ¢ 1
P/f(ﬂ,a)dﬁda[ﬁ_g(l_a)—f—(1_a) . (83)
Q

Thus, seemingly different delta-functions have converted 1/(z — &) into identical
expressions (cf. [21], where a similar result was obtained for the F'p part of the
two-DD representation) As a result,

P/H+ P/H+ z=0. (84)
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In this case, we deal with the situation when the difference of two integrals
vanishes, but each integral does not necessarily vanish.

In case of the «D» part, we have, for the integral involving the border
function,

1
P Mdm:p/w T
x—& T

-1 -1

1
x D(a)
P/dxx—fé(x)/a(l—a) doao=0. (85)
-1 -1

In simple words, the starting integrand in (85) vanishes for = # 0 since then
Hp(xz,z) = 0, while for z = 0 it is given by the xd§(x) distribution which
produces zero after integration with a function that is finite for x = 0, which is
the case if £ # 0. The second piece is given by

1

1 1
zdzx [ D(a) B
P;{x_f‘{T(?(x—fa)da

1 1
B o D(a) D(a)
_/ga—g—a da_—/—l_ada. (86)
1

-1

Again, the result above may be obtained by simply using

Hp(x,&) = sign (§) (|| < [¢])D(x/¢)

and rescaling x = a. Also, though the final result of Eq. (86) does not depend on
&, it does not coincide with the result of the counterpart relation (77). However,
for the difference of the two integrals we obtain

1 1 1
Hp(z,z) Hp(x,§) . _ [ D(a)

T —

the same result as in Eq. (79). Combining the results for the «plus» and D parts
gives Eq. (64).
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8. ANALYTIC REGULARIZATION

8.1. Mellin Moments. Another possibility to renormalize the [-integral in
Eq. (80) for a singular DD is to use the analytic regularization as proposed in [20,
23,24]. Namely, it is assumed that the positive Mellin moments (or conformal
moments, see, e.g., [40])

1
o) = /xj[H(x,a:) — H(z,0)]dx (88)

-1
can be analytically continued to the point j = —1. The result of such a procedure

is equivalent to analytic regularization of the x-integral. However, the assumed
analyticity properties of ®(j) may be violated by singular or «invisible» terms
(cf. [20]) in the integrand of Eq.(88). For example, a 2:d(x) term gives a nonan-
alytic 0;,_1 contribution into ®(j). In the model with implanted Regge behavior,
singular terms explicitly emerge as a result of subtractions in the dispersion rela-
tion, so one may wish to develop a less restrictive approach to the renormalization
problem. In this connection, we would like to stress that the derivation of the
sum rule (65) given above was based merely on separation (67) of the DDs into
the «plus» part and the D-term. No assumptions about smoothness were made.
The essential moment of the derivation was that one should not hurry up to
treat 20 (z) terms in H (x,x) as zero, since they convert into non-negligible §(x)
contributions in H(z,z)/x. The same applies to H(x,0)/x.

8.2. Comparison of the «Plus» Prescription and Analytic Regularization.
Analytic regularization works as follows. If we need to integrate a function like
A(z)/2% L, with A(z) being finite and nonzero for x = 0, we subtract from \(z)
as many terms of its Taylor expansion as needed to remove the divergence

Yy Y
Az) Az) = A0) — 2N(0) — ...
/xaﬂdx:/dx ot +
0) 0
rd [ d
+A(0)/xa—5j1+x’(0)/x—f+..., (89)

(0) (0)

and then treat the compensating integrals of 2™ /x%*! as convergent, substituting
them by y"~%/(n — a). So, let us consider again a DD which is nonzero for
positive 3 only and has the form

£60) = 222 05+ jof < 105 > 0),
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with @ < 1. Then the analytic regularization of its integral with some reference
function ®(3) is defined by

1—|a
B(B)A(B,
J VR
(0)
1—|
B(BH)A(B,a) — 2(OA0,0) . B(0)A(0,a)
0/ e B at=jap
which may be rewritten as
R T D A(B, )
| e 5= [ 10 - 00) 257 s
(0) 0
1—|a
A - A A
ro| [ AR - B o
0

Now, the first contribution on the r.h.s. is generated by the «plus» part of
the DD, while the second one comes from a D-term. After adding the 8 < 0
part of the DD, the D-term D(«)/« corresponding to the analytic regularization
is given by

1-|

ol
D(a) AB,a) =A0,0) ,  A0,)
=2| [ AR

92)
0

Thus, the analytic regularization prescription unambiguously fixes the D-term,
and in this sense it may be called the «analytic renormalization».

In the model with implanted Regge behavior, we also obtained a concrete
result for the D-term. But the specific D-term contribution we obtained there
came only from the o-integral part of the dispersion relation for the hadron—parton
scattering amplutude subtracted at (P — k)2 = 0. As we pointed out, one should
be always ready to add to it the Dy-term coming from the T constant in the
dispersion relation (45). In principle, we had no reasons to require that 7y = 0.
In this sense, the D-term in that model is not fixed.

On the other hand, the statement, that 27 moments of H(x,¢) are analytic
functions of j, does not explicitly mention fixing any subtraction constants: it
sounds like a general principle, and may create an impression that there are no
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ambiguities in the subtraction of the 3 = 0 singularity. However, the analyticity
assumption was not shown so far to be a consequence of general principles of
quantum field theory. Moreover, as mentioned in [41], it is not satisfied in the
nonlocal chiral soliton model. Still, one may hope that it is valid in QCD.

To see if the Ty = 0 model of the previous section agrees with the analyt-
icity assumption, we should just check whether its D-term is different from that
obtained via analytic renormalization. In particular, for the N = 1 model, we

have
3

AB @) =7 [(1=8)*=a?], (93)

and, hence,

D) _3[(—lap? ,(A—]op™" 1-0o?

« 2 2—a l—a  a(l—la))e

(94)

In Fig. 15, we compare this result (for a = 0.5) with the result obtained by
single subtraction in the dispersion relation (45) with Ty = 0.

4
D (@) 2r
L N ] Fig. 15. The D-terms in the model with
-L.0 =05 C 05 110 N =1 profile and a = 0.5: D(a) was
ok obtained using analytic regularization, and
B D(«) was obtained for 7o = 0 in the
_4F D (@) model of the previous section

Our main point is that representing H (z, £) as the sum Hy(x,&)+ Hp(z,§),
one can derive the GPD sum rule (65) without using the analyticity assumption.
But since our derivation, so to say, works for any D-term, it also works for the
D-term following from the analyticity assumption.

8.3. Summary on Sum Rules. Thus, the calculation described above confirms
the generic GPD sum rule (64) derived in [19,21]. It also supports the £ = 0
sum rule (65) suggested in [19]. It should be emphasized that the integrals
present in the generic sum rule have a singularity for x = &, which is inside
the region of integration, so the integrals may be taken using the principal value
prescription. Since H(x,0)/x and H(x,x)/x are even functions of z, the £ =0
sum rule may be written through an integral from 0 to 1, and its 1/2 singularity
is at the end-point of the integration region, which means that the P-prescription
cannot regulate it. Just because of this fact alone, the sum rule (65) cannot be a
straightforward consequence of the generic sum rule (64).

In the presented derivation, the finite expressions were obtained for each
term involved. In particular, we established that though Hp(z,z) and Hp(x,§)



TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS 947

contributions to the generic sum rule (64) are £-independent, they do not coincide
with their counterparts from the secondary sum rule (65), i.e., the latter cannot
be obtained by formally continuing to £ = O the {-independent results for each
term of the generic GPD sum rule.

In our derivation, we did not make an assumption about analyticity of the
Mellin moments of GPDs. We have obtained GPD sum rules as a consequence
of the polynomiality of GPDs that follows from the Lorentz invariance and is
encoded in the DD representation. The analyticity is a much stronger restriction.
One may try to find out whether it can be tested experimentally and it is also
worth trying to prove it in QCD.

CONCLUSIONS

In Secs. 6-8, we discussed some basic aspects of building models for GPDs
using the factorized DD Ansatz (FDDA) within the «single-DD» formulation. The
main difficulty in the implementation of such a construction is the necessity to
deal with projection onto a more singular function f(3)/f (rather than just onto
f(B)) in the forward limit. This leads to two problems. First, one encounters
nonintegrable singularities for 5 = 0 in the integrals producing GPDs in the
central region |z| < |£|. The difficulty is exaggerated by necessity to consider
forward distributions f(/3) that have a singular 5~ % Regge behavior at small .
Second, if there are no factors suppressing the 3 ~ 0 region for the integration
line corresponding to = = &, the combined 1/3'+¢ singularity leads to a singular
(x — &)~® behavior for GPDs in the outer region z > & near the border point
x = £. Such a behavior was found in the model of [38].

In our analysis, we found that this model gives the single-DD-type repre-
sentation for the model GPD, and thus above reasoning is applicable to it. But
we argued, that a proper softening of the hadron—quark vertices produces a pro-
file function hx (83, ) that results, for x = ¢, in the O(3Y) suppression factor
securing a finite value of the GPD H(z,§) at the border point.

However, the profile factor has no impact on the combined 1/3'7% singu-
larity on the § = 0 line inside the support rhombus, which one faces when
calculating GPDs in the |z| < |¢] region. The advantage of the model of [38]
is that it implants the Regge behavior through a subtracted dispersion relation
for the hadron—quark scattering amplitude. We found that the subtraction pro-
vides the regularization necessary for the calculation of GPDs in the central
region, and illustrated the behavior of resulting GPDs in models with NV = 1 and
N = 2 profiles.

We also observed that this model produces a D-term contribution, despite the
fact that it uses only the forward distribution as an input. This D-term contribution
appears because the subtraction generated by the dispersion relation differs from
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the subtraction that converts the original DD into a «plus» distribution [f (3, &)]+.
The latter, by definition, cannot generate a D-term. We have shown that the GPD
H, (x,&) generated by the [f(3, )]+ part of the original DD (i.e., GPD H(z,&)
with the D-term contribution D(z/{) subtracted) has a remarkable property that
the integral of H (z,&)/x over positive values 0 < < 1 vanishes. As a result,
H, (z,£) must be negative in some part of the central region, a feature that is
absent in previous FDDA models based on two-DD formulation.

Within the single-DD formalism, it is very natural to separate the relevant
DD f(8,«) into the «plus» part [f(/,«)]+ and the D-term. We demonstrated
that this separation can be used to rederive the GPD sum rule related to the
dispersion relation for the real part of the DVCS amplitude, and we also gave a
derivation of another sum rule proposed as the & — 0 limit of that generic sum
rule. Our derivation shows that this «secondary» sum rule is not a straightforward
consequence of the generic one. In particular, the principal value prescription used
in the generic sum rule needs to be substituted by another prescription, like the
«plus» prescription. The «plus» prescription, in fact, is automatically generated by
the separation of DDs into the «plus» part and the D-term. We also demonstrated
that the contributions into the two sum rules generated by the same functions are
not in a one-to-one correspondence.

Summarizing, using (intentionally) simplified models, we developed the basic
tools that can be used in building realistic GPD models based on the factorized
DD Ansatz within the single-DD formalism. Future developments in this direc-
tion should include the extension of the presented methods onto the cases with
a > 1 Regge behavior, which would require an extra subtraction in the dispersion
relation, and building models for nucleons and other targets with a nonzero spin.
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