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We analyze, in leading and next-to-leading order of the BFKL equation, the effects of the
quantization of the singularities of the j-plane, t-channel partial waves due to the imposition of
appropriate infrared and ultraviolet boundary conditions. We show that the intercepts ωn of the
Regge poles, which contribute signiˇcantly to the gluon density in the kinematic region measured
at HERA and which can be calculated in QCD and in a supersymmetric extension of QCD, are
substantially modiˇed by the Beyond Standard Model (BSM) effects. We also develop a physically
motivated heuristic model for the infrared boundary condition and apply it to the gluon density. We
argue that, using this type of model, the analysis of present and future low-x data could allow one to
detect supersymmetry at a high energy scale.

PACS: 12.38.Cy

1. INTRODUCTION

The BFKL equation determines the high-energy behaviour of the virtual
gluonÄgluon scattering amplitude in Regge limit, in which the cms energy

√
s is

much larger than the transverse momenta k, k′ of the gluons. It was derived in the
ˇxed coupling constant case by resumming all the Feynman diagrams describing
gluonÄgluon scattering in the leading or next-to-leading order. The scattering
amplitude displays a scale invariance such that it can be described solely by
functions of ratios of transverse momenta k and k′.

A common application [1Ä3] of the BFKL equation is to use it as an evolu-
tion equation in rapidity y and transverse momentum k for some large-rapidiity
amplitude, namely,

∂

∂y
A(y, t) =

∫
dt′K(ᾱs, t, t

′)A(y, t′), (1.1)

where

t = ln

(
k2

Λ2
QCD

)
.
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and the coupling ᾱs runs with transverse momentum. This application is often
used as it lends itself relatively easily to an extension of the DGLAP formalism
to very low values of Bjorken-x, where the pure DGLAP formalism is known to
break down.

In order to solve this evolution equation, one requires as input the amplitude
at some rapidity y for all values of transverse momentum t′. One could naively
expect that Eq. (1.1) could be directly solved for large y and t well in the pertur-
bative region because it is known that the BFKL kernel K(t, t′) is quasi-local in
t; i.e., it diminishes when |t− t′| is large. However, as was carefully investigated,
e.g., in [1], the BFKL equation is not only an evolution in y but also in virtualities
t, which leads to a substantial diffusion into the low transverse momenta region
where perturbative QCD cannot be valid. Therefore, the authors of [1] proposed
a modiˇcation of the BFKL equation by imposing a low and high cutoff in t on
the BFKL integral, a procedure which is today widely accepted. However, such
a cutoff implies that the amplitude actually vanishes below a certain transverse
momentum, rather than becoming nonperturbative. In fact, due to the growth of
the coupling constant at small kT , the amplitude could grow in this region and
the vanishing of it at the infrared cutoff looks unnatural.

In [4] we proposed to solve Eq. (1.1) by the Green function method which
does not require any cutoff on the BFKL integral. Instead, we assumed that the
nonperturbative infrared region of QCD imposes a certain phase on the oscillatory
parts of the eigenfunctions at some small transverse momentum. This treatment
of the infrared boundary leads to a discrete set of eigenvalues, ωn, of the BFKL
kernel, since only certain values permit the construction of eigenfunctions which
simultaneously obey these phase conditions at low transverse momentum and
the large transverse momentum boundary conditions imposed by the asymptotic
freedom. This is in contrast to the ®usual¯ treatment [1Ä3], in which a lower
transverse momentum cutoff is imposed on the amplitude; i.e., the amplitude
is assumed to vanish below the cutoff. In our approach, the amplitudes are
particularly sensitive to the exact values of the discrete ωn which are related to
the nonperturbative phases ηn at the cutoff. These phases are determined, in turn,
by the gluonÄgluon interactions of the nonpertubative QCD, which lead to rich
structures below this cutoff.

A rigid cutoff (either UV or IR) destroys the scale invariance of the BFKL
kernel and hence the validity of scale-covariant solutions. As pointed out in [1],
the imposition of such cutoffs has no effect on the position of the leading sin-
gularity (the exponent of x in structure functions) but does affect the prefactor,
which is controlled by the form of this singularity. We ˇnd that the subleading
singularities are also essential in order to obtain a good ˇt to HERA data. In
our application of BFKL dynamics, the scale and conformal invariance (which
is central to the BFKL formalism for ˇxed coupling) is broken in a controlled
way, namely, only through the running of the coupling and we assume ®quasi-
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conformal¯ solutions in which the exponent of the transverse momentum varies
slowly in order to compensate for the change in the coupling in accordance with
a generalized DGLAP dynamics.

In our previous paper [4] we have shown that HERA F2 data, at low x, can be
described very well by the gluon density constructed from the discrete spectrum of
eigenfunctions of the BFKL kernel. The spectrum contained many eigenfunctions,
O(100), with eigenvalues ωn varying from ω1 ∼ 0.25 to ωn ∼ 0.5/n for large n.
This ˇrst successful confrontation of the BFKL formalism [6] with data led to the
unexpected question as to whether the HERA data are sensitive to the Beyond
Standard Model (BSM) effects. These effects, although only present at scales
that are much higher than the region of HERA data, can nevertheless affect the
quality of the ˇts to data since BSM effects change the running of the coupling
and consequently also substantially change the values of ωn.

This seems somewhat counter-intuitive. One may ask how it can be possible
that a ˇt to data at relatively low energies can be sensitive to corrections due
to loops of particles whose masses are far in excess of those energies. The
crucial point is that the above-mentioned large transverse momentum boundary
conditions, imposed by the running of the coupling, can occur at very high kT

scales∗. For ω <∼ 0.1 this is already above the scale at which one might
expect BSM physics to occur. The value of the discrete eigenvalues arises
from an interplay between these ultraviolet boundary conditions and the infrared
boundary condition arising from the imposition of an infrared phase. It is in
this sense that in our treatment of the BFKL formalism there is communication
between high- and low-energy scales. We make the assumption that the allowed
eigenvalues can be obtained from the BFKL equation supplemented by an infrared
phase condition in a process-independent way, i.e., without needing to impose
any infrared or ultraviolet cuts on the integration over transverse momentum.
Once these eigenvalues are calculated, their corresponding eigenfunctions are
convoluted with the necessary impact factors in order to obtain the required
amplitudes. In this way, it turns out that even though these amplitudes, in
accordance with kinematical constraints, never involve diffusion into transverse
momenta above the threshold for BSM physics, the rapidity dependence of such
amplitudes is affected by the substantial changes in the eigenvalues arising as a
result of BSM physics.

To understand how the running of the coupling constant can have such far
reaching consequences, we derive analytically (in Sec. 2) the main properties of
the discrete pomeron solution using the LO BFKL equation. This derivation
provides a qualitative physical explanation of the mechanism by which the BSM

∗Note that this means that formally we determine the eigenvalues at asymptotically large initial
energies.
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effects modify the discrete pomeron structures and lead to a genuine change of the
eigenvalues and eigenfunctions. It also elucidates the role of the infrared phases
which deˇne the boundary condition and which can be indirectly determined from
data. This explanation is then carried over into the NLO evaluation, which was
used for data analysis and was performed numerically.

As a popular example of BSM effects, we have chosen the N = 1 supersym-
metry and modiˇed the β function and the kernel of the BFKL equation to include
the contributions from the superpartners. We then describe the full NLO evalua-
tion of the Discrete BFKL Pomerons (DP) with collinear resummation [10]. This
allows us to show that the eigenvalues ωn, at larger n, have a genuine sensitivity
to BSM physics because the support of the corresponding eigenfunctions extends
to very high virtualities. The values of ωn are determined (to large extent) by the
running of αs and the properties of the BFKL kernel in the high virtuality regions,
where BSM effects dominate and QCD NLO corrections are very small. This is
also the reason why these eigenvalues are not sensitive to a particular choice of
the infrared boundary. All these properties are discussed in detail in Sec. 2.

In Sec. 3 we then show that it is possible to construct a physically self-
consistent infrared boundary condition which determines the properties of the
gluon density to be in agreement with data. Finally, we confront the DP gluon
density with the HERA F2 data and show that within our model for the infrared
boundary condition we obtain indirect evidence of a supersymmetric threshold in
a multi-TeV range.

In Sec. 4 we discuss our results with particular emphasis on the role of the
universal Green function and the momentum conservation. We also discuss the
dependence of our ˇts on the choice of the infrared boundary condition. Section 5
presents a summary.

2. THE DISCRETE BFKL POMERON

The forward amplitude for a diffractive process with rapidity (or rapidiy gap)
y is determined by the QCD pomeron and may be written as

A(y) =
∫

dω

∫
dt

∫
dt′Φu(t)Φd(t′)x−ωG̃ω(t, t′), (2.1)

where G̃ω(t, t′) is the Mellin transform of a universal (i.e., process-independent)
Green function G(t, t′, y − y′),

G(t, t′, y − y′) =
∫

dω G̃ω(t, t′) eω(y−y′). (2.2)

The process dependence enters only through the impact factors Φ′
u, Φd at the top

and bottom of the gluon ladder which depend on the transverse momenta of the
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gluons and may also depend on other kinematic variables. The integral over ω
in the inverse Mellin transform, (2.2), is performed over a contour parallel to the
imaginary axis, to the right of all singularities of the Green function. This Green
function obeys the equation

ωG̃ω(t, t′) −
∫

dt′′ K(ᾱs, t, t
′′) G̃ω(t′′, t′) = δ(t − t′), (2.3)

which is solved by determining the set of eigenfunctions of the BFKL kernel,
subject to certain boundary conditions. If we allow the coupling ᾱs to run with
t, t′, which in LO means replacing it by

√
ᾱs(t)ᾱs(t′), then, as we explain below,

the UV boundary condition, namely that the eigenfunctions decay as t → ∞,
is automatically implemented. The infrared boundary condition is imposed by
requiring that the eigenfunctions have some given nonperturbative phases at some
low value of t∗. As was ˇrst shown in [12] and we explain again below, the
combination of the UV boundary condition (which determines the oscillation
phase at t = tc, where the oscillatory behaviour changes to an exponentially
decaying behaviour, compatible with a DGLAP analysis in the double logarithmic
limit) and the infrared phase condition leads (for positive ω) to a discrete set of
allowed eigenvalues ωn with their attendant eigenfunctions, so that the Green
function may be written as

G̃ω(t, t′) =
∑

n

f∗
ωn

(t′)fωn(t)
ω − ωn

+
1

2πi

0∫
−∞

dω′ f
∗
ω′(t′)fω′(t)
ω − ω′ + iε

. (2.4)

No further cuts from kinematic constraints on t are imposed in the determi-
nation of the eigenfuntions and eigenvalues. However, as we discuss in detail in
Sec. 4, owing to the quasi-local nature of the BFKL kernel K, this Green function
is rapidly attenuated for large |t−t′|, which means that when it is inserted into the
expression (2.1) in order to obtain the unintegrated gluon density, the diffusion
into values of t substantially above the region of support of the impact factor
Φp(t) is highly suppressed, thereby automatically limiting the gluon virtuality to
be small compared with the incoming energy.

The infrared nonperturbative phases, ηn, which determine the values of the
discrete eigenvalues, ωn, are in general ω-dependent, but they must lie within a
range of magnitude π, so that the quantum number n represents the number of
oscillations of the eigenfunction between the scale t0 at which the infrared phase
condition is applied and the ultraviolet scale tc at which the oscillatory behaviour
becomes an exponentially decaying one. As pointed out in [4], an ω-dependent

∗These phases should be universal (process-independent).
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infrared phase condition is necessary in order to be able to express an impact
factor with support only for small t in terms of the discrete eigenfunctions, since
the frequency of oscillation of these eigenfunctions at small t is always below
∼ 0.7. In fact, after imposing this nonperturbative phase, the eigenfunctions are
forming an almost complete set of functions in the region of comparatively small
k ∼ 1−10 GeV.

The existence of this set of discrete eigenfunctions is consistent with the
known fact that, in the Regge regime, the amplitude is determined by a set of
Regge poles. The imposition of infrared phases does not in any way violate the
kinematical constraint, but the ensuing discrete spectrum of eigenvalues has a very
signiˇcant effect on the ˇtting of the results of this modiˇed BFKL formalism to
HERA data on the structure functions at low x.

The continuum contribution (for negative ω) is not signiˇcant for sufˇciently
small values of x at any given t. However, for a given x, as t increases these
contributions become more signiˇcant and are essential in order for this formalism
to match the double logarithmic limit of the DGLAP approach for sufˇciently
large t.

The value of tc at which the oscillatory behaviour converts into an exponen-
tially decaying one increases linearly with eigenvalue number n. For n � 3 this
occurs at values of tc above the scale at which one may expect to see physics
beyond the Standard Model. The running of the coupling is therefore affected
by the presence of thresholds for such a new physics and this in turn affects the
positions of the discrete eigenvalues ωn. For sufˇciently low values of x the
contribution from all but the ˇrst two or three eigenfunctions is negligible. How-
ever, we ˇnd that for values of x which are probed at HERA there is a sizable
contribution from these higher eigenfunctions. This means that even though the
transverse momenta do not diffuse into regions of t where the particles of new
physics are actually produced, the shifts in the positions of the eigenvalues due to
new physics affect the x-dependence of the unintegrated gluon density. Despite
the fact that these effects are small, the high quality of the HERA data means that
the quality of the ˇt is signiˇcantly affected by the possibility of new physics at
high energies.

We now show how this works in detail.

2.1. LO Evaluation. We begin this subsection by reviewing the argument
of [12] which led to a modiˇcation of the BFKL formalism which gives rise to
discrete poles rather than a cut in the ω plane of the t-channel partial waves.

We consider the case of the leading-order BFKL equation [6] with running
coupling also taken to leading order so that (for t > 0)

ᾱs ≡ CAαs

π
=

1
β̄0t

, (2.5)
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where

β̄0 ≡ β0

4CA
=

11
12

− nf

18
. (2.6)

The Hermitian BFKL kernel may be written as√
ᾱs(t) ᾱs(t′)K0(t, t′),

where ∫
dt′K0(t, t′) eiνt′ = χ0(ν) eiνt, (2.7)

χ0(ν) = 2Ψ(1)− Ψ
(

1
2

+ iν

)
− Ψ

(
1
2
− iν

)
. (2.8)

Note that the parameter ν may be real or imaginary for real eigenvalues χ0(ν).
The eigenfunctions gω(t) of this Hermitian kernel obey the eigenvalue equa-

tion ∫
dt′
√

ᾱs(t) ᾱs(t′)K0(t, t′) gω(t′) = ωgω(t). (2.9)

These eigenfunctions form a complete orthonormal set∫
dtgω(t) g∗ω′(t) = 2πδ(ω − ω′), (2.10)

assuming (for the moment) a continuous spectrum for the eigenvalues ω.
They can be obtained by deˇning a set of functions fω(t):

fω(t) =
gω(t)√

t
, (2.11)

which obey the eigenvalue equation

ᾱs(t)
∫

dt′K0(t, t′)fω(t′) = ωfω(t). (2.12)

Using Eq. (2.5), we have∫
dt′K0(t, t′)fω(t′) = β̄0ωtfω(t). (2.13)

Taking the Fourier transform

fω(t) =
∫

dν eiνtf̃ω(ν) (2.14)

and using Eq. (2.7), we have a ˇrst-order differential equation

d

dν
f̃ω(ν) = − i

β̄0ω
χ0(ν)f̃ω(ν), (2.15)



BFKL EVOLUTION AS A COMMUNICATOR 1063

which has a well-known solution

f̃ω(ν) = exp

⎛
⎝− i

β̄0ω

ν∫
χ0(ν′)dν′

⎞
⎠ =

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0ω)

.

(2.16)
In this way we obtain

fω(t) =
1√
2πω

+∞∫
−∞

dν eiνt

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0ω)

, (2.17)

where the prefactor is taken such that the normalization condition (2.10) is
obeyed.

The integral over ν can be performed numerically over a suitable contour.
A very good approximation to this integral (for small ω) is obtained by the
saddle-point approximation (equivalent to solving Eq. (2.13) using the semiclassi-
cal approximation). The saddle point, which is a function of t, νs(t), is obtained
from the solution to

χ0 (νs(t)) = β̄0ωt. (2.18)

We consider two regions depending on whether t is greater or less than a
critical point, tc, given by

β̄0ωtc = χ0(0) = 4 ln 2. (2.19)

Fig. 1. (Color online) Integration
contour (blue line) on the ν plane
for t > tc. The black dot shows
the position of the saddle point, νs

2.1.1. t > tc. In this case there is a single
saddle point on the positive imaginary axis,
shown in Fig. 1. If we deˇne γs by

γs =
1
2

+ iνs, (2.20)

then at the saddle point, γs, is the solution to

χ0(γs) ≡ 2Ψ(1) − Ψ(γs) − Ψ(1 − γs) =
= β̄0ωt, (2.21)

γs is in the range

0 < γs <
1
2
.

The contour of integration is deformed so that
it becomes the contour of steepest descent ob-
tained from the solution to

arg

⎧⎨
⎩

ν∫
νs

χ(ν′)dν′ − χ(νs) (ν − νs)

⎫⎬
⎭ = −π

2
.
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Near the saddle point the contour runs parallel to the real axis, but for very large
|ν| it runs parallel to the imaginary axis. In the saddle-point approximation, we
obtain (using Eq. (2.21))

fω(t) =

√
1

2χ′
0(γs)

e−t/2 eγst

[
e(γs−1/2)Ψ(1) Γ(γs)

Γ(1 − γs)

]1/(β̄0ω)

. (2.22)

This is an exponentially decreasing function of t. Moreover, γs can be related to
the anomalous dimension in the DGLAP formalism, since

d

dt

(
et/2fω(t)

)
= γs

(
et/2fω(t)

)
. (2.23)

From Eq. (2.18), the anomalous dimension is

γs ≈ ᾱs(t)
ω

+ O

(
ᾱs(t)2

ω2

)
,

in agreement with DGLAP for small γs.
2.1.2. t < tc. Here we have two saddle points lying on the real axis at ±νs,

shown in Fig. 2. The positions of the saddle points are obtained from

2Ψ(1) − 2 Re
{

Ψ
(

1
2

+ iνs

)}
= β̄0ωt. (2.24)

Fig. 2. (Color online) Integration con-
tour (blue line) on the ν plane for
t < tc. The black dots show the po-
sitions of the saddle points, ±|νs|

We need to integrate around both of these
saddle points, taking a contour of steepest
descent in the vicinity of the saddle points,
which in this case is inclined at an angle of
±π/4 to the real axis and enclose the positive
imaginary axis at large ν. The saddle-point
approximation then yields

fω(t) =

√
2

χ′(νs)
sin

(
νst +

φ(νs)
β̄0ω

+
π

4

)
,

(2.25)
where

φ(νs) = arg
{

e−2iΨ(1)νs
Γ(1/2 + iνs)
Γ(1/2 − iνs)

}
.

(2.26)
The inclusion of π/4 in the phase in Eq. (2.25) ensures a matching of the solutions
at t = tc. Near t = tc the solution is given by an Airy function.

For t < tc, we have an oscillatory solution which does not lend itself to
a match to the DGLAP formalism Å in this regime a DGLAP analysis is not
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appropriate, since in this region the saddle point γs is complex and double-
valued, i.e.,

γs =
1
2
± i|νs|,

and cannot be related to the (real) anomalous dimension of the DGLAP formalism.
In this region the DGLAP equation is not valid and the BFKL equation can be
considered as a generalized (quantized) version of the DGLAP equation.

Recall that the saddle point, νs(t), is a function of t and so we do not have
constant frequency oscillations. As t → 0, νs tends to a value ν0 ≈ 0.635 and
we have constant frequency oscillations in the infrared limit. As t increases, this
frequency decreases, becoming zero at t = tc.

The infrared phase at t = 0, calculated from perturbative QCD (with t > 0),
is then given by

η0π =
φ(ν0)
β̄0ω

+
π

4
(2.27)

(φ(ν0) ≈ 0.96). This phase is only determined up to a multiple of π. We now
make a very general assumption that the infrared properties of QCD ˇxe this
phase (in general as a function of ω) to be η(ω), where the function η(ω) is
determined from the nonperturbative regime of QCD (t � 0). The matching of
the two phases η0 and η(ω) in the semiclassical solution, Eq. (2.25), then restricts
the allowed values of ω to a discrete set ωn that satisfy the equation

φ(ν0)
πβ̄0ωn

= η(ωn) +
(

n − 1
4

)
(n = 1, 2, 3, . . .) (2.28)

The function η(ω) could be a constant (as originally proposed in [12]), but in
general it can vary with ω. Because of periodicity it can take values in the interval
between 0.25 and −0.75 only. Although η(ω) cannot be determined from the
perturbative analysis described here, its restricted range limits its effect on the
determination of the eigenvalues (see Subsec. 2.5). However, its variation with ω
is very important in the construction of the gluon density (see Sec. 3).

The above analysis shows clearly that the solution of the BFKL equation has
to be given by the set of discrete eigenfunctions, whose support in the virtual
gluon transverse momentum is determined by the critical point, tc, Eq. (2.19),
and whose phase η(ω) at some low transverse momentum is determined by the
nonperturbative sector of QCD. Effectively, the boundary conditions modify the
BFKL kernel so that it may be written as

K(t, t′) =
∑

n

ωnf∗
n(t)fn(t′). (2.29)

This coincides with the (LO) kernel

ᾱs(t)K0(t, t′),
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provided it acts on a function f(t) which may be written as a superposition of
the eigenfunctions fn(t):

f(t) =
∑

n

anfn(t).

In this way we have supplemented the kernel with both infrared and ultraviolet
boundary conditions. The infrared boundary conditions arise from the nonpertur-
bative sector of QCD, but the ultraviolet boundary conditions arise naturally from
the asymptotic freedom of QCD. Importantly, the behaviour of the eigenfunctions
in the ultraviolet is controlled by a critical value, tc, of transverse momentum,
which grows almost linearly with n in accordance with the fact that the period of
oscillations is practically independent of n. Therefore, the n-dependent boundary
condition leads to qualitatively different results from those obtained using a kernel
in which boundary conditions are effected simply by a cutoff on a wave function.

Furthermore, we note that the value of this critical transverse momentum
depends almost entirely on the eigenvalue ω, which decreases like 1/n, for
large n, as the quantum number n increases (see Eq. (2.28)). This means that
in turn the value of the critical transverse momenta kc increases exponentially as
ω decreases, so that the nth critical momentum is given by (inserting Eq. (2.28)
into Eq. (2.19))

k(n)
c = ΛQCD exp

{
2π ln 2
φ(ν0)

(
n − 1

4
+ η(ωn)

)}
≈ ΛQCD e4.5 n. (2.30)

Finally, let us note that our solution of the BFKL equation is similar to the
WKB method for the bound-state solution of the Schréodinger equation in the
semiclassical approximation; the critical point, tc, is analogous to the turning
point xc where the potential is equal to the energy. Inside a potential well the
solutions are oscillatory and outside they decay exponentially. This shows that
the solution of the BFKL equation (1.1) consists of the superposition of the
bound-state eigenfunctions of the two gluon system with pseudo-energies given
by the eigenvalues ωn. Knowledge of the eigenvalues gives important information
about the interactions between gluons, in both the infrared and ultraviolet regions
of k. We note that in the solution of the BFKL equation, the oscillations of
the eigenfunctions at large k should cancel each other in accordance with the
kinematical constraints provided by the beam energy of the experiment. This
imposes additional restrictions on the nonperturbative phases η(ω) (see below).

2.2. Threshold Effects. The above analysis assumes that β̄0 is a constant, so
that the coupling ᾱs(t) is given simply by Eq. (2.5). However, we know that there
are thresholds at t = ti where heavy �avour quarks can be produced, and also
there may be extra thresholds arising from BSM physics with a threshold (that
according to Eq. (2.30) can be large) below t = tc. This means that Eq. (2.17) can
only be used as a solution for fω(t) between thresholds. As an example, suppose
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that there is only one threshold, at t = tt below the critical point, tc, and that β̄0

takes the value β̄0
>

above this threshold and β̄0
<

below. At t � tt we have

fω(t) =
1√

2πβ̄0ω

∫
dν eiνt

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0
>ω)

(2.31)

and for t < tt we have

fω(t) = A

∫
dν eiνt

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0
<ω)

fω(tt), (2.32)

with the constant A chosen to be

A−1 =
∫

dν eiνtt

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0
<ω)

, (2.33)

so that the solutions match at t = tt.
In the saddle-point approximation, we can handle such thresholds by noting

that Eq. (2.17) can be written as

fω(t) =
1√
2πω

∫
dν eiS(ν,t)/ω, (2.34)

where the ®action¯ S(ν, t) is given by

S(ν, t) = ωνt − 1
β̄0

ν∫
0

χ0(ν′) dν′. (2.35)

At the saddle point ν = νs(t), upon integrating by parts this may be rewritten as

S(t) = ω

t∫
tc

νs(t′) dt′, (2.36)

where the function νs(t) is given by Eq. (2.18). (We have used the notation
S(t) to denote S(νs(t), t) Å it is now a function of t only.) Here we see
explicitly that the saddle-point approximation for integral (2.34) is equivalent to
the semiclassical approximation. Replacing the integral over ν in Eq. (2.34) by
the value of the integrand at the saddle point, we obtain a solution which obeys
the differential equation

d

dt
fω(t) = χ−1(β̄0ωt) fω(t). (2.37)
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The semiclassical approximation consists of the assumption that the solution to
Eq. (2.13) is the solution to Eq. (2.37) multiplied by a slowly varying factor,
which turns out to be the same as that obtained in the Gaussian integral around
the saddle point in Eq. (2.34). In analogy with the WKB approximation in the
Schréodinger equation there exists a critical point, tc, at which the approximate
solution changes from an oscillatory function to an exponentially decaying one.
The assumption of a slowly varying prefactor breaks down at this point, but the
solutions on either side of the critical point can be matched using a suitable Airy
function. It is this matching, together with some property of the behaviour at
t = 0, that determines the allowed eigenvalues.

Thresholds are handled in general by replacing Eq. (2.18) by the more general
relation

χ0 (νs(t)) =
ω

ᾱs(t)
. (2.38)

ᾱs(t) may now be determined using the β function with appropriate thresholds.
The eigenfunctions for t � tc now take the form

fω(t) =
C√

χ′
0(νs(t))

sin
(

S(t)
ω

+
π

4

)
(2.39)

and the semiclassical quantization condition on the allowed eigenvalues becomes

S(0)
ωn

=
(

η(ωn) + n − 1
4

)
π. (2.40)

Comparing this with Eq. (2.28), we see that S(0) is independent of ω∗. However,
its value clearly depends on the positions of the thresholds in β̄0, Eqs. (2.31)
and (2.32). Already for n � 3 the value of kc given by Eq. (2.30) exceeds
many tens of TeV, and this means that the spectrum is sensitive to any BSM
physics. The BSM effect changes the perturbative phase η if the corresponding

threshold, kt, is below the critical point, k
(n)
c . The effect of such a threshold can

be readily estimated; let us assume that for a given eigenvalue ω, the threshold
tt ≡ ln (k2

t /Λ2
QCD) is the largest threshold, below the critical point tc, and that

in the range
tt < t < tc,

β̄0 takes the value β̄0
>
. The exact solution for the LO BFKL with running

coupling at t = tt is

f(tt) ∝
∫

dν eiφ(ν,tt), (2.41)

∗For sufˇciently large n we can see this directly since S(0) ∼ O(ωnt
(n)
c ) and whereas

t
(n)
c ∝ n, ωn ∝ 1/n.
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where

φ(ν, tt) = ν

(
tt − 2

Ψ(1)

β̄0
>

ω

)
+

2

β̄0
>

ω
arg

{
Γ
(

1
2

+ iν

)}
. (2.42)

We evaluate this integral using the saddle-point method and assuming that the
threshold occurs sufˇciently close to the critical point tc, that νs is sufˇciently
small for the diffusion approximation to be valid. The phase difference between
the case where there is a threshold at t = tt and the case where there is no
threshold is then

Δφ =
2

3ω
√

14ζ(3)

[
1

β̄0
<

(
4 ln 2 − β̄0

<
ωtt

)3/2 −

− 1

β̄0
>

(
4 ln 2 − β̄0

>
ωtt

)3/2
]

, (2.43)

where β̄0
<

denotes the value of β̄0 below the threshold.
We observe that the above phase difference is substantial for ω � 0.1 and

that this difference is not suppressed by the scale of the BSM physics. In this
sense our analysis differs fundamentally from the treatment of the Standard Model
as a low-energy effective theory way below the thresholds of new physics. In
the latter case, logarithmic corrections can always be absorbed into unphysical
renormalization constants of the renormalizable operators of the effective theory,
leaving only higher dimension operators whose coefˇcients are suppressed by
powers of the new-physics mass scale.

2.3. NLO Evaluation. We have shown in [4] that the BFKL integral equation
can be cast in the form of the pseudo-differential equation

ᾱs(t)
∫

dt′K0(t, t′)fω(t′) = χ

(
−i

d

dt
, αs(t)

)
fω(t) = ωfω(t). (2.44)

Making the simplifying assumption that ᾱs is given by Eq. (2.5) and taking into
account the collinear resummation [10], we can write the BFKL equation in the
next-to-leading order as

β̄0ωtfω(t) =
[
χ̃0(ν̂, ω) +

1
tβ̄0

ξ(ν̂)
]

fω(t), (2.45)

where the operator ν̂ = −id/dt,

χ̃0(ν, ω) = 2Ψ(1) − Ψ
(

1
2

+ iν +
ω

2

)
− Ψ

(
1
2
− iν +

ω

2

)
and

ξ(ν) = χ1(ν) +
1
2

[
2Ψ(1) − Ψ

(
1
2

+ iν

)
− Ψ

(
1
2
− iν

)]
×

×
[
Ψ′
(

1
2

+ iν

)
+ Ψ′

(
1
2
− iν

)]
,
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where χ1 denotes the NLO characteristic function [9]. The function ξ(ν) does
not have the poles of the third order of the form ∼ 1/(1/2± iν)3, in agreement
with a renormlaization group analysis [9].

Equation (2.45) can be considered as a quadratic equation in t:

[ω(tβ̄0)2 − tβ̄0χ̃0(ν̂, ω) − ξ(ν̂)] fω(t) = 0. (2.46)

We can convert this into a second-order differential equation for the Fourier trans-
form f̃ω(ν), where t is replaced by the operator t̂ = i(d/dν). In the semiclassical
approximation in which ln(χ0) and ln(ξ) are treated as slowly varying functions
of ν, so that

t̂2f̃ω ≈
(
t̂(ln f̃ω)

)2

f̃ω,

this second-order differential equation may be written as[
iβ̄0t̂ − X−(ν, ω)

] [
iβ̄0t̂ − X+(ν, ω)

]
f̃ω(ν) = 0, (2.47)

where

X±(ν, ω) =
1

2ω
χ̃0(ν, ω) ±

√(
1
2ω

)2

χ̃0(ν, ω) +
1
ω

ξ(ν),

with solution for fω(t) which is analogous to the LO expressions of Eqs. (2.14)
and (2.16):

fω(t) =

∞∫
−∞

dν eiνt exp

⎛
⎝− i

β̄0

ν∫
X+(ν, ω) dν

⎞
⎠ . (2.48)

For small ω, Eq. (2.48) may be approximated by

fω(t) =
1√
2πω

+∞∫
−∞

dν eiνt

[
Γ(1/2 + iν)
Γ(1/2 − iν)

e−2iΨ(1)ν

]1/(β̄0ω)

×

× exp

⎡
⎣− i

β̄0
2
ωt

ν∫
dν′ ξ(ν′)

⎤
⎦ . (2.49)

Note that the saddle point of the integral over ν in Eq. (2.49) occurs at νs where
the RHS of Eq. (2.45) vanishes as required for f̃ω(νs) to be a turning point.

In a more general NLO approach, the BFKL Eq. (2.44) can be simpliˇed
using the semiclassical approximation, i.e., assuming that the t-dependence of
ln fω(t) is large so that(

d

dt

)r

fω(t) ≈ fω(t)
(

d ln fω(t)
dt

)r

. (2.50)
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Equation (2.44) looks then like the nonlinear differential equation

χ

(
−i

d ln fω(t)
dt

, αs(t)
)

= χ(ν(t), αs(t)) = ω. (2.51)

As a result, the frequency ν(t) is a function of t such that

ω =
(

αs(t)CA

π

)
χ0(ν) +

(
αs(t)CA

π

)2

χ1(ν) + . . . (2.52)

The expression (2.52), including collinear resummation [10], is the NLO analog
of Eq. (2.38). Equation (2.51) has a solution

fω(t) = eiS(t)/ω , (2.53)

where

S(t) = ω

t∫
tc

ν(t′) dt′. (2.54)

The critical logarithmic transverse momentum, tc, is the value of t for which
ν(t) = 0. This condition is the NLO analog of Eq. (2.19). For t < tc, there are
two real solutions for ν(t) generating an oscillatory solution with a given phase,
whereas for t > tc the solution is on a positive imaginary axis, generating an
exponentially decaying function as t → ∞.

Thus, we see that the solution for the eigenfunctions in semiclassical ap-
proximation is analogous to that in leading order, but the function ν(t) takes
into account the NLO characteristic function as well as the NLO running of the
coupling and the threshold effects. A further feature of threshold effects beyond
leading order is that it is not only the β function that has steps at the thresholds
but also the NLO contributions to the characteristic function δχ1, corresponding
to the presence of new particles at some point in the ladders [14].

The semiclassical approximation is valid provided

d ln (ν(t))
dt

� ν(t).

This condition breaks down in the region t ∼ tc where |ν(t)| is very small.
However, in this region the eigenvalue equation approximates to Airy's equation
with solution

fω(t) = Ai

((
3
2

S(t)
ω

)2/3
)

, (2.55)

For t 
 tc the Airy function, Ai, behaves as

Ai

((
3
2

S(t)
ω

)2/3
)

∼ e−|S(t)|/ω, (2.56)
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and for t � tc

Ai

((
3
2

S(t)
ω

)2/3
)

∼ sin
(

S(t)
ω

+
π

4

)
. (2.57)

We therefore ˇnd that the solution of Eq. (2.55) is a good approximation over
the entire range of t and at the same time determines the phase of the oscillatory
solution for t = tc required to match the oscillatory region and the exponentially
decaying region. As in the LO case, we make a very general assumption that
the infrared (nonperturbative) properties of QCD impose some phase, η at t = 0,
deˇned up to an ambiguity of nπ, which can also depend on ω. We ˇnd then that
we can only match this phase to the perturbative one, determined from Eq. (2.54),
for one value of ω for each integer n, where n corresponds to the number of
oscillations. This leads to the quantization of the spectrum (i.e., discrete pomeron
poles) given by Eq. (2.40), in keeping with the predictions of Regge theory.

In contrast to the LO evaluation, in full NLO the eigenvalues and eigenfunc-
tions can only be determined using numerical methods of iteration and integration.
Their construction requires several steps; in the ˇrst step we determine the values
of the frequency ν as a function of ω and t from the solutions of Eq. (2.52).
Then, the critical point, tc, is determined as a function of ω from the condition
ν(tc) = 0. The phase function S(t), for a given ω, is then found from Eq. (2.54).

In the next step the phase η at the infrared boundary has to be speciˇed. In
the leading-order computation it was possible to deˇne it at ΛQCD, because the
frequency ν is well deˇned at t = 0, Eq. (2.18). For the NLO calculation, we
obtain ν with the help of Eq. (2.52), which is not valid at ΛQCD. We therefore
deˇned it as a phase condition at the lowest possible value of the (logarithmic)
transverse momentum, t = t0, which can be safely reached by the perturbative
calculation (see also the discussion in Subsec. 3.2).

2.4. N = 1 Supersymmetry at Various Thresholds. We have chosen as
example of ®new physics¯ the popular N = 1 supersymmetric extension of the
Standard Model above a given threshold in kT , which for simplicity we assume
to be a common mass threshold for all superpartners. Below this threshold the
running of the coupling is governed by the β function to two-loop order

β< = −α2
s

4π

(
11CA

3
− 2

3
nf

)
− α3

s

(4π)2

(
34C2

A

3
+
(

10CA

3
+ 2CF

)
nf

)
, (2.58)

where for the case of QCD, CA = 3, CF = 4/3 and nf is the number of active
�avours. Above the threshold, the beta function is given by

β> = −α2
s

4π
(3CA − nf ) − α3

s

(4π)2

(
6C2

A +
(
−2CA

3
+ 2CF

)
nf

)
. (2.59)

This leads to a ®kink¯ (discontinuity in the derivative) in the running of αs at the
threshold for N = 1 SUSY, which can be seen in Fig. 3.
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Fig. 3. The running of αs across a threshold for N = 1 SUSY at 10 TeV

Fig. 4. Typical graphs contribut-
ing to BFKL kernel involving
gluinos (a) or squarks (b)

Furthermore, above the SUSY threshold, the
NLO characteristic function χ1(ν) acquires an
additional contribution [14] of

δfχ1(ν) =
π2

32
×

× sinh (πν)
ν(1 + ν2) cosh2(πν)

(
11
4

+ 3ν2

)
(2.60)

from the octet of Majorana fermions (gluinos),
and

δsχ1(ν) = −π2

32
×

× nf

C3
A

sinh (πν)
ν(1 + ν2) cosh2(πν)

(
5
4

+ ν2

)
(2.61)

from the squarks (in the fundamental representa-
tion).

Typical graphs contributing to δsχ1(ν) are
shown in Fig. 4. They contribute only at NLO
level since the exchange of a fermion or scalar
particle in the t-channel is suppressed in LLA [9],
and therefore only contributes at subleading log-
arithm order.

2.5. The Discrete Pomeron with and without SUSY. In this subsection we
investigate the properties of the discrete BFKL pomeron with and without SUSY
contributions. For this example, we have assumed that the SUSY threshold
is at 10 TeV. Figure 5 shows the spectrum of the eigenvalues ωn computed
in the NLO computation assuming that the nonperturbative phase η(ωn) of the
eigenvalue condition, Eq. (2.40), is η = −0.25, for all eigenfunctions. The per-
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Fig. 5. The eigenvalues computed in the NLO evaluation of the Standard Model (triangles)
and SUSY at a threshold of 10 TeV (squares). The lines indicate the maximal possible
spread due to the uncertainty of the phase (η) choice

Fig. 6. (Color online) The critical point kc

computed in the NLO evaluation of the Stan-
dard Model (triangles) and SUSY at a threshold
of 10 TeV (squares). The red lines show the
LO computation which is not sensitive to any
threshold effects

turbative phase, S(0) of Eq. (2.40),
at the infrared boundary t = 0,
is replaced by S(k0), with k0 =
ΛQCD exp (t0/2) and k0 = 0.6 GeV.
The eigenvalues determined with and
without SUSY effects differ substan-
tially for n � 3, whereas for n < 3
they show no difference. This is
understandable from the AppelquistÄ
Carrazone theorem [7], because the
assumed SUSY threshold that we
have chosen lies between the criti-
cal momenta for the second eigen-
function (kc ∼ 1 TeV) and the third
eigenfunction (kc ∼ 100 TeV). The
kc values computed at NLO, with
and without the SUSY threshold, are
shown in Fig. 6. They turn out to be
very close to the leading-order val-
ues calculated from Eq. (2.30) Å the

difference being due to the fact that αs runs more rapidly for NLO than for LO.
Furthermore, these critical momenta show only small dependence on the presence
on SUSY threshold.

On the other hand, the eigenvalues ωn, which are important for the description
of the HERA structure-function data at low x, are very sensitive to possible
threshold effects; i.e., they differ substantially already in LO and the differences
are much larger than any possible uncertainties due to the unknown phase η.
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For example, in LO, Eq. (2.28), the ratio of β̄0's below and above the SUSY
threshold is 7/3, which means that already for n � 3 the effect of the change in
β̄0 on the eigenvalues is much larger than the maximal possible effects due to the
uncertainty in η (η can only vary between η = 0.25 and η = −0.75). At NLO,
we ˇnd that the phase-independent discrepancy between the eigenvalues with
and without the SUSY threshold starts at n � 5 (see Fig. 5). These substantial
differences are related to the fact that for ω < 0.1 the change of phase of an
eigenvalue, Δφ, arising from the change in β̄0 as one crosses the SUSY threshold
is large (as can be seen from Eq. (2.43)) and indeed much larger than the maximal
possible η change, Δη � 1.

Since the properties of the eigenvalues are determined by the behaviour at
very high virtualities (of the order of kc), it should be expected that the eigenvalues
computed in NLO should approach the LO ones at large n∗. Figure 7 shows the
comparison of the eigenvalues computed using the NLO and LO approximations
and conˇrms this expectation. The LO computation was made using Eq. (2.28)
with β̄0 values computed with nf = 6 below the SUSY threshold of 10 TeV. It is
interesting to observe that LO and NLO results approach each other more slowly
in the case of the SM+SUSY than in the SM alone. This slower approach is
due to the fact that αs runs more slowly above the SUSY threshold. This means
that the eigenvalues ωn approach zero at a different pace, as can be seen from
the ˇgure. We note that for small ω, the eigenvalues are very closely packed
and so the effect of the discrete nature of the solutions becomes less important.
To a good approximation we could replace the sum over the eigenfunctions for
small ω by an integral over a range of small ω. However, it is important to

Fig. 7. The eigenvalues computed in the NLO evaluation of the Standard Model (triangles)
and SUSY at a threshold of 10 TeV (squares). The lines show the LO computation in the
two cases

∗For sufˇciently small ω, the NLO effects both in β̄0 and in the characteristic function χ become
negligible.
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note that the Jacobian for the transition from a discrete sum to an integral is
proportional to the gradient of the ω − n distribution shown in Fig. 7, and this is
different in the two cases Å leading to different pomeron amplitudes.

In addition to the change of the running of αs, there are also effects due to
the δχ1 contributions to χ1 which sets in above the SUSY threshold, Eqs. (2.60)
and (2.61). It is this discontinuity which is responsible for the discontinuities
in the frequencies ν at threshold, see Fig. 8, and not the change in the rate of
running of the coupling, which remains a continuous function∗. The change in
frequency thus compensates for the change in the characteristic function in order
to ensure that the eigenvalues ωn remain unchanged as one passes through the

Fig. 8. Oscillation frequencies as a function of gluon transverse momentum for various
eigenfunctions. The left-hand panel is the case of the Standard Model and the right-hand
panel is the case of N = 1 SUSY above a threshold of 10 TeV. For the purpose of this
comparison, it has been assumed that the infrared phases are the same in both cases

Fig. 9. Decrease in the NLO characteristic function χ1 as a function of frequency ν

∗A similar smaller discontinuity can be seen at around 3 GeV. This corresponds to the c-quark
threshold. There are analogous, even smaller, discontinuities at the b-quark and t-quark thresholds.
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threshold∗. The contribution, δχ1, of these additional terms is shown as a function
of frequency in Fig. 9, where it can be seen that this is a rapidly decreasing
function, which explains why the discontinuities in frequency at threshold are
much larger for the lower eigenfunctions for which the frequency at threshold
is lower.

For lower n eigenfunctions, the change of the frequencies due to the SUSY
threshold leads also to the change of its shape. In Fig. 10 we show a representative

Fig. 10. (Color online) Comparison of a representative subset of eigenfunctions in the
Standard Model (blue) and the SUSY model (red) computed at η = −0.25 (solid line)
and η = +0.25 (dashed line). The SUSY threshold is assumed at 10 TeV. The eigenvalue
number is given in the upper right corner

∗The discontinuous changes in frequency are due to the fact that the change in characteristic
function is imposed at a threshold in its entirety. A determination of the NLO characteristic function
which accounted for the mass of internal particles would smooth out these discontinuities.
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subset of eigenfunctions in the Standard Model and the SUSY model in the
transverse momentum region relevant for a ˇt to HERA data. The eigenfunctions
are shown with values of η = −0.25 and η = +0.25 (in order to give an
indication of the sensitivity of the allowed eigenvalues to the unknown infrared
phases), with and without SUSY at a threshold of 10 TeV. As expected, the ˇrst
two eigenfunctions are identical since their values of kc are below the SUSY
threshold. The third and higher eigenfunctions display signiˇcant differences
for both displayed η values. Remarkably, these differences diminish for higher
eigenfunctions and for n > 50 the two eigenfunctions almost overlap in the
displayed kT region (relevant for a ˇt to HERA data). The reason for this can be
seen from Fig. 8, which shows that for the relatively low transverse momenta the
differences in the frequencies between the two models decrease with increasing
eigenvalue number, so that if the infrared phases are equal, the functions will be
almost identical in this region.

In summary we can state that the discrete BFKL pomeron shows a clear sen-
sitivity to BSM physics effects and that these effects cannot be absorbed into its
only free parameters, the infrared phase η(ω). This is clearly seen in the eigen-
value dependence on the SUSY thresholds, both in the LO analytical approach,
Eqs. (2.28) and (2.43), and in the NLO numerical evaluation, Fig. 5. In addition,
the asymptotic behaviour of the eigenvalues with increasing n (or decreasing ω)
is very different for SM and SM+SUSY irrespective of the possible higher-order
QCD corrections, Fig. 7. This means that we have here a very different situation
from the scenario described by the decoupling theorem [7] where the large log-
arithmic corrections can be absorbed into unphysical renormalization constants
leaving only higher dimension operators whose coefˇcients are suppressed by
powers of the new-physics mass scale. In the case of the DP the effects of SUSY
thresholds produce large changes of frequencies, Fig. 8, which modify the in-
frared perturbative phases η. These alter, in turn, the spectrum ωn and hence the
properties of the gluon density. Since the gluon density is a measurable quantity,
the nonperturbative phases, η, can also be measured, although only indirectly.

3. COMPARISON WITH HERA DATA

3.1. General Considerations. One of the most important results of the HERA
experiments is the measurement of the gluon density. This density encompasses
the properties of the pomeron in the sense that the same gluon density determines
the dynamics of the inclusive γ∗p (or F2) and diffractive processes, in particular
the exclusive vector meson production. Several investigations performed in the
context of the dipole models [18Ä25] have shown that the effective intercept of
the gluon density measured by the rise of F2 with diminishing x, called λ, is
properly translated by the optical theorem, to the effective intercepts seen in the
exclusive vector meson production.
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The effective intercept λ measured at HERA varies from λ ≈ 0.2 at Q2 =
10 GeV2 to about λ = 0.35 at Q2 = 100 GeV2, see Fig. 9 of [4]. The Q2

dependence of λ in F2 and in its diffractive counterparts can be well repro-
duced by the DGLAP evolution in which the values of λ are almost entirely
of perturbative origin. In the well-known DonnachieÄLandshoff (DL) [27] pic-
ture of the pomeron, the variation of λ with Q2 is due to the existence of a hard
(λ = 0.4) and a soft, nonperturbative, (λ = 0.08) pomeron whose admixtures vary
with Q2.

The properties of the gluon density corresponding to the DP are determined
by the Green function constructed from the discrete eigenfunctions of the BFKL
kernel (convoluted with the proton impact factor). In contrast to the DL pomeron,
the DP is composed of many inˇnite eigenfunctions with eigenvalues varying like
ωn ≈ 0.5/n. The eigenvalues ωn are almost entirely of perturbative origin
because its only nonperturbative ingredients are the infrared phases ηn, which
have a negligible importance for larger n, as was explained in the previous
section.

The infrared phases have, however, a strong in�uence on the shape of the
gluon density, since they determine how the contributing eigenfunctions add
together. Let us recall that the unintegrated gluon density from the DP is of the
form

ġ(x, k2)DP =
1
x

k2
nmax∑
n=1

(
k

x

)ωn

Anfn(k, ηn), (3.1)

where ġ means differentiation of the gluon density w.r.t. ln (k2). Here, the
eigenfunctions as a function of k (rather than t) are normalized w.r.t. k and are
related to fn(t) by

fn(k, ηn) =
1
k
fn

(
ln

(
k2

Λ2
QCD

))
. (3.2)

An is the overlap integral of these eigenfunctions with the proton impact fac-
tor, Eq. (3.3), with the eigenfunctions fn(k, ηn) computed with a speciˇc η − n
relation, ηn (after accounting for the nonzero overlaps of the eigenfunctions of
the non-Hermitian kernel, for detail, see [4]). The sum over eigenfunctions in
Eq. (3.1) is limited for numerical reasons (see below) to nmax = O(100)∗. The
oscillation frequencies of the eigenfunctions, at transverse momenta relevant to
HERA, vary very little from one eigenfunction to the next, so in order to obtain

∗We have shown in [4] that an adequate description of HERA F2 data requires O(100) eigen-
functions. Nevertheless, the limit of nmax ∼ 100 represents a model assumption which is sufˇcient
for HERA data but which could be too low for evaluation of LHC DY data. For LHC data it could
also be necessary to include the contributions of negative ω's, Eq. (2.4).



1080 KOWALSKI H., LIPATOV L. N., ROSS D.A.

a positive gluon density, which grows with k, it is necessary to generate a strong
η − n (or equivalently η − ω) dependence; the eigenfunctions oscillate in ln k,
and the only way to cancel these oscillations is to introduce a shift of the phase
between the different eigenfunctions.

The sum of Eq. (3.1) determines the evolution properties of the gluon density
in agreement with the BFKL equation (1.1). The infrared phases are determined
by the dynamics of nonperturbative QCD, and it should be possible, in principle,
to estimate them using lattice calculations. It should also be possible to determine
them directly from data at comparatively small Q2. However, in order to be able
to extract these phases accurately, the required data set should have a much larger
x and Q2 range than the presently available HERA measurements. In addition,
the data set has to achieve the precision of the present HERA F2 data.

Therefore, at present, to be able to confront the DP with data, we have
no other choice but to construct a heuristic model for the infrared boundary
condition based on the general understanding of the nonperturbative physics. We
ˇrst postulate that the form of the infrared phase function, η(ω), dictated by the
infrared behaviour of QCD, is not sensitive to BSM physics and is a smooth
function of ω rather than an arbitrary number for each eigenfunction. We then
choose to describe it in terms of a suitable parameterization, motivated by a
similarity of the BFKL dynamics with the Schréodinger equation, described in
detail below. In addition to the phases, we have also to specify the proton impact
factor.

We consider this heuristic approach as a ˇrst step towards the determination
of the infrared phases, which are important quantities of the nonperturbative QCD.
The main purpose of the investigation reported in [4] was to check whether a
physically plausible boundary condition provides a good description of data, i.e.,
whether the discrete BFKL pomeron can describe the dynamics of the measured
gluon density. The main purpose of the present investigation is to ˇnd out
whether the genuine sensitivity of the DP to the presence of BSM physics at
high-energy can improve or worsen the quality of the ˇt to data, notwithstanding
the uncertainties associated with the infrared phase conditions.

3.2. The Infrared Boundary. Our heuristic model of the infrared boundary
consists of a set of physically well motivated assumptions about the proton impact
factor and about the η − n (or equivalently η − ω) relation.

The proton impact factor has to be positive everywhere and concentrated at
the values of k < O(1) GeV. We therefore choose a very simple possible form

Φp(k) = Ak2 e−bk2
, (3.3)

as in [4]. We have also investigated other forms of the proton impact factor,
e.g., with different powers of k2 in the prefactor and/or the exponent but found
that the ˇt to data has no sensitivity to such alternatives. This is due to the
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fact that all eigenfunctions have a similar, oscillatory, shape near the infrared
boundary and that the period of oscillations of the eigenfunctions is much larger
than any physically possible support of the proton impact factor. Note that the
form (3.3) vanishes as k2 for small k, as required by colour transparency, and that
the coefˇcient b has the interpretation of the average inverse square transverse
momentum of partons inside the proton (the value of the parameter b was left
though completely free in the ˇt).

Our choice of ansatz for the dependence of the infrared phases ηn on the
eigenfunction number n is motivated from an examination of Eq. (2.28) for the
eigenvalues at LO. We see that for large n we have ωn ∝ 1/n Å the eigenvalues
decrease and become closely packed as n increases. This is similar to the eigen-
values of a bound state in a Coulomb potential problem. The value of ηn has
a restricted range (in order to avoid ®cross-over¯ between adjacent eigenvalues),
and its variation with n must be smaller than π. Since they are generated by
the quasi-bound states of gluons inside the proton, they should be described by a
simple parameterization. In [4], we found a simple, two-parameter, form

ηn = ηr

(
(n − 1)

(nmax − 1)

)κ

, (3.4)

where nmax is the number of eigenfunctions we use for the ˇt and ηr represents
the total range (in units of π). The parameter κ must be less than one. (Note that
for nmax → ∞ and ˇxed n, the phase ηn formally tends to 0.)

Equation (3.4) is by no means unique, and we could have added terms which
are analytic in ωn of the form

b + cωn + dω2
n + . . . .

We have tested such more general parameterizations and found that, despite the
introduction of extra parameters, there is no improvement in the quality of the
ˇt obtained. We therefore use the simple ansatz (3.4), but we treat ηr as a free
parameter (with the only restriction that it must not exceed one), in order to assure
a bias-free evaluation in all of the ˇts that we perform.

In [4], we deˇned the infrared boundary as a phase condition at the lowest
possible value of the transverse momentum, k = k0, which can be safely reached
by the perturbative calculation. To make this value as close as possible to ΛQCD,
we considered only the one-loop running of the coupling. This gave a value
of k0 = 0.3 GeV, which corresponds to αs ∼ 0.7. The reason for running
the coupling at one loop only was that in principle this is the same order of
perturbation theory as the NLO characteristic function χ1 [9]. However, given
that we modify the eigenvalue Eq. (2.52) by resumming all the large corrections
in χ1 using the technique of [10], it is more appropriate to take the β function to
two-loop order which is what we use in this paper.
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When we do this, we are faced with a problem Å namely, that we cannot
run the coupling below an ®infrared¯ scale k0 = 0.6 GeV, which corresponds
to αs ∼ 0.7 (at the two-loop level), without approaching the Landau pole too
closely. On the other hand, the infrared boundary conditions are to be imposed
at a transverse momentum of order ΛQCD. Moreover, we need to know the
eigenfunctions below k0 in order to perform a convolution with the proton impact
factor, which has support mainly below k0. Therefore, guided by the behaviour
of the eigenfunctions in the perturbative region, we continue them down to a
lower momentum k̃0, which should be of order ΛQCD, using the extrapolation of
the phase φn(k)

φn(k̃0) = φn(k0) − 2ν0
n ln

(
k0

k̃0

)
, (3.5)

where for each eigenfunction, with index n, ν0
n is the frequency of the oscillations

near k = k0 [4]. We have assumed that this frequency is constant below k0, an
assumption which is correct for sufˇciently small k0, at least for the leading-
order BFKL kernel (see [12]). Any deviation from constant frequency should
have a negligible effect as we are only extrapolating over a small range in gluon
transverse momentum. The numerical values of ν0

n are obtained by inverting the
eigenvalue equation (2.52), modiˇed according to [10].

The overlap integrals between the proton impact factor and the eigenfunctions
must also start at k̃0 (the support of these impact factors being signiˇcantly
attenuated at k0). We therefore use this momentum at which we impose the
infrared phases of the eigenfunctions. The relation between the phases at k0 and
k̃0 is given by Eq. (3.5). We leave the exact value of k̃0 as a free parameter with
the restriction that it must be O(ΛQCD) and deˇne it to be the scale at which the
phase of the leading eigenfunction vanishes (as can be seen from Eq. (3.4)).

3.3. Results of the Fit. Before a comparison can be made with the measured
structure function F2, it is necessary to convolute the gluon density with the
impact factor for the virtual photon (for details of the procedure, see Sec. 6
of [4]). The impact factor for the virtual photon is calculable in perturbative
QCD and has support which is peaked at transverse momenta of the order of the
photon virtuality,

√
Q2.

The ˇts were performed using the HERA data [5] in the low-x region,
x < 0.01. To avoid any saturation effects, we have limited the ˇt to the
Q2 > 8 GeV2 region. We recall that the saturation scale at HERA was de-
termined to be Q2

S = 0.5 GeV2 at x ≈ 10−3 [23,24]; therefore, our choice of the
Q2 region is very conservative. This choice means that, in this paper, we con-
centrate on the one-pomeron exchange, without any multi-pomeron contributions,
which could induce saturation effects. The saturation effects could also play a
role without multi-pomeron effects through a modiˇcation of the boundary condi-
tions, see [26], which in turn could modify our ansatz for the infrared boundary.
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In any case, our choice of the Q2 region for ˇts assures that saturation effects can
be ignored in this ˇrst evaluation. In the future we plan to extend our analysis
into the Q2 regions which could be more sensitive to saturation.

In the region of Q2 > 8 GeV2, we have a total of 108 data points and a
total of 5 parameters, so the number of degrees of freedom is Ndf = 103. We
consider the Q2 > 8 GeV2 region as our main investigation region and use the
Q2 > 4 GeV2 as a cross check.

As discussed in the previous paper [4], in order to obtain the most accurate
estimate of the unintegrated gluon density, we should include in the ˇt as many
of the higher n eigenfunctions as possible. Indeed, we observe that the ˇt
quality improves with increasing number of included eigenfunctions and the series
converges in χ2. In principle, this convergence should improve as n → ∞;
however, in practice, the number of eigenfunctions used in a ˇt is limited by
the numerical precision of our calculation. We have indications that, if we
take signiˇcantly more than 100 eigenfunctions, our ˇt could be polluted by
numerical instabilities arising from an accumulation of computational rounding
errors. Moreover, we ˇnd no improvement in the quality of our ˇts, either in
the case of the Standard Model or for MSSM SUSY at any of the thresholds
investigated, when the maximum number of eigenfunctions nmax exceeds 100.
We have therefore taken nmax = 100 throughout.

Fits for N = 1 SUSY at different scales. The bottom row corresponds to the Standard
Model. All ˇts are performed with nmax = 100

SUSY scale, TeV χ2 κ k̃0, GeV ηr A b, GeV−2

3 125.7 0.555 0.288 Ä0.87 201.2 10.6
6 114.1 0.575 0.279 Ä0.880 464.8 15.0
10 109.9 0.565 0.275 Ä0.860 693.1 17.4
15 110.1 0.555 0.279 Ä0.860 882.2 18.6
30 117.8 0.582 0.278 Ä0.870 561.6 16.2
50 114.9 0.580 0.279 Ä0.870 627.4 16.8
90 114.8 0.580 0.279 Ä0.870 700.2 17.5
∞ 122.5 0.600 0.294 Ä0.795 813.1 18.2

In the table we show our ˇts for various SUSY thresholds as well as the
Standard Model. Let us ˇrst note that the k̃0 values obtained in the unbiased ˇt,
k̃0 ∼ 275 MeV, are close to ΛQCD. At the same time, the value of b implies that
the proton impact factor peaks around ΛQCD, as expected for a self-consistent
description. This, together with the relatively low χ2's of all ˇts, conˇrms the
success of our construction of the infrared boundary.

The quality of the ˇts shows a clear preference of the evaluation with SUSY
effects; the ˇt for the Standard Model is worse than the ˇts with SUSY thresholds
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Fig. 11. Comparison of the DP ˇt with MSUSY = 10 TeV with HERA data

larger than 3 TeV. A SUSY threshold of 3 TeV, which is close to the reach of
the LHC, also gives a worse ˇt. On the other hand, for a SUSY threshold in the
region of 10Ä15 TeV, the quality of the ˇt is signiˇcantly improved, but that for
signiˇcantly larger SUSY thresholds worsens again.

Let us note that the differences between the χ2 ˇts shown in the table are
very signiˇcant because the maximum-likelihood method, which assures that the
minimum of χ2 provides the best estimate of the parameter values, also states that
1σ error in determination of parameter values is given by Δχ2 = 1, irrespective
of the number of degrees of freedom. Therefore, the differences between the ˇts
of the table are a multi-σ effect, within our model of the infrared boundary.

The Δχ2 = 1 rule is valid as an estimate of the parameter error only for
estimates within one theoretical framework, i.e., for one likelihood function. On
the other hand, when χ2 is used to quantify the agreement of different theories
with data, it is expected that the observed χ2 can deviate from the optimal value,
because it �uctuates with the probability density function f(χ2, Ndf), which is
approximately a Gaussian with the average value equal to Ndf and the variance,
σ2 = 2Ndf . In the case of ˇts presented in the table, the expected χ2 should be
around 103 and σ = 14. Therefore, the χ2 values obtained for best ˇts with the
SUSY mass O(10) GeV lay well within one standard deviation. The DGLAP ˇts
have a χ2/Ndf ≈ 0.95. This would lead for our sample to χ2 = 98, which is also
within one standard deviation of the optimal value, so that one cannot conclude
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that either ˇt is better. The evaluation with the goodness-of-ˇt criterion called
p-value, which is more appropriate for Ndf ∼ 100, gives a p-value ≈ 30% for
SUSY masses of O(10) GeV, which is again an excellent result, see [16,17].

As a check, we also performed the ˇts with a lower Q2 cut, Q2 > 4 GeV2.
We ˇnd that in this Q2 region there is a signiˇcant increase of χ2/Ndf presumably
due to various higher order effects, such as the NLO contribution to the photon
impact factor or valence quarks effects and possibly also the proximity of the
saturation region. Although the overall quality of the ˇt for all data with Q2 >
4 GeV2 is signiˇcantly worse than with Q2 > 8 GeV2, the preference for N = 1
SUSY with the threshold region of 10Ä15 TeV is also clearly seen. In the
Q2 > 4 GeV2 region there are 128 points and the χ2's of the best ˇts are 184.3
(3 TeV), 164.5 (6 TeV), 155.6 (10 TeV), 152.6 (15 TeV), 169.7 (30 TeV), 164.7
(50 TeV), 164.3 (90 TeV). The best χ2 for the Standard Model is 169.7. The
values of the ˇt parameters are similar to the values shown in the table for the
Q2 > 8 GeV2 region.

4. DISCUSSION

The main result of this paper, namely a possible sensitivity of HERA data to
BSM effects, is especially astonishing as it was not seen in the usual solutions
to the BFKL equation [1Ä3]. This sensitivity is due to the fact that we use
the Green function method, in which the Green function is considered to be a
universal property of the BFKL equation and that, apart from supplementing this
equation with a given set of infrared boundary conditions for the eigenfunctions,
no cuts on transverse momentum are applied, so that the conformal invariance is
broken in a very smooth way, solely by the running of the coupling constant.

Had we imposed kinematic limits on the gluon virtuality for the individual
eigenfunctions, then for those eigenfunctions with ω � 0.1, they would never
reach the region in which they decay as required for compatibility with a DGLAP
analysis in the DLL limit. Alternatively, one might attempt to ˇt HERA data only
with the ˇrst eigenfuction, which does indeed start to decay within the HERA
region, making the assumption that the higher eigenfunctions (with lower ω) only
couple weakly to the proton. However, the properties of this ˇrst eigenfunction
are in clear contradiction with data; for example, the rate of raise of F2 with
diminishing x would be independent of Q2 with a value of λ ≈ 0.25, whereas
the λ value in data varies between 0.15 and 0.35 in the observed Q2 region. The
results of [11] indicate that one needs at least four eigenfunctions to describe
HERA data (making an artiˇcial assumption that the overlap constants An of

Eq. (3.1) are totally unconstrained), which extends the virtuality region to k
(4)
c ∼

1000 TeV.
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In the solution which we have adopted, the momentum conservation is incor-
porated by convoluting the Green function with the proton form factor as deˇned
by the solution of the BFKL Eq. (1.1)

WP(y, k2) =
∫

dω

∫
dk′2

k′2 eωy Ĝω(k, k′)Φp(k′), (4.1)

where in analogy to Eq. (3.1) the Green function Ĝω(k, k′) is written in terms
of the eigenfunctions fn(k, ηn) and fn(k′, ηn). This expression describes the
evolution of a wave packet, WP , from the rapidity y = 0 to the larger rapidity
y values∗. The (approximate) momentum conservation emerges here because
the quasi-local nature of the kernel K(t, t′) ensures that there is no evolution
into the very large transverse momenta, apart from the usual BFKL diffusion,
ln kT ∼

√
α ln s. Figure 12 shows the wave packet as it evolves from the

smallest to the largest rapidity values of the HERA region, y = ln (1/x), and for
the SM and SM+SUSY cases.

Fig. 12. Evolution of the initial wave packet in the DP solution of the BFKL equation as
determined from the ˇt to HERA F2 data

The initial wave packet, the curve WP(y = 0, k2) shown in Fig. 12, is not
quite the same as the function Φp(k) deˇned in Eq. (3.3) (divided by k2), but
rather it is related to it by Eq. (4.1); i.e., it is built only out of the eigenfunctions
which obey the imposed boundary conditions on the Green function. For large
y, it is sufˇcient to consider only the discrete eigenvalue part of the Green
function in Eq. (4.1), and so we are actually using that part of the proton impact
factor which is orthogonal to the (continuum) negative ω eigenfunctions. The

∗Note that the analogy to the QM wave packet is not complete because in the BFKL equation
rapidity is analogous to imaginary time.
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initial wave packet is somewhat broader than the distribution of Eq. (3.3), but
it has the required features that it is localized to the transverse momenta of
∼ 1 GeV. With increasing rapidity it broadens due to the BFKL diffusion, but
this broadening remains moderate, of a size of just few GeV, as in the usual
solutions of the BFKL equation. Although our kernel is constructed from the
oscillating eigenfunctions with properties determined by the BFKL dynamics at
very high transverse momenta, the oscillations cancel away due to the choice of
the phases ηn in the ˇt procedure, and what remains is only a slight broadening
of the gluon diffusion spectrum with increasing y.

In the application to DIS it is more customary to consider the evolution of
the unintegrated gluon density given by

xġ(x, k2) = k2

∫
dω

∫
dk′ 2

k′ 2

(
kx

k′

)−ω

Ĝω(k, k′)Φp(k′), (4.2)

which differs from the evolution of the wave packet, Eq. (4.1), by the kinematical
factor k2 and the factor (k/k′)−ω . The latter factor encodes the difference
beween Bjorken-x and rapidity, y. It is close to one and of minor importance.
On the other hand, the factor of k2 is important as it ampliˇes the high virtuality
contributions to the structure function (note that F2 is obtained from a convolution
of the unintegrated gluon density with the photon impact factor which selects k2

values close to the Q2 of the experiment).
In Fig. 13 we show the unintegrated gluon density at two values of x Å

one in the middle of HERA region, x = 10−3, and the other just above HERA
low-x region, x = 10−4. The ˇgure shows again that the contribution of BSM
physics changes the shape of the gluon density but does not lead to an increase
of the large transverse momentum tail (in fact, this tail turns out to be smaller
for SM+SUSY) contrary to the naive expectation that BSM effects should show

Fig. 13. The unintegrated gluon density using the DP solution of the BFKL equation, as
determined from the ˇt to HERA F2 data
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up as an increased parton activity at large virtualities. The ˇgure also shows that
the discrepancy between the unintegrated gluon density for the SM alone and
for SM+SUSY increases substantially with diminishing x at larger k2, which
suggests that DrellÄYan measurements at the LHC, in the region of x ∼ 10−4

and k2 ∼ 50 GeV2, could have high sensitivity to BSM physics.
In contrast to the diffusion effect, the important point that we are stressing

is that it is the spectrum of allowed eigenvalues (and also the shape of the
eigenfunctions) that enters into the construction of the Green function which is
sensitive to physics at high scales. This sensitivity emerges from the interplay of
two main features of the DP solution: the identity of the boundary condition in
respect to addition of nπ to the phase and the running of the coupling constant.
For n � 3 this interplay is affected by SUSY effects, whereas for n � 2 the
eigenvalues are unaffected since the critical transverse momentum tc is below the
SUSY threshold. For n � 3, the change of the eigenvalues is substantial. As
n increases, the ratio of eigenvalues with and without SUSY rapidly reaches its
asymptotic value of 7/3. In Fig. 14 we compare the summed contribution of the
eigenfunctions which are sensitive to BSM effects (n = 3, . . . , 100) with the sum
of contributions of the ˇrst two eigenfunctions which are not sensitive to SUSY.
The contributions of the n = 3, . . . , 100 eigenfunctions change both in size and
in shape when evaluated with and without SUSY, whereas the contribution of the
ˇrst two eigenfunctions remains unaltered.

Fig. 14. Comparison of contributions to the unintegrated gluon density from the eigen-
functions which are not sensitive (n = 1, 2) and which are sensitive to BSM effects
(n = 3, . . . , 100) to the curve at x = 2 · 10−3 of Fig. 11

Figure 15 shows the η variation as a function of the eigenvalue ω for the ˇt
with the SUSY threshold of 10 TeV and for the SM ˇt only. Both relations show
a substantial variation of the phase η with decreasing ω. The substantial difference
between the two relations re�ects a large difference between the eigenvalues and
eigenfunctions in both cases.
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Fig. 15. The eigenvalues and infrared phases for the Standard Model and N = 1 SUSY at
10 TeV, as determined at k = k̃0

The changes due to BSM effects lead to a substantial increase of χ2 when
the corresponding gluon densities are confronted with data, because the changes
are of the order of 10%, whereas the data precision is around 1Ä2%. Indeed, the
evolution of the unintegrated gluon density performed with the SM alone, using
the same parameter values for η boundary as in the SUSY case (dotted line in
Fig. 14, dashed lines in Fig. 13), would give an increase of χ2 by Δχ2 ∼ 160 when
compared to data. On the other hand, had we used the η boundary parameters as
determined with the SM alone and performed the evolution with the SM+SUSY
eigenvalues and eigenfunction, the increase of χ2 would be even larger, Δχ2 ∼
300. The differences between the χ2's of the SM and SM+ SUSY ˇts shown
in the table are substantially smaller, Δχ2 ∼ 12, because the parameters of the
η boundary conditions and the proton form factors were ˇtted to data, which
diminishes substantially the sensitivity to BSM effects.

It is quite clear that the DP could provide an exciting framework to study
BSM effects if more can be learned about its infrared boundary. One way to
improve our knowledge of this boundary is to apply our analysis to another,
independent set of data, such as the DrellÄYan processes at the LHC∗. The LHC
DrellÄYan data extend in the low-x region to much larger Q2 scales than HERA
data. This will allow the study of the evolution in ln k2 which is dominated in
the DP scheme by the low-ω region. This region and the region of very low x
are very sensitive to SUSY effects and at the same time are much less sensitive
to NLO effects which are difˇcult to compute.

∗Natural candidates would also be the diffractive HERA processes. Unfortunately, they are
not measured with sufˇcient accuracy because the HERA detectors were not designed to measure
diffractive processes.
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Future HEP experiments, which are now under discussion, can also substan-
tially improve the knowledge of the infrared boundary and of the properties of
the DP. The LHeC project [28] could provide important information about the
region of very low x and not so high scales. This could lead to a better un-
derstanding of the properties of the large ω contributions. In addition, it will
also be possible to measure precisely the exclusive diffractive processes. This
will provide an independent evaluation of the infrared boundary since in the ex-
clusive processes (e.g., in the exclusive J/ψ or Υ production) the gluon density
contributes almost in square [21,23].

The properties of the DP can also be studied very well in the γ∗γ∗ process in
a future linear e+e− collider [29]. The γ∗γ∗ process is very interesting because
it would permit the direct test of the universality of the BFKL pomeron and
its boundary condition. Of particular interest could also be the newly proposed
electron wake ˇeld accelerator [30], which could accelerate electrons into the
several-TeV energy region. This would allow the measurement of the γ∗γ∗

structure function at very low x and high Q2's, which could further increase the
sensitivity to BSM effects.

5. SUMMARY

In this paper we have analyzed the properties of the Discrete BFKL Pomeron
(DP), using analytical and numerical methods. We show, using as example
N = 1 SUSY, that BSM physics substantially alters its eigenvalue spectrum and
the shape of its eigenfunctions. This is a genuine sensitivity insofar as it cannot
be entirely absorbed into any free parameters of the discrete pomeron solution of
the BFKL equation.

The physical origin of this sensitivity can be traced back to the fact that
in the low Bjorken-x regime the behaviour of the structure functions is directly
related to the positions of the Regge poles (pomerons). In the BFKL approach,
due to the approximate conformal invariance, the corresponding eigenfunctions
and eigenvalues of the BFKL kernel are determined from exponentially large
transverse momenta, where contributions from particles of any BSM physics play
an essential role. On the other hand, the locality property of the BFKL equation
assures that, in any physical process performed at energy scales which are much
lower than the BSM ones, the BSM quanta cannot be produced and the transverse
momenta of the virtual particles are very limited. The effects of large transverse
momenta appear, however, through the substantial alteration of the eigenstate
spectrum of the BFKL Hamiltonian, which is important in the low-x region. In
our view, this provides a new mechanism for the detection of BSM effects, which
has not previously been considered.

The eigenvalue spectrum of the DP cannot be directly measured because it
determines the gluon density through a complicated superposition of pomeron
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states. The result of their interference can be compared with data only after
the free parameters of the BFKL solution, determining the infrared boundary, are
speciˇed. Although the infrared boundary is a physical quantity of nonperturbative
QCD origin, we could only determine it in this and the previous paper within
a heuristic approach. Our description of this boundary provides a very good ˇt
to the data and shows that the BSM effects are sensed by the HERA F2 data,
notwithstanding the large freedom of the parameter choice.

The analysis of HERA data indicates an improved quality of ˇt for the case
of N = 1 SUSY, with the SUSY scale as being around 10 TeV. Needless to
say that this determination is only possible within our heuristic model approach.
Our limited knowledge of the infrared boundary diminishes substantially (but not
completely) the sensitivity of the ˇt to BSM effects.

This sensitivity can be substantially improved by a better determination of
the universal boundary condition. We can gain a better understanding of the
infrared boundary from the analysis of additional data sets, especially of the LHC
DrellÄYan data. The data from the future experimental facilities like LHeC, the
e+e− linear collider or even higher energy plasma wake ˇeld accelerators could
also become crucial. The γ∗γ∗ process which can be very well measured at the
linear colliders is of particular interest, since in this reaction the properties of the
discrete pomeron solution are simpliˇed owing to the absence of the proton.

The method described in this paper opens a new possibility of using high-
precision experiments to search for new physics at energy scales considerably
larger than the scales at which the experiments are performed. We consider the
approach formulated here, which involves a heuristic model for the parameteriza-
tion of the infrared phases of the BFKL eigenfunctions, as a ˇrst step which should
be substantially improved by involving more data and more theoretical analysis.
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