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The cross-ratios do not uniquely ˇx the class of conformally equivalent conˇgurations of null
polygons. In view of applications to the Wilson loops and scattering amplitudes, we characterize
all conformal classes of null hexagon conˇgurations belonging to given points in cross-ratio space.
At ˇrst, this is done for the ordered set of vertices. Including the edges, we then investigate the
equivalence classes under conformal transformations for null hexagons. This is done both for the set
of null hexagons closed in ˇnite domains of the Minkowski space and for the set including those
closed via inˇnity.
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PACS: 11.25.Hf

INTRODUCTION

The Wilson loops as nonlocal gauge-invariant, but path-dependent, quantities
play a central role in any gauge ˇeld theory. A lot of studies in the past four
decades were devoted to properties for generic contours, both without and with
cusps or intersections. Often one is also free to switch to the Euclidean space.
However, in particular due to their relation to the infrared behaviour of QCD
(see, e.g., [1]), also the investigation of properties characteristic of the Wilson
loops in the Minkowski space with its indeˇnite metric has a long history.

This aspect has gained further momentum by the discovery of the corre-
spondence between the Wilson loops for null-polygonal contours and scattering
amplitudes in N = 4 super YangÄMills gauge theory, ˇrst via the AdS-CFT
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correspondence for strong coupling [2] and soon afterwards also at weak cou-
pling [3, 4]. Null-polygonal contours are very special, insofar as they have no
counterpart in the Euclidean space. Furthermore, the dependence on the contour
reduces to the dependence on the location of the vertices {xj} of the polygon and
then by the Poincar	e invariance to the dependence on the related Mandelstam-like
variables.

Conformal invariance, present on the classical level, is broken due to the
presence of ultraviolet divergences. The behaviour of the dimensional regularized
Wilson loops for null polygons is somehow controlled by anomalous conformal
Ward identities [5]. It results in the so-called BDS structure plus, starting with
hexagons, a remainder function, which is conformally invariant. The BDS struc-
ture had been invented before for infrared regularized scattering amplitudes [6].

Counting the number of parameters of the conformal group, one ˇnds for a
null hexagon in R

1,3 three remaining continuous parameters specifying classes of
conformally equivalent conˇgurations. The standard choice are the three cross-
ratios

u1 =
x2

13 x2
46

x2
14 x2

36

, u2 =
x2

24 x2
15

x2
25 x2

14

, u3 =
x2

35 x2
26

x2
36 x2

25

, (1)

formed out of the Mandelstam variables

x2
ij := (xi − xj)2. (2)

Since the anomalous conformal Ward identities encode the consequences of the
invariance of the remainder functions only with respect to inˇnitesimal conformal
transformation, it remains open whether the invariance holds also for all ˇnite
transformations. Some early tests with special examples of different hexagon
conˇgurations having the same cross-ratios indicated agreement [4, 7]. However,
beyond some doubt concerning the conformal invariance of the remainder func-
tion, there is another reason for asking whether the cross-ratios ˇx its value. It
is the purely geometrical question, whether the three cross-ratios ˇx the hexagon
conˇguration uniquely, up to conformal maps. As pointed out in a footnote
of [8], the answer is negative. This fact becomes more explicit by an example
of two hexagon conˇgurations with the same cross-ratios, but one with and the
other without a pair of crossing edges [9]. Furthermore, there it has also been
shown, that the two-loop remainder takes different values in both cases, but they
are related by a suitable analytic continuation.

The aim of the present paper is a complete characterization, both of all
triples of cross-ratios, as well as of all different classes of conformally equivalent
real conˇgurations in R

1,3, which belong to a given allowed point in the cross-
ratio space. Special conformal transformations have a critical light cone, which
is mapped to inˇnity. If this cone cuts a certain edge of the hexagon, the
image of this edge connects the two images of the adjacent vertices via inˇnity.
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Therefore, it is appropriate to proceed in two steps. At ˇrst, to talk only about the
identiˇcation of all the conformal invariants for an ordered set of six points, whose
neighbours are light-like separated. This will be done in Sec. 1. Including in the
second step the edges, one has two options. If one wants to keep all conformal
transformations in the game, one has to enlarge the set of null hexagons closed
within the Minkowski space by those who are closed only via inˇnity. On the
other hand, it seems to us also a legitimate question to ask for conformal classes
of null hexagons, closed exclusively in a ˇnite part of R

1,3. Then, one has to
disregard special conformal transformations, whose critical light cone cuts the
hexagon. In two parts of Sec. 2 we explore these two different points of view.

In Sec. 3, we add some comments on the location of some special hexagon
conˇgurations in the cross-ratio space. After a Conclusion section a few technical
points are collected in ˇve Appendices.

A last comment in this section concerns the nomenclature we are follow-
ing below. The full set of conformal transformations is given by the group
O(2, 4)/Z2, with Z2 representing {1,−1}. However, if we talk about the con-
formal group and related conformal classes, we have in mind the component
connected to the identity, i.e., SO+(2, 4)/Z2

∗.

1. CONFORMAL CLASSIFICATION OF 6-TUPLES
WITH LIGHT-LIKE SEPARATED NEIGHBOURS

Minkowski space R
1,3 can be mapped conformally and one to one to the

cone [10]:
W 2

0 + W 2
0′ − W 2

1 − W 2
2 − W 2

3 − W 2
4 = 0 (3)

in projective RP 5
2,4 (i.e., equivalence classes of points in R

2,4\{0} with W ∼
V ⇔ W = λV , λ ∈ R\{0})∗∗. The map is (x ∈ R

1,3):

Wμ = λxμ, μ = 0, 1, 2, 3,
(4)

W 0′
=

1
2
λ(1 − xμxμ), W 4 =

1
2
λ(1 + xμxμ)

and its inverse

xμ =
Wμ

W 0′ + W 4
. (5)

For several uses of this formalism see also, e.g., [11Ä13]. Conformal inˇnity of
the Minkowski space is mapped to points λW , W 0′

+ W 4 = 0.

∗The other three components are generated by including time reversal T and parity transforma-
tion P .

∗∗We have added a subscript to RP 5 to emphasize the role of the (2, 4) metric in the embedding
space.



1246 DORN H., MéUNKLER H., SPIELVOGEL C.

For two arbitrary points xi, xj one gets

(xi − xj)2 =
(Wi − Wj)2

(W 0′
i + W 4

i )(W 0′
j + W 4

j )
=

−2 WiWj

(W 0′
i + W 4

i )(W 0′
j + W 4

j )
. (6)

In particular, light-like separated points in R
1,3 correspond to points on the

cone (3), which are light-like separated in the sense of R
2,4.

Remarkably, inserting (6) into the cross-ratios of type (1), the denominators
of the r.h.s. cancel. Thus, the cross-ratios can directly be expressed in terms of
the distances of the related points on the cone in R

2,4:

x2
ij x2

kl

x2
il x2

kj

=
(WiWj)(WkWl)
(WiWl)(WkWj)

. (7)

Each special conformal transformation

x′μ =
xμ + cμx2

1 + 2cx + c2x2
(8)

has a critical light cone in R
1,3, with a tip at −c/c2. This whole light cone is

mapped to conformal inˇnity. The point on RP 5
2,4, corresponding to the image

of the tip after applying (8), is found in Appendix A, Eq. (41),

WN
tip = λ (0, 0, 0, 0,−1, 1). (9)

Note that in this notation N takes the values 0, 1, 2, 3, 0′, 4. The point Wtip is
invariant under dilatations, translations and Lorentz transformations of the original
Minkowski space R

1,3.
Let now x1 to x6 denote the vertices of our null hexagon and W1 to W6

their images on RP 5
2,4. Then, we apply a special conformal transformation,

whose critical light cone has its tip at x6, i.e., c = −x6/x2
6. This light cone

{x6 + n| n2 = 0} is mapped to conformal inˇnity with the RP 5
2,4 image

λ

(
nμ − 2x6n

x2
6

xμ
6 ,− (x6 + n)2

2
,
(x6 + n)2

2

)
.

By including an overall rescaling into the prefactor λ, we arrive at λ(wμ,−1, 1) or
λ(wμ, 0, 0). The last option corresponds to the exceptional points on the original
light cone, which are also light-like with respect to the origin. We assume that x1

and x5 are not of exceptional type∗.

∗In each neighbourhood of exceptional points one has the nonexceptional ones. Hence, for our
purpose of determining the range of the three cross-ratios this is allowed.
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After this we have

W6 = λ6(0, 0, 0, 0,−1, 1), W1 = λ1(w
μ
1 ,−1, 1), W5 = λ5(w

μ
5 ,−1, 1). (10)

Starting from a generic conˇguration, the remaining three points x2, x3, x4 are
then still ˇnite in R

1,3. By a translation we shift x3 into the origin, which by (4)
means

W3 = λ3(0, 0, 0, 0, 1, 1). (11)

Under translations in the Minkowski space x �→ x + a (Appendix A, (40)) W =
λ(w,−1, 1) goes to λ(w,−(1 + aw), 1 + aw). With the same justiˇcation, as
given in the last footnote, we assume the nonexceptional case 1 − x3wj �= 0,
j = 1, 5, and ˇnd after rescaling, that this translation does not affect the structure
of (10). Since x2 and x4 are light-like separated from x3 = 0, the corresponding
points on RP 5

2,4 have now the form

W2 = λ2(w
μ
2 , 1, 1), W4 = λ4(w

μ
4 , 1, 1). (12)

The cone condition (3) and the null condition for the hexagon edges via (6)
constrain the entries wμ

1 , wμ
2 , wμ

4 and wμ
5 in (10) and (12) by

w1w2 = w4w5 = 2, w2
j = 0, j = 1, 2, 4, 5. (13)

At this stage we still have the freedom to use the Lorentz transformations
and dilatations to further specify the wj . From Appendix A, (42) and (43), we
see that the structure (10)Ä(12) is preserved and the entries wj , j = 1, 2, 4, 5,
are transformed like vectors in R

1,3. For generic cases (x2 − x4)2 �= 0 one
has w2w4 �= 0 and can use a dilatation to achieve w2w4 = ±2. Let us ˇrst
continue with

Case A: w2w4 = 2. Then, by a suitable Lorentz transformation we get
w2 = (±|w|,w), w4 = (±|w|,−w). Rotating the Euclidean unit three-vector w
in the direction of the 1-axis, we arrive at

w2 = (±1, 1, 0, 0), w4 = (±1,−1, 0, 0). (14)

Now all freedom to map a generic conˇguration via conformal transformations to
a special subset of conˇgurations has been used. w1 and w5 are constrained only
by (13), which leads to the structure

w1 = (±(1 + p2),p2 − 1, 2p), w5 = (±(1 + q2), 1 − q2, 2q). (15)

Here p and q are the arbitrary two-dimensional Euclidean vectors.
Now using (10)Ä(12), (14), (15) and (7) for the evaluation of the cross-

ratios (1), we get

u1 =
1

1 − p2
, u2 =

1 + p2q2 − 2pq
(1 − p2)(1 − q2)

, u3 =
1

1 − q2
. (16)
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A similar analysis for
Case B: w2w4 = −2 leads to

w2 = (±1, 1, 0, 0), w4 = (∓1, 1, 0, 0),
(17)

w1 = (±(1 + p2),p2 − 1, 2p), w5 = (∓(1 + q2),q2 − 1, 2q),

as well as

u1 =
1

1 + p2
, u2 =

1 + p2q2 + 2pq
(1 + p2)(1 + q2)

, u3 =
1

1 + q2
. (18)

The domain in the three-dimensional space of cross-ratios, which can be
realized by real null hexagon conˇgurations in the Minkowski space, is fully
covered by (16) and (18) varying independently the three variables p, q, z (p = |p|,
q = |q|, z = pq/pq) within p, q � 0 and −1 � z � 1. Expressing p and q in
terms of u1 and u3, one ˇnds (∓ refers to case A/B):

u2 = 2u1u3 − u1 − u3 + 1 ∓ 2z
√

u1u3(1 − u1)(1 − u3). (19)

This domain is depicted in Fig. 1.

Fig. 1. The allowed region for R1,3 null hexagons in cross-ratio space
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Its characterization in terms of the uj alone is given by the overall inequality

4u1u2u3 − (u1 + u2 + u3 − 1)2 � 0, (20)

valid in the whole domain. Its ˇve parts, in addition, are speciˇed by

bag: 0 � uk � 1, k = 1, 2, 3, (21)

ear j, j = 1, 2, 3: uj � 1, uk � 0, k �= j, (22)

ear 4: uk � 1, k = 1, 2, 3. (23)

The central bag is realized with case B. The four ears are realized with case A.
Note also that the two options, which one has both in cases A and B by the

choice of the upper/lower signs in (14), (15) and (17), are related by time reversal
in the Minkowski space, corresponding to W 0 → −W 0 in R

2,4.
In reconstructing the two-dimensional vectors p and q from the cross-ratios,

i.e., from p2,q2,pq, see (16), (18), besides the freedom of rotations, one has the
option ϑ → −ϑ for the angle between p and q. Furthermore, in (14), (15) the
three 3D vectors w, w1 and w5 are involved. After we have decided to rotate w
in the direction of the 1-axis, the 3D orientation of this triple of vectors manifests
itself in the 2D orientation of the pair p,q parameterizing w1 and w5. Hence, a
change of this orientation is due to a parity transformation in the Minkowski space.

Finally, one should add the trivial observation, that under a cyclic shift of
the numbering of the points {xj} one has

(x1, x2, x3, x4, x5, x6) �→ (x6, x1, x2, x3, x4, x5) =⇒
=⇒ (u1, u2, u3) �→ (u3, u1, u2). (24)

Such a shift maps both the bag and ear 4 to itself and implies a corresponding
cyclic mapping of the ears 1 to 3.

Altogether, we have shown that each ordered set of six light-like separated
points (x1, . . . , x6) in the Minkowski space can be mapped by conformal trans-
formations to one of the four standard conˇgurations, whose image on RP 5

2,4 has
been described above. Since cases A and B cover different regions in the space
of cross-ratios, this implies that a given generic point (u1, u2, u3) in the allowed
region (20)Ä(23) ˇxes the position of (x1, . . . , x6) uniquely, up to conformal
transformations, up to the cyclic permutation (x1, x2, . . . , x6) → (x4, x5, . . . , x3),
up to time reversal, and up to a parity transformation∗.

∗At nongeneric points the degeneracy may be higher, e.g., if all uj are equal, each cyclic
permutation is included. At the vertex points of the bag, cases A and B are both possible.
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2. CONFORMAL CLASSIFICATION OF NULL HEXAGONS

2.1. Null Hexagons Closed via Inˇnity Included. Topologically the null
geodesic, which is determined by a given pair of two consecutive points xj , xj+1

out of a 6-tuple of light-like separated points, is a circle on the conformally
compactiˇed Minkowski space, i.e., on RP 5

2,4, see Appendix B. The two points
xj , xj+1 divide it into two parts. One of them contains a point at confor-
mal inˇnity.

Let us ˇrst take into consideration also null hexagons which close via inˇnity,
i.e., allow for the edge connecting xj and xj+1 either the direct connection or the
connection via inˇnity. Although crossing inˇnity is not a conformally invariant
characteristic, it is nevertheless possible to mark the two parts of such a null
geodesic in an SO+(2, 4) invariant way. The notion of a time arrow on the null

geodesics is SO+(2, 4) invariant

(
dx0

ds
> 0 ⇒ d(x′)0

ds
> 0

)
. Therefore, the two

parts can be distinguished by the alternative of going from xj to xj+1 with or
opposite to the time arrow.

After this remark we get for each set of cross-ratios 4×26 = 256 conformally
inequivalent classes of hexagon conˇgurations. Here the ˇrst factor 4 corresponds
to time reversal and parity, and the factor 26 Å to the choice of one of the
two parts of the null geodesics for all 6 pairs of consecutive vertices of the
null hexagon.

Under special conformal transformations

(x′ − y′)2 =
(x − y)2

(c2)2(x + c/c2)2(y + c/c2)2
. (25)

Therefore, J1 and J2, deˇned by

J1 := sign (x2
13 x2

35 x2
51), J2 := sign (x2

24 x2
46 x2

62), (26)

are conformal invariants. According to our result in the previous section, they
cannot contain information independent of the cross-ratios.

For later use it is instructive to see this more explicitly. At ˇrst, from
the deˇnition of the cross-ratios in (1) one gets J1J2 = sign (u1u2u3). Equa-
tions (21)Ä(23) imply sign (u1u2u3) � 0, which means for the generic situation
of all x2

j,j+2 �= 0 (here and below the indices are understood modulo 6, and the
index of the cross-ratios Å modulo 3):

6∏
j=1

x2
j,j+2 > 0 and J1 = J2. (27)

Finally, (6) allows expressing J1 and J2 in terms of the Wj (as for the cross-ratios
the denominators on the r.h.s. of (6) turn out to be irrelevant):

J1 = −sign ((W1W3)(W3W5)(W5W1)), (28)
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and similarly for J2. Now the Js can be read off directly from the standard
conˇgurations in RP 5

2,4, and we ˇnd

J1 = J2 = −1, case A,

J1 = J2 = +1, case B.
(29)

Since cases A and B cover different regions of the cross-ratio space (ears versus
bag), J1 and J2 yield no independent information on conformal equivalence
classes (except at the four points where the bag and ears touch each other).

2.2. Null Hexagons Closing via Inˇnity Excluded. In the following we ask
a modiˇed question. We are now interested in the set of null hexagons which are
closed without going via inˇnity. Then, we have to restrict the allowed conformal
transformations to those which do not map out of this subset. As a bonus, we can
now use the invariance of the signs of all the Mandelstam variables to characterize
different classes of conformally equivalent conˇgurations belonging to a given
allowed point in the cross-ratio space. This sign invariance follows from the
observation, that a sign change of one of the x2

ij is necessarily connected with
a map to a hexagon conˇguration passing conformal inˇnity. This is shown in
Appendix E.

Concerning special conformal transformations (25) implies that the distance
between two not null-separated points changes iff both points are on different sides
of the critical light cone centred at −c/c2. This means that special conformal
transformations, whose critical light cone cuts any edge of the to-be-transformed
hexagon, have to be excluded.

As explained in Introduction, via the correspondence between Wilson loops
and gluon scattering amplitudes, our hexagons are also relevant for 6-point scat-
tering amplitudes with momenta {pj|j = 1, . . . , 6} related to the edges of the
hexagon via

pj := xj+1 − xj . (30)

Since
x2

jj+2 > 0 ⇔ sign (p0
j ) = sign (p0

j+1),

x2
jj+2 < 0 ⇔ sign (p0

j ) = −sign (p0
j+1),

(31)

one can relate the sequence of signs for all the Mandelstam variables x2
jj+2 to

the type of related scattering: 3 → 3 or 2 ↔ 4 scattering. Then, we ˇnd by
explicit inspection of all possible cases, that all contributions to 3 → 3 yield
J1 = J2 = −1, and all contributions to 2 ↔ 4 scattering yield J1 = J2 = +1.
Therefore, we can supplement (29) by

ears 1 to 4 ⇔ case A ⇔ 3 → 3 scattering,

bag ⇔ case B ⇔ 2 ↔ 4 scattering.
(32)
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Another useful fact is

x2
jj+2 > 0, x2

j+1j+3 > 0 ⇒ x2
jj+3 > 0. (33)

We now want to list in Table 1 all sign assignments (realizable by real conˇgu-
rations in the Minkowski space) to the six Mandelstam variables of type x2

jj+2

and to the three of type x2
jj+3. The choice for the ˇrst type ˇxes the correlation

to the type of scattering. Therefore, we collect them together in sets with ˇxed
signs for the x2

jj+2 . Due to the ˇrst condition in (27), for them only an even
number of negative signs is allowed. In some cases, (33) ˇxes already also the
sign of some of the x2

jj+3
∗.

Table 1. Sets of sign assignments to the x2
jj+2

Case x2
13, . . . , x

2
62 Already ˇxed x2

jj+3 Scattering Cyclic permutations

a −−−−−− None 3 → 3 1

b + + −−−− x2
14 > 0 2 ↔ 4 6

c + − + −−− None 3 → 3 6

d + −− + −− None 2 ↔ 4 3

e − + − + ++ x2
14, x

2
52 > 0 2 ↔ 4 6

f − + + − ++ x2
52 > 0 3 → 3 3

We have skipped cases (+ + + + ++) forbidden by
∑
j

pj = 0, and

(− − + + ++), which would correspond to an unphysical 1 ↔ 5 transition.
As long as we talk about a ˇxed numbering of the hexagon vertices, cases b), c)
and e) each are one of 6 cyclic permutations of sign assignments (at ˇxed num-
bering of the vertices!). Cases d) and f) each are one of 3 cyclic permutations,
case a) is unique in this respect. These numbers are indicated in the last column
of the table.

Now we list for each case of Table 1 the remaining possibilities for signs for
x2

14, x
2
25, x

2
36 (see Tables 2Ä7). This ˇxes then the signs of the cross-ratios, and

we can locate the related position in cross-ratio space (bag, ears), see (21)Ä(23).
If one of the cross-ratios is negative, the location is evident. In the case of
all cross-ratios positive, the separation between the bag and ear 4 can be made,
since we already know, that the bag is possible only with 2 ↔ 4 and ear 4 only
with 3 → 3.

∗We discuss here the generic case, where all the Mandelstam variables under discussion are
different from zero, the degenerated cases will be commented below.
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Table 2. Case a), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

a1 + + + Ear 4

a2 −−− Ear 4

a3 −− + Ear 2

a4 − + − Ear 1

a5 + −− Ear 3

a6 + + − Ear 2

a7 + − + Ear 1

a8 − + + Ear 3

For case b) one of the x2
jj+3 has already a ˇxed sign. Three of the four

remaining options would yield cross-ratios located in ears 1 to 3. Since this
pattern has no realization by real hexagon conˇgurations, we are left with:

Table 3. Case b), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

b + −− Bag

In case c) one ˇnds again 8 possibilities.

Table 4. Case c), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

c1 + + + Ear 2

c2 −−− Ear 2

c3 −− + Ear 4

c4 − + − Ear 3

c5 + −− Ear 1

c6 + + − Ear 4

c7 + − + Ear 3

c8 − + + Ear 1

In case d) six of the eight options for the x2
jj+3 indicated in Table 1 would

give points in the ears, hence not realizable for a 2 ↔ 4 conˇguration∗.

∗The seemingly strange notation in the following table anticipates the later ˇnding, that case d∗)
cannot be realized.
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Table 5. Case d), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

d∗ + + + Bag

d −−− Bag

Case e) appears in Table 1 with two already ˇxed signs for the x2
jj+3 . Only

one of the two remaining options gives points in the bag.

Table 6. Case e), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

e + + − Bag

Finally, for case f) Table 1 allows four options.

Table 7. Case f), sign assignments to the x2
jj+3

Case x2
14, x

2
25, x

2
36 Location in u-space

f1 + + + Ear 4

f2 − + − Ear 1

f3 − + + Ear 3

f4 + + − Ear 2

So far we have used our previous results (32) and (33) to eliminate some sign
options. It remains to decide, whether there exist further restrictions or whether
all options listed in Tables 2Ä7 indeed can be realized by real conˇgurations in
the Minkowski space. If a certain sign option is allowed, we also want to know
for sure, whether this then holds for all points in cross-ratio space, either in the
ears (3 → 3) or in the bag (2 ↔ 4).

By explicit inspection one ˇnds, that all listed sign options, except case a1)
and case d∗), correspond to null hexagons, which have at least one vertex xj ,
such that the remaining three nonadjacent vertices xj+2, xj−2 and xj+3 are all
inside the light cone of xj or all outside this light cone. This is a necessary
condition for treating them with standard conˇgurations, which are deformations
of certain two-dimensional set-ups as introduced in [14]. By scanning then all
options for these standard conˇgurations it turns out, that indeed all cases beyond
the two exceptions can be covered, for details see Appendix C.

We show in Appendix D, that the exceptional option of case d∗) cannot
be realized by real conˇgurations. However, the other exceptional case a1) is
possible. An explicit example is presented in Appendix D.
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Now we can count the number of inequivalent conformal classes for null
hexagons (with numbered vertices) belonging to a given point in cross-ratio
space. For points in the ears it is 1×2+6×2+3×1 = 17, and for points in the
bag it is 6× 1 + 3× 1 + 6× 1 = 15. In both cases there is an additional factor 4
due to the still open possibility of overall time reversal and parity transformation.

3. SPECIAL CONFIGURATIONS

For a hexagon in a two-dimensional R
1,1 subspace one ˇnds

2D: (u1, u2, u3) = (1, 1, 1). (34)

If it lives in a three-dimensional R
1,2 subspace, one has z = ±1 instead of

−1 � z � 1 in the discussion around (20). This means that the corresponding
point in cross-ratio space has to be on the surface separating the allowed and not
allowed region in Fig. 1, i.e.,

3D: 4u1u2u3 − (u1 + u2 + u3 − 1)2 = 0. (35)

For the degeneration to a pentagon a certain vertex has to coincide with one
of its next neighbours. For generic location of the remaining vertices (1) leads to

pentagons: (u1, u2, u3) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1). (36)

The existence of these three pentagon points in (36) is not a source for different
conformal classes for pentagons. They only re
ect the freedom one has in
choosing the location for the sixth edge, if one wants to extend a pentagon back
to a hexagon.

In a collinear limit one of the x2
jj+2 is zero (without having a pentagon case).

Then, necessarily one of the cross-ratios is zero, and in addition (20) implies that
the sum of the other two cross-ratios is equal to one, i.e.,

collinear limits: uj = 0 and uj+1 + uj+2 = 1, for j = 1, 2 or 3. (37)

For hexagons with two crossing edges it has been shown in [9,15,16], that

crossing edges: uj = 1 and uj+1 = uj+2, for j = 1, 2 or 3. (38)

At this point an amusing side remark is in order. As mentioned in Introduction,
in Appendix of [9] an explicit example has been discussed for two hexagon
conˇgurations with and without self-crossing, having the same cross-ratios of
type (38). It has been used as an argument in favour of the existence of different
conformal classes for a given set of cross-ratios. From our discussion in Sec. 1
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we now know that there must exist a conformal transformation, which maps the
two sets of vertex points to each other. Nevertheless, the two hexagons of that
example are not conformally equivalent. They use as edges different parts of the
null geodesics deˇned by two adjacent vertices. In the case with no crossing in
the ˇnite Minkowski space the crossing is just at inˇnity, in the sense discussed
in our Appendix B.

Other interesting limiting cases in cross-ratio space are connected with multi-
Regge limits [17, 18]. They correspond to a special parameterization for an
approach to the pentagon points (36), either from inside the bag (2 ↔ 4 scattering)
or from ears 1 to 3 (3 → 3 scattering).

Before closing this section, we comment on motions in cross-ratio space
(see Figs. 1 and 2) generated by continuous deformations of hexagons. Transitions
between the bag and the ears and among the ears are possible only via sign
changes of the Mandelstam variables. The signs of the x2

jj+2 are responsible
for the distinction between the bag and the ears. Besides realization in passing
through the 2D point (1, 1, 1), a sign change of one of the x2

jj+2 can take place
only if one crosses one of the pentagon points∗.

Fig. 2. Two views of the allowed region for null hexagons in the v = 1/u space. There is
still one more component of the bounding surface not shown in these pictures. It crosses
the diagonal at v1 = v2 = v3 = 4

The distinction between the ears is due to the signs of the x2
jj+3. If one of

them changes sign by passing zero, two cross-ratios change their sign by passing

∗They can become zero also by approaching the collinear lines (37), but away from the pentagon
points there one is faced with a local maximum/minimum situation.
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inˇnity. To make these transitions more easy on the eye, we depict in Fig. 2 the
allowed cross-ratios in terms of vj := 1/uj , j = 1, 2, 3. Ear 4 of Fig. 1 is mapped
to the central region in v-space. Ears 1, 2 and 3 appear again as ears extending
into the regions with two negative v and one positive v. The bag of Fig. 1 is
mapped into part of the region, where all vj > 1.

Now the transitions take place on the pieces of the v1, v2 or v3 axis, where
the images of two ears touch each other.

CONCLUSIONS

We have given a complete characterization of the region in cross-ratio space,
which corresponds to real null hexagon conˇgurations in R

1,3. To each generic
point in the allowed region corresponds, up to time reversal, parity and up to
the cyclic permutation (x1, . . . , x6) → (x4, . . . , x3), just one class of conformally
equivalent ordered sets of six points with null separated neighbours.

Using these six points as vertices of null hexagons, one has the option to
include or exclude hexagons which close via inˇnity. In the ˇrst case, one gets
then for each class of the ordered 6-tuples 4 × 26 conformal classes of null
hexagons.

Taking into account only null hexagons closed in ˇnite domains of R
1,3, one

has to exclude special conformal transformations whose critical light cone crosses
the hexagons. Then, the signs of the Mandelstam variables become invariants. As
a result, we found 17 conformal classes for generic points in the cross-ratio region
corresponding to 3 → 3 scattering and 15 classes in the region corresponding to
2 ↔ 4 scattering (by time reversal and parity there is still a factor 4).

After our purely geometrical analysis further studies should yield insight
into the following issues. Are the remainder functions of the Wilson loops
for different conformal classes, but the same point in cross-ratio space, related
by analytic continuation? A special example for such a continuation has been
analyzed in [9], but it has to be clariˇed whether analytic continuations connect
all classes. Is there some new information in the Wilson loops for contours closed
only via inˇnity?

For the investigation of these questions one should also keep in mind, that
there exists an alternative conformal compactiˇcation of the Minkowski space.
It differs from that used in Sec. 1 by restricting oneself in the deˇnition of
equivalence classes to λ > 0∗. As a consequence, R

1,3 is mapped to half
of the modiˇed projective cone. The version used above is obtained back by
identiˇcation of antipodal points.

∗For an early parallel discussion of both options, see [20].
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After extension to the universal covering, this setting turned out to be ap-
propriate for a causal quantization of conformally invariant ˇeld theories and its
relation to the corresponding Euclidean theory, see [12] and references therein.

Our option to allow hexagon conˇgurations closing via inˇnity comes then
back as the option to play with edges connecting a certain vertex to the antipode
of its neighbour.

Concerning the Wilson loops for contours closed only via inˇnity another
issue seems to be of interest for further investigation. It is the relation to the
anomaly∗ with respect to inversions studied for the Euclidean N = 4 super YangÄ
Mills theory in [21, 22]. The Wilson loop for a straight line is equal to one, but
that for a circle equals to a nontrivial function of the coupling constant, although
a circle touching the origin is mapped to a straight line under inversion at the unit
sphere. Since in the Euclidean version only one point of a closed contour passing
the origin is mapped to inˇnity, it has been argued by locality that the relative
factor between the Wilson loops before and after the inversion is universal for
smooth contours [21].

In the Minkowski space at least perturbative calculations should be feasible
before and after application of a special conformal transformation which opens
a closed contour. At the strong coupling end one should be able to handle the
situation, for instance, for null tetragons, where the corresponding AdS string
surface is known explicitly [2].

The conformal geometry of null polygons, as analyzed in the present pa-
per, could be also usefully beyond the N = 4 super YangÄMills theory, for
instance, in QCD, after one succeeds in separating conformal invariant pieces of
the corresponding Wilson loops.

Acknowledgements. H.D. thanks G. Jorjadze and S.Wuttke for helpful dis-
cussions and E. Radatz for collaboration at an early stage. The work is supported
in part by DFG via SFB 647 and by VolkswagenStiftung via grant I/84600.

APPENDIX A

We are interested in the explicit form of the SO(2, 4) transformations acting
in R

2,4, which correspond to the ˇnite translations, Lorentz transformations,
dilatations and special conformal transformations. For some related discussion
on the level of inˇnitesimal transformations, see, e.g., [19]. If we map from the
Minkowski space to RP 5

2,4 with (4), perform Λ ∈ SO(2, 4) in R
2,4, and then go

∗This anomaly has to be distinguished from the anomaly with respect to inˇnitesimal conformal
transformations [5], which via differential equations governs, for instance, the UV divergencies due
to cusps of the contour and also parts of the renormalized Wilson loops.
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back to Minkowski via (5), we get

x′μ =
Λμ

νxν +
1
2
(Λμ

0′ + Λμ
4 ) − 1

2
(Λμ

0′ − Λμ
4 )x2

(Λ0′
ν + Λ4

ν)xν +
1
2
(Λ0′

0′ + Λ4
0′ + Λ0′

4 + Λ4
4) −

1
2
(Λ0′

0′ + Λ4
0′ − Λ0′

4 − Λ4
4)x

2
.

(39)
To realize a translation x′μ = xμ + aμ, one has to choose Λμ

ν = δμ
ν , (Λμ

0′ +Λμ
4 ) =

2aμ, (Λ0′

0′ + Λ4
0′ + Λ0′

4 + Λ4
4) = 2 and the remaining coefˇcients of xν or x2

in (39) equal to zero. Together with the SO(2, 4) condition ηKL = ΛK
A ηABΛL

B

this ˇxes Λ up to the freedom Λ → −Λ ∗

translation: ΛM
N =

⎛
⎜⎜⎜⎜⎜⎝

1l aμ aμ

−aν 1 − a2

2
−a2

2

aν
a2

2
1 +

a2

2

⎞
⎟⎟⎟⎟⎟⎠ . (40)

In a similar manner, we get x′μ =
xμ + cμx2

1 + 2cx + c2x2
via

special conformal: ΛM
N =

⎛
⎜⎜⎜⎜⎜⎝

1l −cμ cμ

cν 1 − c2

2
c2

2

cν −c2

2
1 +

c2

2

⎞
⎟⎟⎟⎟⎟⎠ . (41)

The Lorentz transformations in the Minkowski space correspond to

Lorentz: ΛM
N =

⎛
⎝ Λμ

ν 0 0
0 1 0
0 0 1

⎞
⎠ , Λμ

ν ∈ SO(1, 3). (42)

And ˇnally, dilatations x′μ = e−ρxμ have as partner

dilatation: ΛM
N =

⎛
⎝ 1l 0 0

0 cosh ρ sinh ρ
0 sinh ρ cosh ρ

⎞
⎠ . (43)

∗For the capital indices M, N , etc., we take for convenience the ordering 0, 1, 2, 3, 0′, 4.
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APPENDIX B

Here we collect some properties of the images of the Minkowski-space null
geodesics in RP 5

2,4. Null geodesics have the form x + t n with x, n ∈ R
1,3,

n2 = 0, n0 = ±1, t ∈ R. Via (4) the corresponding image is given by W (t) =

λ

(
n +

x

t
,
1 − x2

2t
− xn,

1 + x2

2t
+ xn

)
. For t → ±∞ we get the same point,

it is

W (∞) = λ

(
nμ

xn
,−1, 1

)
for xn �= 0,

W (∞) = λ(nμ, 0, 0) for xn = 0.

(44)

Thus, null geodesics on the conformally compactiˇed Minkowski space∗ have
the topology of a circle. For two null geodesics, crossing at x with different
directions n1, n2, the corresponding points at inˇnity are different. Two different
null geodesics either do not intersect or intersect at only one point.

If one asks for the condition on x1, n1 and x2, n2 for crossing at inˇnity,
one gets

nμ
2 = ±nμ

1 , x1n1 = x2n1. (45)

APPENDIX C

In [14], conformal transformations were used to map a certain class to the
standard conˇguration (Λ → +∞):

x3 = (0, 0, 0), x2 =
(
−1 + p2

2
− 1 − p2

2
,p

)
,

x4 =
(
−1 + q2

2
,
1 − q2

2
,q

)
, (46)

x1 = x2 + (Λ/2,−Λ/2, 0), x5 = x4 + (Λ/2, Λ/2, 0), x6 = (Λ, 0, 0) + . . .

Note the different role of the two-dimensional transversal vectors p and q com-
pared to our treatment in Sec. 1. Here they are used to move the points staying
ˇnite into the transversal directions, there they move transversally the points,
which are put into conformal inˇnity.

The resulting formulas for the cross-ratios have the same form as (16).
In the following, we need 8 more conˇgurations of a similar nature as that

in (46). We call them all standard conˇgurations and show the Penrose diagrams

∗Its topology is S1 × S3, see, e.g., [13].
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Fig. 3. The Penrose diagrams of 2D projection of standard conˇgurations at p = q = 0.
The case in [14] and presented in Eq. (46) corresponds to picture (4) after a suitable cyclic
permutation of the vertices

of their projection on R
1,1 (for p = q = 0) in Fig. 3. The assignments of the

vertex number to the vertices in Fig. 3 are ˇxed by the sequence of plus/minus
in Table 1. Only in case a) (corresponding to standard conˇguration 1)) we can
make use of cyclically permuted vertex assignments.

It is straightforward to check that standard conˇgurations 1, 3, 4, 5, 6 and 9
yield cross-ratio formulas looking, up to a possible permutation of the uj , as (16)
and standard conˇgurations 2, 7 and 8 yield the form (18). Varying p and q, each
of these 9 standard conˇgurations covers either the complete ear or bag region
in the cross-ratio space. To check which of the classes of Tables 2Ä7 are real-
ized, we have to consider the sign pattern for the Mandelstam variables {x2

jj+2}
and {x2

jj+3} in these standard conˇgurations. In each of these cases the sign of
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all {x2
jj+2} is ˇxed. Beyond this, also the sign of that Mandelstam variable out

of {x2
jj+3}, which is related to the point in the origin, is ˇxed and can be read

off from Fig. 3. The sign of the other two is also ˇxed for the bag conˇgurations,
but can take independently the values ± for the ear conˇgurations. This yields
Table 8.

Table 8

Standard
conˇguration

Conformal
classes

Standard
conˇguration

Conformal
classes

1, x3 in origin a2, a4, a5, a6 5 c2, c3, c5, c7
1, x2 in origin a2, a3, a5, a7 6 c2, c3, c4, c8
1, x1 in origin a2, a3, a4, a8 7 e

2 b 8 d
3 c2, c4, c5, c6 9 f1, f2, f3, f4
4 c1, c3, c7, c8

Now we see that all conformal classes of Tables 2Ä7, except a1) and d∗), can
be realized by standard conˇgurations sketched in Fig. 3.

APPENDIX D

We ˇrst prove that generically there do not exist real conˇgurations of
type d∗). In general, a generic null hexagon conˇguration can be character-
ized in the following way. Consider a hexagon in R

3, spanned by the edges
p1, . . . ,p6. With p0

j = ±|pj| one can see it as the space projection of a cusped
null line in R

1,3. This null line becomes a (closed) hexagon iff the sums of the
three-dimensional lengths of edges, corresponding to the plus/minus choice for
the time component, are equal to each other.

Applied to the type d∗), this imposes the condition

|p3| + |p6| = |p1| + |p2| + |p4| + |p5|. (47)

To realize the d∗) set-up, all the x2
jj+3 would have to be positive. This would

imply, that in a suitable Lorentz frame the space components of, e.g., vertices 1
and 4, coincide: x1 = x4, i.e.,

p1 + p2 + p3 = 0 and p4 + p5 + p6 = 0. (48)

By the triangle inequality one has |p3| � |p1| + |p2| and |p6| � |p4| + |p5|.
This is in con
ict with (47) (of course except in degenerated cases, where both
triangles behind (48) collapse to a line).
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The just-used three-dimensional point of view is also helpful to ˇnd explicit
examples for real conˇgurations of type a1). Since also here x2

14 is positive, in a
suitable Lorentz frame the three-dimensional hexagon becomes a pair of triangles,
but now, instead of (48), with the condition

|p1| + |p3| + |p5| = |p2| + |p4| + |p6|. (49)

This imposes no obstruction by the triangle equations, and just putting the two
triangles on top of each other gives an explicit example for a type a1) conˇguration
in a R

1,2 subspace

x1 = (0, 0, 0), x2 = (1, 1, 0), x3 =

(
0,

1
2
,

√
3

2

)
,

x4 = (1, 0, 0), x5 = (0, 1, 0), x6 =

(
1,

1
2
,

√
3

2

)
.

(50)

It is depicted in Fig. 4. The related cross-ratios are u1 = u2 = u3 = 1. By
rotating the two triangles out of the coincidence position, rotating one of them
into the third space direction or playing with the lengths of the triangle sides, one
for sure has enough freedom to reach all points in ear 4 by deformations of the
special conˇguration (50).

Fig. 4. Example for a conˇguration in class a1). The time-like coordinate points upwards.
With thin lines the projection to the space-like (x1, x2)-plane is indicated
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APPENDIX E

Here we show that, as soon as the sign of (xi − xj)2 changes under a
conformal transformation, the corresponding image of each continuous contour
connecting xi and xj passes inˇnity. Let us denote by Wi and Wj the related
points on the cone in R

2,4. Then, sign ((x′
1 − x′

2)2) = −sign ((x1 − x2)2) via (6)
implies (Λ ∈ SO(2, 4)):

sign ((ΛW1)0
′
+ (ΛW1)4) = ± sign (W 0′

1 + W 4
1 ),

sign ((ΛW2)0
′
+ (ΛW2)4) = ∓ sign (W 0′

2 + W 4
2 ).

(51)

Let us now consider the function

fΛ(W ) :=
(ΛW )0

′
+ (ΛW )4

W 0′ + W 4
(52)

and evaluate it along a continuous contour from W1 to W2, whose image in R
1,3

stays in a ˇnite region. Due to (51) it has opposite sign on both ends. Hence,
one necessarily ˇnds zeros along the contour. These zeros of (ΛW )0

′
+ (ΛW )4

correspond to passing conformal inˇnity of R
1,3.
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