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We utilize the DVCS asymmetry measurements of the HERMES Collaboration for access to
Compton form factors in the deeply virtual regime and to generalized parton distributions. In particu-
lar, the (almost) complete measurement of DVCS observables allows us to map various asymmetries
into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two
associated Compton form factors. We compare this one-to-one map with local Compton form factor
ˇts and a model-dependent global ˇt.

‚ ¶·¥¤¸É ¢²¥´´μ° · ¡μÉ¥ ¨§³¥·¥´¨¥ DVCS  ¸¨³³¥É·¨¨ ±μ²² ¡μ· Í¨¥° HERMES ¨¸¶μ²Ó§Ê-
¥É¸Ö ¤²Ö ¶μ²ÊÎ¥´¨Ö ±μ³¶Éμ´μ¢¸±¨Ì Ëμ·³Ë ±Éμ·μ¢ ¢ £²Ê¡μ±μ ¢¨·ÉÊ ²Ó´μ³ ·¥¦¨³¥ ¨ μ¡μ¡Ð¥´´ÒÌ
¶ ·Éμ´´ÒÌ · ¸¶·¥¤¥²¥´¨°. ‚ Î ¸É´μ¸É¨, (¶μÎÉ¨) ¶μ²´μ¥ ¨§³¥·¥´¨¥ DVCS ´ ¡²Õ¤ ¥³ÒÌ ¶μ§¢μ-
²Ö¥É μÉμ¡· ¦ ÉÓ · §²¨Î´Ò¥  ¸¨³³¥É·¨¨ ¢ ¶·μ¸É· ´¸É¢μ ±μ³¶Éμ´μ¢¸±¨Ì Ëμ·³Ë ±Éμ·μ¢, £¤¥ ¤μ
¸¨Ì ¶μ· ¶·¨Ìμ¤¨É¸Ö ¶μ² £ ÉÓ¸Ö ´  ¤μ³¨´¨·μ¢ ´¨¥ ±μ³¶Éμ´μ¢¸±¨Ì Ëμ·³Ë ±Éμ·μ¢, ¸¢Ö§ ´´ÒÌ ¸
¤¢Ê³Ö É¢¨¸É ³¨. �μ²ÊÎ¥´´μ¥ μÉμ¡· ¦¥´¨¥ ¸· ¢´¨¢ ¥É¸Ö ¸ ²μ± ²Ó´Ò³¨ Ë¨É ³¨ ±μ³¶Éμ´μ¢¸±¨Ì
Ëμ·³Ë ±Éμ·μ¢ ¨ ³μ¤¥²Ó´μ-§ ¢¨¸¨³Ò³ £²μ¡ ²Ó´Ò³ Ë¨Éμ³.

PACS: 13.60.-r; 13.60.Fz; 24.85.+p; 12.38.Bx

INTRODUCTION

As is well known, at the beginning of the last century, the Compton scattering
played a crucial role in the debate on the dual nature of light. Namely, if light
scatters off an electron, energy is transferred to the electron and so the wavelength
of the scattered light increases. In addition to this Compton effect revealing
the particle aspect of light [1], the Compton scattering process has now many
applications in material science, medicine, astro- and particle physics, where in
particular, it is utilized to probe the electron wave function in matter. In hadronic
physics the Compton scattering process is used to reveal static properties of the
nucleon in terms of electric and magnetic polarizabilities. Its generalization into
virtual Compton scattering [2] offers a supplementing window to electromagnetic
form factor studies, which have been intensively performed in the last six decades.
At larger photon virtualities Q2 � 1 GeV2, the Compton scattering process probes
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the partonic content of the nucleon and gives access to the so-called generalized
parton distributions (GPDs) [3Ä5]. In particular, it was suggested to measure by
means of deeply virtual Compton scattering (DVCS) the quark orbital angular
momentum [6] and to access the transverse distributions of partons [7, 8]. With
these goals in mind, many experimental and theoretical activities were started
in the ˇeld of hard exclusive processes, where we consider the measurements
of (DV)CS observables as important as the measurements of electromagnetic
form factors.

Measurements of DVCS have taken place at HERA and Jefferson Lab since
the turn of the millennium, with the aim of understanding the decomposition
of the nucleon spin. The ˇrst observed DVCS candidate events at high energy
were announced by the ZEUS Collaboration using a collider experiment at HERA
in 2000 [9] and a few months later for ˇxed target kinematics [10]. The ˇrst
DVCS measurements in ˇxed target experiments were published simultaneously
by the HERMES and CLAS Collaborations a year later [11,12]. Both experiments
measured the beam spin asymmetry arising from the interference term between
DVCS and elastic scattering with bremsstrahlung in the scattering amplitude. The
latter process, called the BetheÄHeitler (BH) process, has the same initial and
ˇnal states as DVCS (ep → epγ) and at ˇxed target kinematics typically the
interference term in the scattering amplitude is more experimentally accessible
than the pure DVCS term [13]. Both HERMES and CLAS utilized the fact that
the large BH contribution in the interference term at Q2 ∼ 2 GeV2 and −t ∼
0.1 GeV2 ampliˇes the contribution from the more interesting DVCS process.

Since then, large experimental effort has been expended to measure various
observables in the electroproduction of photons and mesons. The phenomenolog-
ical challenge is now to describe these data in terms of GPDs, which requires a

exible model. Thereby, we meet a more elementary problem, in particular for
DVCS: the number of Compton form factors (or helicity amplitudes) is usually
larger than the number of observables at a given kinematical point. One must
therefore rely on model assumptions or hypotheses which means that, indepen-
dently of the applied method or framework, a theoretical bias cannot be avoided
in analyzing the present available world data set. This may even lead to a quali-
tative misinterpretation of the data, where the apparent in
uence of any particular
GPD model set may be determined more by the initial theoretical approach to the
problem than by the observed data.

In this paper, we will concentrate on the results from the HERMES Collab-
oration, which had both electron and positron beams available and is currently
the experiment that has delivered the most complete set of DVCS observables.
In Sec. 1, we introduce the DVCS observables and we give details on the Hermes
experiment. In Sec. 2, we consider the extraction of CFFs at given kinematical
points from the HERMES measurements as a map of random variables. Addition-
ally, we utilize the regression approach and use the HERMES data to access CFFs



HERMES IMPACT FOR THE ACCESS OF COMPTON FORM FACTORS 1303

by least-squares ˇtting. We also present a global GPD model ˇt that additionally
includes HERA collider and Jefferson Lab measurements and conclude on what
we have learned. Finally, we summarize and provide an outlook.

1. HERMES MEASUREMENTS OF DVCS OBSERVABLES

1.1. Deˇnitions of Photon Leptoproduction Observables. The DVCS
process enters as a subprocess in deeply virtual photon leptoproduction and its
amplitude can be decomposed in terms of twelve independent helicity amplitudes
given in some reference frame. Alternatively, we might parameterize the DVCS
amplitude in Lorentz-invariant Compton form factors (CFFs), which are deˇned
in analogy to GPD deˇnitions and are called [14]:

F ∈
{
H, E , H̃, Ẽ

}
, Feff ∈

{
Heff , Eeff , H̃eff , Ẽeff

}
, FT ∈

{
HT , ET , H̃T , ẼT

}
,

(1)
where we separated them into twist-two related CFFs F , twist-three related
CFFs Feff , and transversity CFFs FT . Unfortunately, different conventions,
which differ by power suppressed contributions, are used in the literature. As
noted previously, the DVCS subprocess is accompanied by the BetheÄHeitler
bremsstrahlung process, the amplitude of which is, at leading order in the QED
ˇne structure constant, real-valued. Moreover, it is entirely parameterized in terms
of the electromagnetic form factors, which for the nucleon are well-known for
the kinematics of interest. The interference term of both subprocesses is charge-
odd and depends linearly on the CFFs, while the BH-squared, depending only on
electromagnetic form factors, and DVCS-squared, given as bilinear form of CFFs,
amplitudes are charge-even. The differential cross section, for the most general
setup, is ˇve-fold and we write it in terms of the Bjorken scaling variable xB , the
negative virtuality squared of the intermediate photon Q2 = −q2, the momentum
transfer square in the t-channel, and two relative azimuthal angles φ, between
lepton scattering plane and reaction plane, and ϕ, between lepton scattering plane
and transverse spin polarization vector, as in [14]:

d5σ

dxB dQ2 dt dφ dϕ
=

α3xBy2

16π2Q4

√
1 +

4x2
BM2

p

Q2

×

×
[
|TBH|2

e6
+

I(F)
e6

+
|TDVCS|2(F∗,F)

e6

]
(xB ,Q2, t, φ, ϕ), (2)

where α = e2/4π is the electromagnetic ˇne structure constant and Mp is the
proton mass. Here, and in the following, we neglect the electron mass and deˇne
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Fig. 1. Reference frame adopted by the HERMES Collaboration [15]

the azimuthal angle in the reference frame, where the photon travels along the
z-axis, and the x-component of the incoming electron is positive, see Fig. 1. This
frame has been adopted by the HERMES Collaboration. Compared to the BMK
conventions in [14], in which the photon travels in opposite direction of the
z-axis, for the frame used by HERMES we have the relations

φBMK ≡ φBMK
N − φBMK

e = π − φ, φ ≡ φγ − φe, (3)

ϕBMK ≡ ΦBMK − φBMK
N = ϕ − π, ϕ = φγ − φS , (4)

where φN , φγ = φN + π, φe = 0, and Φ ≡ φS are the azimuthal angles of the
nucleon, photon, electron, and the transverse polarization vector, respectively.

The Fourier expansion of the various amplitude squares may be written in
analogy to the notation of [14] as

|TBH|2 =
e6

−tx2
Bw(φ)

{
ĉBH
0 +

2∑
n=1

ĉBH
n cos (nφ) + ŝBH

1 sin φ

}
, (5)

I =
±e6

−tx2
Bw(φ)

{
ĉI0 +

3∑
n=1

[
ĉIn cos (nφ) + ŝIn sin (nφ)

]}
, (6)

|TDVCS|2 =
e6

y2Q2x2
B

{
ĉDVCS
0 +

2∑
n=1

[
ĉDVCS
n cos (nφ) + ŝDVCS

n

]}
. (7)

Here, the + (−) overall sign of the interference term (6) refers to an electron
(positron) beam, 1/w(φ) ∝ 1/P1(φ)P2(φ) is the product of scaled BH propaga-
tors given in [14], which is expanded in the even harmonics of φ up to the second
order,

w(φ) = 1 + w1 cos (φ) + w2 cos (2φ). (8)
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Note that we included a generic kinematical overall factor
√
−t/(y2Q2) from the

interference term (6) in the deˇnition of the Fourier coefˇcients. Moreover, if the
differential cross-section (2) is weighted with w(φ), its Fourier expansion w.r.t.
the azimuthal angles becomes ˇnite.

Having both electrons and positrons with which to make measurements, one
can access the interference and DVCS-squared terms by means of cross section
differences and sums

dσI(φ, ϕ)
LOQED≡ dσodd(φ, ϕ) =

1
2

[dσ+ − dσ−] (φ, ϕ),
(9)

dσeven(φ, ϕ) =
1
2

[dσ+ + dσ−] (φ, ϕ).

Measuring such charge-odd cross sections with different lepton and nucleon po-
larizations, one can, in principle, reach an almost complete decomposition in
terms of the twelve CFFs (1). Namely, in the deeply virtual regime, the ˇrst and
second order harmonics of the weighted differential cross-section differences are
dominated by linear combinations of twist-two and twist-three related CFFs F
and Feff , respectively, while the third harmonic is related to the transversity
CFFs FT . In the ˇrst two cases, the number of possible observables allows
access to both the imaginary and real parts of the corresponding form factors,
while in the latter case only one combination of ReFT and three combinations
of ImFT can be accessed. Moreover, in this approximation, the constant terms
are governed only by twist-two associated CFFs F and, hence, such measure-
ments allow for an experimental consistency check of the underlying formalism,
given in some approximation.

The charge-even combination may serve also for an experimental consistency
check or may be used to access the desired CFFs in a different manner. Most
importantly, in single spin-
ip experiments, the BH term drops out in the con-
sidered order of QED and so such measurements give direct access to bilinear
CFF combinations. In double spin-
ip experiments one needs to subtract the BH-
squared term, which may be feasible at small xB where an effective ®pomeron¯
behavior may overwhelm the contributions of the BH subprocess.

Thus far, only HERA experiments at DESY had both charges of lepton beams
at hand. The HERMES experiment achieved measurements with polarized elec-
tron and positron beams for longitudinal and transversal target spin polarizations
and thus the following asymmetries were extracted.

• Single beam-spin asymmetries in the charge-odd and charge-even sectors:

ALU,I(φ) =

[
dσ→

+ − dσ←
+

]
−

[
dσ→

− − dσ←
−
]

dσ→
+ + dσ←

+ + dσ→
− + dσ←

−
, (10)

ALU,DVCS(φ) =

[
dσ→

+ − dσ←
+

]
+

[
dσ→

− − dσ←
−
]

dσ→
+ + dσ←

+ + dσ→
− + dσ←

−
, (11)
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where → (←) denotes electron (−) or positron (+) polarization along (opposite to)
the beam direction.

• Beam-charge asymmetry:

AC(φ) =
dσ+ − dσ−
dσ+ + dσ−

. (12)

• Single and double longitudinal target-spin asymmetries with a positron
beam:

AUL,+(φ) =
dσ⇐

+ − dσ⇒
+

dσ⇐
+ + dσ⇒

+

, (13)

ALL,+(φ) =

[
dσ←⇒

+ + dσ→⇐
+

]
−

[
dσ→⇒

+ + dσ←⇐
+

]
dσ←⇒

+ + dσ→⇐
+ + dσ→⇒

+ + dσ←⇐
+

. (14)

Note that, contrary to HERMES notation, ⇐ (⇒) denotes proton polarization
opposite to (along) the positron beam direction.

• Single transverse target-spin asymmetries in the charge-odd and charge-
even sectors:

AUT,I(φ, ϕ) =

[
dσ⇑

+ − dσ⇓
+

]
−

[
dσ⇑

− − dσ⇓
−

]
dσ⇑

+ + dσ⇓
+ + dσ⇑

− + dσ⇓
−

, (15)

AUT,DVCS(φ, ϕ) =

[
dσ⇑

+ − dσ⇓
+

]
+

[
dσ⇑

− − dσ⇓
−

]
dσ⇑

+ + dσ⇓
+ + dσ⇑

− + dσ⇓
−

. (16)

• Double longitudinal beam and transverse target-spin asymmetries in the
charge-odd and charge-even sectors:

ALT,I(φ, ϕ) =

=

[
dσ→⇑

+ + dσ←⇓
+

]
−
[
dσ→⇓

+ + dσ←⇑
+

]
−
[
dσ→⇑

− + dσ←⇓
−

]
+
[
dσ→⇓

− + dσ←⇑
−

]
dσ→⇑

+ + dσ←⇓
+ + dσ→⇓

+ + dσ←⇑
+ + dσ←⇓

− + dσ→⇑
− + dσ→⇓

− + dσ←⇑
−

,

(17)

ALT,even(φ, ϕ) =

=

[
dσ→⇑

+ + dσ←⇓
+

]
−
[
dσ→⇓

+ + dσ←⇑
+

]
+
[
dσ→⇑

− + dσ←⇓
−

]
−
[
dσ→⇓

− + dσ←⇑
−

]
dσ→⇑

+ + dσ←⇓
+ + dσ→⇓

+ + dσ←⇑
+ + dσ←⇓

− + dσ→⇑
− + dσ→⇓

− + dσ←⇑
−

.

(18)

All these observables can be theoretically expressed in terms of weighted
cross sections. However, since the denominator given by the unpolarized cross
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section depends on the azimuthal angle φ, they are given by a series of φ harmon-
ics rather than ˇnite sums. Nevertheless, in the kinematics where the BH process
dominates, the zeroth and ˇrst harmonics of these asymmetries are roughly de-
termined by the linear combinations of twist-two associated CFFs F that enter
the interference term. Note also that, except for the longitudinal target spin
asymmetries (13) and (14), the denominators are expressed by the charge-even
cross section. Utilizing the charge asymmetry (12), we ˇnd in general that an
asymmetry measured with a positron (or electron) beam can be expressed by
charge-odd (interference term) and charge-even (a possible squared BH term plus
a DVCS-squared term) expression:

A··· ,+(φ) =
A··· ,I(φ)

1 + AC(φ)
+

A··· ,BH(φ) + A··· ,DVCS(φ)
1 + AC(φ)

. (19)

Assuming that the BH amplitude overwhelms the DVCS one, we may drop the
DVCS induced part and we approximately have

A··· ,I(φ) ≈ A··· ,+(φ) [1 + AC(φ)] − A··· ,BH(φ), (20)

where the BH-associated asymmetry A··· ,BH(φ) drops out in single-spin asymme-
tries. We add that the double-spin asymmetry in the charge-odd sector is deˇned
in terms of cross sections as

ALL,I(φ) =

=

[
dσ→⇒

+ +dσ←⇐
+

]
−
[
dσ←⇒

+ +dσ→⇐
+

]
−
[
dσ→⇒

− +dσ←⇐
−

]
+
[
dσ←⇒

− +dσ→⇐
−

]
dσ→⇒

+ +dσ←⇐
+ +dσ←⇒

+ +dσ→⇐
+ + dσ→⇒

− +dσ←⇐
− +dσ←⇒

− +dσ→⇐
−

.

(21)

Let us ˇnally remind the reader here that asymmetries are expanded in an
inˇnite Fourier series. Hence, the method for the extraction of CFFs, outlined
above for cross-section differences, has to be modiˇed. For illustration let us
consider here the lepton beam-spin (10) and beam-charge (12) asymmetries that
offer access to the imaginary and real parts of CFFs, respectively. Substituting
the cross section (2) and the harmonic expansions (5)Ä(7) into (10) and (12), we
ˇnd the azimuthal angle dependencies of the charge-odd electron beam spin and
charge asymmetry, respectively:

ALU,I(φ) =
ŝI1 sin (φ) + ŝI2 sin (2φ)

2∑
n=0

ĉBH
n cos (nφ) +

−t

y2Q2
w(φ)

2∑
n=0

ĉDVCS
n cos (nφ)

, (22)

AC(φ) =
ĉI0 + ĉI1 cos (φ) + ĉI2 cos (2φ) + ĉI3 cos (3φ)

2∑
n=0

ĉBH
n cos (nφ) +

−t

y2Q2
w(φ)

2∑
n=0

ĉDVCS
n cos (nφ)

, (23)
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where the odd and even Fourier coefˇcients ŝIn and ĉIn of the interference term are
linear functions of the imaginary and real parts of the CFFs and the even DVCS
Fourier coefˇcients ĉDVCS

n are bilinear in all CFFs. In the 1/Q expansion, the ˇrst
harmonics of the interference term dominate and are governed by the CFFs F , the

second harmonics are relatively suppressed by
√

(tmin − t)/Q2 and determined
by the CFF Feff , while the third harmonic of the charge asymmetry (23) is
given by the CFFs FT and, to leading-twist accuracy, is predicted by the gluon
transversity GPD. In reality, however, all harmonics of the interference term
are functions of all twelve CFFs [16, 17]. Note that the third odd harmonic is
absent and hence the imaginary part of the transversity CFF combination cannot
be accessed from the interference term. In principle, this missing information is
contained in the DVCS-squared term. Besides the mixing of the various CFFs
for a given harmonic, the projection

A
sin (nφ)
LU,I =

1
π

π∫
−π

dφ sin (nφ)ALU,I(φ), (24)

A
cos (nφ)
C =

1
π

π∫
−π

dφ cos (nφ)AC(φ) for n > 0, A
cos (0φ)
C =

1
2π

π∫
−π

dφAC(φ)

(25)

yields an additional contamination due to the φ dependence in the denominator.
1.2. Experimental Details. Exclusive photon events at HERMES were

selected if having exactly one photon and one lepton track detected within the
acceptance of the spectrometer. The event selection was subject to the kinematic
constraints

1 < Q2 < 10 GeV2, 0.03 < xB < 0.35, −t < 0.7 GeV2,

W 2 > 9 GeV2, and ν < 22 GeV,

where W is the invariant mass of the γ∗p system and ν is the energy of the virtual
photon in the target rest frame. The polar angle between the directions of the
virtual and real photons was required to be within the limits 5 < θγ∗γ < 45 mrad.

An event sample was selected requiring that the squared missing-mass M2
X =

(q + Mp − q′)2 of the ep → e′γX measurement corresponded to the square of
the proton mass, Mp, within the limits of the energy resolution of the HERMES
spectrometer (mainly the calorimeter). Recall that q is the four-momentum of
the virtual photon, p is the initial four-momentum of the target proton, and q′

is the four-momentum of the produced photon. The ®exclusive region¯ was
deˇned as −(1.5 GeV)2 < M2

X < (1.7 GeV)2. This exclusive region was
shifted by up to 0.17 GeV2 for certain subsets of the data in order to re
ect
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observed differences in the distributions of the electron and positron data samples.
A systematic uncertainty contribution is assigned for this effect. This event
sample selection technique was used as it allows for the most complete set of
DVCS observable measurements to be considered; although results using the
measurement of the recoiling proton have been released by HERMES [18], this
technique is only currently available for beam-spin DVCS measurements and was
never utilized with a polarized target. Other systematic uncertainty contributions
arise from potential misalignment of the spectrometer, acceptance and smearing
effects, and the inclusion in the data set from misidentiˇed semi-inclusive deep
inelastic scattering events. The latter is mitigated somewhat using a correction
procedure. The sizes of the systematic uncertainties are estimated using Monte
Carlo techniques.

The data sample in the exclusive region contains events not only involving
the production of real photons in which the proton remains intact, but also events
involving the excitation of the target proton to a Δ+ resonant state (®associated
production¯). This is a consequence of using a missing-mass event sample se-
lection technique as noted above; the calorimeter resolution for measuring the
produced photon does not allow separation of the resonant events from the rest
of the data sample. No systematic uncertainty is assigned for the contribution
from these events; they are treated as part of the signal. A Monte Carlo calcu-
lation based on the parameterization from [19] is used to estimate the fractional
contribution to the event sample from resonant production in each kinematic
bin; the uncertainty on this estimate cannot be adequately quantiˇed because no
sufˇciently precise measurements have been made in the HERMES kinematic
region. The results of the estimate, called the associated fractions and labelled
®Assoc. fraction¯, are shown in [13,15,20Ä22]. The method used to perform this
estimation is described in detail in [13].

The HERMES measurements were presented in terms of four or six bins
times three one-dimensional projection in −t, xB , and Q2 (see Table 1). The
projections in the kinematic variables are each correlated; the Q2 and xB projec-
tions are very highly correlated as a consequence of the experimental design. For
our analyses, we employ the four-bin data, where the four-binned version of the

Table 1. Kinematical values of three times four HERMES bins from [13], labeled
as No. 1,. . . , No. 12

Bin No.

1 2 3 4 5 6 7 8 9 10 11 12

−t, GeV2 0.03 0.1 0.2 0.42 0.1 0.1 0.13 0.2 0.08 0.1 0.13 0.19

xB 0.08 0.1 0.11 0.12 0.05 0.08 0.12 0.2 0.06 0.08 0.11 0.17

Q2, GeV2 1.9 2.5 2.9 3.5 1.5 2.2 3.1 5.0 1.2 1.9 2.8 4.9
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six-binned data for the beam spin and charge asymmetries from the HERMES
measurements, published in [22], were provided to us by the HERMES Collab-
oration. We neglect the small differences in the kinematical means of different
asymmetry measurements, which are very much within the experimental uncer-
tainty and take the values that are listed in Table 1, labeled as bin No. 1,. . . ,No, 12.

Fig. 2. HERMES measurements (solid circles) of interference dominated asymmetries in
the twist-two sector (a) and BH/DVCS-squared dominated as well as charge odd twist-
three asymmetries (c) at the overall mean values xB = 0.097, t = −0.119 GeV2, and
Q2 = 2.51 GeV2. In panel b, the resulting CFFs from a linearized map of the interference
dominated asymmetries are displayed. The empty circles, shown in a and c panels, arise
from the inverse linearized map of extracted CFFs back to asymmetries
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Alternatively, we take the kinematical values that are given in the publications,
assuming that the asymmetry values do not vary within the small changes in
the mean kinematic values. The selected set of fourteen observables out of the
thirty-four asymmetry measurements, which we will use, are shown in Fig. 2 as

solid circles at the overall mean values xB = 0.097, t = −0.119 GeV2, and
Q2 = 2.51 GeV2.

2. ANALYSIS OF HERMES DATA

In Subsec. 2.1, we ˇrst illustrate which information one may extract from the
HERMES measurements, cf. Fig. 2, if one assumes that effective twist-three and
transverse photon helicity 
ip effects are absent. Employing the BMK formulae
set [14], we will also show that data are not in contradiction with this hypothesis.
The outline of the remainder is as following: in Subsec. 2.2 we give a review of
the methods used to analyze DVCS data and introduce the (non-)linear mapping
method. In Subsubsec. 2.3.1, this method is then applied to the HERMES data
and in Subsubsec. 2.3.2 we analyze the same data with local CFF ˇts. Finally,
in Subsubsec. 2.4 we present a global CFF ˇt with a simple GPD model used
previously in global ˇts to DVCS data off unpolarized protons. Finally, we
discuss the implications of our analyses for GPD model building.

2.1. Asymmetries in Terms of CFFs. Relying on the dominance of the BH-
squared term over the DVCS-squared term and approximating the BH-squared
term by its dominant constant harmonic, the following linear combinations of
CFFs enter in the various asymmetries (here we set the minimal value of −t
to zero):

• The ˇrst harmonics of single-beam spin (10) and beam charge (12) asym-
metries,

A
sin (1φ)
LU,I ∝ − y

√
1 − y

2 − 2y + y2

√
−t

y2Q2
× xB Im

[
CI
unp(F) + . . .

]
, (26)

A
cos (1φ)
C ∝ −

√
1 − y

2 − y

√
−t

y2Q2
× xB Re

[
CI
unp(F) + . . .

]
, (27)

are approximately given by the imaginary and real parts of the linear combination

CI
unp(F) ≈ F1H− t

4M2
p

F2E +
xB

2
(F1 + F2)H̃. (28)

• The ˇrst harmonics of single longitudinal-target spin asymmetry (13) and
double longitudinal-target spin asymmetry (14),

A
sin (1φ)
UL,+ ∝ −

√
1 − y

2 − y

√
−t

y2Q2
× xB Im

[
CI
LP(F) + . . .

]
+ DVCS2-term, (29)
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A
cos (1φ)
LL,+ ∝ − y

√
1 − y

2 − 2y + y2

√
−t

y2Q2
× xB Re

[
CI
LP(F) + . . .

]
+

+ BH2-term + DVCS2-term, (30)

are approximately governed by the imaginary and real parts of the linear combi-
nation

CI
LP(F) ≈ F1H̃ −

(
xB

2
F1 +

t

4M2
p

F2

)
xB

2
Ẽ +

xB

2
(F1 + F2)H. (31)

• The ˇrst even harmonic of the single transverse-target spin asymmetry (15)
and ˇrst odd harmonic of the double transverse-target spin asymmetry (17) in the
charge-odd sector,

A
sin (ϕ) cos (1φ)
UT,I ∝ −

√
1 − y

2 − y

√
M2

p

y2Q2
× xB Im

[
CI
TP−(F) + . . .

]
, (32)

A
sin (ϕ) sin (1φ)
LT,I ∝ +

y
√

1 − y

2 − 2y + y2

√
M2

p

y2Q2
× xB Re

[
CI
TP−(F) + . . .

]
, (33)

are approximately dominated by the imaginary and real parts of the linear com-
bination

CI
TP−(F) ≈ −t

4M2
p

[
2F2H− 2F1E + xB(F1 + F2)

xB

2
Ẽ
]

+ . . . (34)

• The ˇrst odd harmonic of the single transverse-target spin asymmetry (15)
and the ˇrst even harmonic of the double transverse-target spin asymmetry (17)
in the charge-odd sector,

A
cos (ϕ) sin (1φ)
UT,I ∝ +

√
1 − y

2 − y

√
M2

p

y2Q2
× xB Im

[
CI
TP+(F) + . . .

]
, (35)

A
cos (ϕ) cos (1φ)
LT,I ∝ +

y
√

1 − y

2 − 2y + y2

√
M2

p

y2Q2
× xB Re

[
CI
TP+(F) + . . .

]
, (36)

are approximately dominated by the imaginary and real parts of the linear com-
bination

CI
TP+(F) ≈ −t

4M2
p

[
2F1

xB

2
Ẽ − 2F2H̃

]
+ . . . (37)

As one realizes from the relations among observables and CFFs listed above,
there are six linear combinations of CFFs: three for the imaginary parts (26), (32),
(35) and three for the real parts (27), (33), (36). Unfortunately, the longitudinally
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polarized target double spin 
ip experiment has been performed only with positron
beam and, hence, the asymmetries (29) and (30) are contaminated by twist-
three contributions from the DVCS-squared term. Moreover, the latter term
also depends on the ˇrst harmonic of the BH-squared term. Since the DVCS-
squared contributions are expected to be relatively small and the ˇrst BH harmonic
is suppressed for HERMES kinematics, the single spin and double spin 
ip
asymmetries may be used to access the imaginary and real parts of the CFF
combination (31). To get rid of these contaminations, we would need longitudinal
single and double spin 
ip measurements in the charge-odd sector which were
unfortunately not performed∗.

Further twist-two dominated observables are the single transverse proton spin
asymmetry and the double longitudinal-transverse spin asymmetry in the charge-
even sector:

• The zeroth harmonic of the single transverse-target spin asymmetry, which
is governed by the bilinear combination

A
sin (ϕ) cos (0φ)
UT,DVCS ∝ +

1 − y

4(2 − y)
(−t)3/2

Mpy2Q2
× x2

B Im
[
HE∗ − xB

2
H̃Ẽ∗

]
. (38)

• The zeroth harmonic of the double longitudinal-beam and transverse-target
spin asymmetry, which is dominated by the bilinear combination

A
cos (ϕ) cos (0φ)
LT,BH +DVCS ∝ +

y(1 − y)
4(2 − 2y + y2)

(−t)3/2

Mpy2Q2
×x2

B Re
[
H̃E∗ − xB

2
HẼ∗

]
+BH2.

(39)
The asymmetry in (38) is a small quantity if the CFFs H and H̃ are nearly in
phase with E and Ẽ , respectively. Interestingly, in asymmetry (39), CFFs with
different parity are combined. We emphasize that for this longitudinal-transverse
double spin asymmetry (39), the BH-squared term is, at HERMES, kinematically
suppressed:

A
cos (ϕ) cos (0φ)
LT,BH + DVCS ≈ A

cos (ϕ) cos (0φ)
LT,DVCS . (40)

Similarly to the single spin asymmetry A
sin (ϕ) cos (0φ)
UT,DVCS , this double spin asymmetry

is therefore sensitive to the DVCS-squared term; this is demonstrated by the
empty rectangles in the middle row of Fig. 4 that show the pure BH contribution.
As mentioned above, the constant terms for charge-odd asymmetries, which are
relatively suppressed by 1/Q w.r.t. the ˇrst harmonic, may also be dominated by
twist-two associated CFFs; however, they may suffer from a larger contamination

∗For the history of the HERMES experiment, see http://www-hermes.desy.de/hedt/
seminar.html.
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of effective twist-three CFFs, which are neglected here completely. Here we have
available the real part of two linear combinations and the imaginary part of one:

• The zeroth harmonic of the beam charge asymmetry (12)

A
cos (0φ)
C ∝ −t

yQ2
× xB Re

[
CI
unp(F) − (1 − y)xB

2 − 2y + y2
(F1 + F2)H̃ + . . .

]
. (41)

• The zeroth harmonic of the single and double transverse-target 
ip asym-
metries (15) and (17)

A
sin (ϕ) cos (0φ)
UT,I ∝ +

√
−tMp

yQ2
× xB Im

[
CI
TP−(F)+

+
(1 − y)xB

2 − 2y + y2

−t

2M2
p

(F1 + F2)
xB

2
Ẽ + . . .

]
, (42)

A
cos (ϕ) cos (0φ)
LT,I ∝ −

√
−tMp

yQ2
× xB Re

[
CI
TP+(F)+

+
(1 − y)xB

2 − 2y + y2

−t

2M2
p

(F1 + F2)
xB

2
Ẽ + . . .

]
. (43)

Apart from terms that are kinematically suppressed at small xB and large y,
we realize that these asymmetries are already expressed in terms of CFF com-
binations (28), (34), (37) that determine the ˇrst harmonics. Hence these three
asymmetries, measured by HERMES, may roughly be expressed in terms of the
ˇrst harmonics:

A
cos (0φ)
C ∼ −

√
−t

Q
2 − y√
1 − y

A
cos (1φ)
C , (44)

A
sin (ϕ) cos (0φ)
UT,I ∼ −

√
−t

Q
2 − y√
1 − y

A
sin (ϕ) cos (1φ)
UT,I , (45)

A
cos (ϕ) cos (0φ)
LT,I ∼ −

√
−t

Q
2 − y√
1 − y

A
cos (ϕ) cos (1φ)
UT,I , (46)

where the fourth relation of the same form exists for the double longitudinal
spin asymmetry, see (30) and (48) below. Note that the accuracy of these crude
relations can be drastically improved by taking the higher BH harmonics into
consideration. The relations among the charge-odd asymmetries (44)Ä(46) offer
an experimental consistency check of the underlying formalism, which is shown
in Fig. 3. It can be seen that the expectations (squares) of our rough approxima-
tions (44)Ä(46) are mostly satisˇed, where the largest deviation of ∼ 2σ appears

in the 10th bin of A
sin (ϕ) cos (0φ)
UT,I . Unfortunately, the double spin asymmetries

A
cos (ϕ) cos (0φ)
LT,I and A

cos (ϕ) cos (1φ)
LT,I suffer from limited statistics.
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Fig. 3. Expectations (squares, slightly shifted to the left) from the approximations (44)Ä
(46) and values extracted from the one-to-one map (stars, slightly shifted to the right)

are compared to the HERMES measurements (circles) of A
cos (0φ)
C (top), A

sin (ϕ) cos (0φ)
UT,I

(middle), and A
cos (ϕ) cos (0φ)
LT,I (down) asymmetries in 12 bins by means

Another experimental test of the BH dominance is provided by:
• The zeroth harmonic of the longitudinally double spin 
ip asymmetry (14)

A
cos (0φ)
LL,+ = A

cos (0φ)
LL,BH + A

cos (0φ)
LL,I + A

cos (0φ)
LL,DVCS, (47)

which is decomposed in its charge-odd part,

A
cos (0φ)
LL,I ∝ +

2 − y

2 − 2y + y2

−t

yQ2
× xB Re

[
CI
LP(F)+

+
(1 − y)xB

(2 − y)2
(F1 + F2)H + . . .

]
, (48)

and the charge-even part, where the DVCS induced asymmetry part can be safely
dropped,

A
cos (0φ)
LL,BH+ DVCS ≈ A

cos (0φ)
LL,BH . (49)

For HERMES measurements, relations (29), (47)Ä(49) yield the expectation

A
cos (0φ)
LL,+ ≈ A

cos (0φ)
LL,BH −

√
−t

y2Q2

2 − y√
1 − y

[
A

cos (1φ)
LL,+ − A

cos (1φ)
LL,BH

]
, (50)



1316 KUMERI	CKI K., MéULLER D., MURRAY M.

Fig. 4. HERMES measurements of the double spin 
ip asymmetries A
cos (0φ)
LL,+ (top row)

and A
cos (ϕ) cos (0φ)
LT,BH+ DVCS (middle row), as well as of the transverse single proton spin asymmetry

A
sin (ϕ) cos (0φ)
UT,DVCS (bottom row) in the charge-even sector are displayed as circles. The

measurements are compared with pure BH contributions (empty rectangles, slightly shifted
to the left), expectations from the approximation (50) (squares, shifted to the left) and

values extracted from the one-to-one map (stars, slightly shifted to the right)

which is visualized in the upper panels of Fig. 4. It can be seen that the ex-
pectations (squares) of our rough approximation (50) are satisˇed, except in the
third and sixth bins. Note that if we take these bins literally, we have to con-
clude that in these two cases the DVCS amplitude overwhelms the BH amplitude
and so the sign expected from the BH term changes. Perhaps more realisti-
cally, we may view these two bins simply as a statistical 
uctuation on the
∼ 2σ level.

2.2. Methods for Analyzing DVCS Data. The amplitudes of the harmon-
ics for the various asymmetries, extracted by the HERMES Collaboration, can
be analyzed in various manners, e.g., one may consider any of the following
strategies:

i. CFFs are locally extracted from a complete set of observables by a map.

ii. CFFs are locally extracted by means of least squares, likelihood, or neural
network ˇts.

iii. Comparing measurements with model predictions.
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iv. Global model ˇts based on the least squares method, maximum-likelihood
estimation, or neural networks.

The term local refers here to a three-dimensional kinematical data point (bin)
given by a xB , t, and Q2 value.

The ˇrst method requires a complete measurement of DCVS observables. It
has been proposed and discussed in [14] by utilizing the 1/Q2 hierarchy, which
in fact is not needed. The method has not been applied so far to disentangle
CFFs from a complete measurement. As illuminated in Subsubsec. 2.2.1, if the
observable set is not complete at a given kinematical point, one cannot access
CFFs in an unbiased manner. One rather has to rely on hypotheses, constraints,
or model-dependent information. Trivially, in such a situation local regression
methods also cannot overcome the obstacles.

The second method in the above list, the local extractions of the imaginary
and real parts of CFFs (which, for brevity, we will call sub-CFFs) by means of
least squares ˇts, was applied to JLab and HERMES in [23Ä25] and [26, 27],
respectively.

At JLab the beam and longitudinal-target spin asymmetry [28, 29] and the
spin-dependent differential cross section [30] were measured. Due to the limited
number of observables, it is necessary to stick to hypotheses and/or model as-
sumptions. Usually, one adopts the twist-two dominance hypothesis and takes the
four-photon helicity conserved CFFs∗, where one may employ model constraints
to reach convergency, e.g., [23, 25], where the extracted sub-CFFs have strict
bounds applied, or one sticks to the hypothesis of H dominance and neglects all
other CFFs [24].

Following this method of working, one may be able to reduce the hypotheses
and constraints using HERMES data, because HERMES delivered a broader set
of experimental observables. So far, an incomplete set of HERMES data has
been analyzed by local least square ˇts [26, 27], with the hypothesis that seven
sub-CFFs determine all harmonics and satisfy some model constraints∗∗.

We add that local extraction requires that the observables have been measured
in a common set of kinematic bins, where it is assumed that mean values of the
kinematical variables are identical for all of the measurements. This, however,
can be only approximately true. The kinematical condition can be relaxed if
one employs neural networks. Presently, they have been employed to access the

∗In the strict sense, the twist-two dominance hypothesis includes four-photon helicity conserved
and also four-transverse-photon helicity 
ip CFFs. The latter set is neglected in the present DVCS
phenomenology.

∗∗These local least square ˇts are called model-independent, while model ˇts are considered as
biased. From what was said it is obvious that local CFF ˇts may be biased, too. On the other hand, a
good model ˇt will reproduce the observables at given kinematical point and, thus, gives one possible
set of CFF values.
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imaginary and real part of CFF H from Hermes data on unpolarized protons [31],
where convergency has been reached by simply sticking to the H dominance
hypothesis.

The third option in the list is simply to compare experimental points with
model predictions. Model predictions for DVCS have existed for over a decade.
In the beginning, it was rather popular to use Radyuskin's Double Distribution
Ansatz (RDDA) for GPDs, given at t = 0 [32]. In this method, one uses in-
formation on parton distribution functions (PDFs) and form factors to build the
model, while the GPD arises from a skewing operation that is governed by a
proˇle function and the width of this concave function is controlled by a ®b¯ pa-
rameter. Such models, e.g., given in [33], have been privately distributed as
numerical code, referred according to the author names of the paper [34] as
®the VGG code¯. This predictive programme is often used to compare data
with model predictions. However, when this is done, authors often neglect
to give full details of the code version and precise details of the underlying
model, e.g. the set of PDFs that are used to constrain the GPDs. The same
underlying double-distribution ansatz was also used in the BMK model [14],
in the numerical code of FreundÄMcDermott [35], and the GoloskokovÄKroll
model [36, 37], used in an adjusted hand-bag model framework for the de-
scription of deeply virtual meson production. Certainly, there are differences
in all these models, however, since the DVCS amplitude is dominated by the
CFF H, and H is inherited from an unpolarized PDF parameterization and
sometimes from the t-dependence of electromagnetic nucleon form factors, it
is not very surprising that all these models applied to DVCS off unpolarized
protons show similar features in a LO analysis. When describing, to some ex-
tent, the present DVCS measurements with a RDDA based GPD model, one
may (i) use a small skewness effect, (ii) use (in a LO analysis) NLO PDF pa-
rameterizations, and (iii) neglect GPD evolution (important in H1/ZEUS Col-
lider kinematics). Aiming to describe DVCS data, it has been also suggested
to build ®
exible¯ GPD parameterization by violating their spectral (or poly-
nomiality) property [38] (see also [39], where the claim of satisfying polyno-
miality is inadequate.) This is an entirely unacceptable recipe (see comments
in [40] and [41]) and so the phenomenological aspects of such models cannot be
discussed.

Since it was widely realized in the past that most variations of the RDDA
usually overestimate the size of beam spin asymmetries and do not describe some
other observables, it was necessary to build 
exible GPD models which can be
used in numerical fast ˇtting routines [42, 43], where GPDs are modelled in
terms of their conformal moments [44] (related representations were suggested
in [45Ä47]). Thereby, one tries initially to parameterize the partonic degrees
of freedom in such a manner that they are accessible from the experimental
measurements. We will provide more details in Subsec. 2.4.
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We emphasize that one major impediment to the understanding of DVCS data
in terms of one speciˇc double-distribution ansatz is the lack of exclusivity in the
data. As noted in Subsec. 1.2, there is an estimated average of 12% contamina-
tion of the HERMES data by processes involving an intermediate Δ-resonance.
While HERMES has published a beam-helicity measurement from a very pure
sample [18] that indicates that this contamination only acts as a small dilution of
the asymmetry magnitude at higher values of −t (e.g., −t > 0.25 GeV2), there
is sufˇcient uncertainty that one cannot make any deˇnitive statements on the
speciˇc form of a double-distribution ansatz.

In the next section, we outline the method of mapping the asymmetries
to CFFs. Thereby, we consider the asymmetries as normally distributed random
variables and consider the extraction problem of CFFs simply as a map of random
variables, where the functional dependence of asymmetries on CFFs is provided
by the theory. In fact, for normally distributed random variables, the formalism
we employ is very well known from (non-)linear regression and we need only to
discuss the maps of means and variances rather than probability distributions.

2.2.1. Maps of Normally Distributed Random Variables. Let us ˇrst clarify
what we call the twist-two dominance hypothesis and the additional approximation
that arise from a linearization procedure. For instance, the ˇrst harmonic of the
beam spin asymmetry (22) in the charge-odd sector reads

A
sin (1φ)
LU,I � 1

π

π∫

−π

dφ sin (φ)×

×
ŝI
1 sin (φ) + 0 × ŝI

2 sin (2φ)
2∑

n=0

ĉBH
n cos (nφ) +

−t

y2Q2
w(φ)ĉDVCS

0 + 0 × −t

y2Q2
w(φ)

2∑
n=1

ĉDVCS
n cos (nφ)

∣∣∣∣∣∣∣∣∣∣∣
Heff=HT =0

,

(51)

where 0×· · · indicate the expressions that are induced by twist-three and transver-
sity contributions and are neglected. Note that the power suppressed admixture
of H in the second odd harmonic is consequently neglected, too, and that we
also alter the deˇnition of the ĉDVCS

0 coefˇcient, since power suppressed twist-
three square terms and presumably-small transversity square terms are set to zero,
cf. formula (2.18) in [16]. In this approximation, the Fourier transform (51) can
be evaluated in terms of elementary functions,

A
sin (1φ)
LU,I � NŝI

1

ĉBH
0

× 1
b

⎛⎜⎝
√√√√a2 − 4b

(
1 + b +

√
(1 + b)2 − a2

)
a2 − 8(1 − b)b

− 1

⎞⎟⎠ , (52)
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where

N =
ĉBH
0

ĉBH
0 +

−t

y2Q2
ĉDVCS
0

(53)

is considered as an overall normalization factor and the coefˇcients

a =
ĉBH
1 +

−t

y2Q2
w1ĉ

DVCS
0

ĉBH
0 +

−t

y2Q2
ĉDVCS
0

BH>DVCS≈ ĉBH
1

ĉBH
0

(54)

and b =
ĉBH
2 +

−t

y2Q2
w2ĉ

DVCS
0

ĉBH
0 +

−t

y2Q2
ĉDVCS
0

BH>DVCS≈ ĉBH
2

ĉBH
0

arise from the higher harmonics of the denominator in (51). In our case of
interest, they satisfy the condition |a| > |b|, they are small quantities, and the
indicated approximation (54) can be considered as justiˇed in a BH dominated
regime. Consequently, in such an approximation the DVCS-squared term enters
only in the overall normalization factor N . Analogous formulae can be also
obtained for even harmonics, where we restrict ourselves here to the two lowest
harmonics.

Before we discuss the proton case, let us provide a pedagogical example with
a spin-zero target. In this case we are dealing with three CFFs H, Heff , and HT .
Moreover, we assume that the second and third harmonics are compatible with
zero, which suggest that the CFFs Heff and HT , associated with partonic twist-
three and transversity processes, can be neglected. Note that this approximation
may induce an ambiguity in the phenomenological treatment; instead of neglect-
ing Heff it may be alternatively justiˇed to neglect its twist-three component, i.e.,
one sets Heff ≈ −xBH. We relate the dominant asymmetries to the twist-two
associated CFF H by two linearized equations

A
sin (1φ)
LU,I ≈ Nc−1

ImHIm and A
cos (1φ)
C ≈ Nc−1

ReHRe, (55)

where we use for later convenience the shorthands HIm = ImH and HRe =
ReH. The coefˇcients

c−1
Im =

∂A
sin (1φ)
LU,I

∂HIm

∣∣∣∣∣
F=0

and c−1
Re =

∂A
cos (1φ)
C

∂HRe

∣∣∣∣∣
F=0

(56)

are calculated from (22), (24) and (23), (25) and are given as elementary func-
tions of the Fourier coefˇcients sI

1, cI
1, and cBH

n . In this procedure, we set
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the DVCS-squared term in the denominator to zero which, however, appears in
the normalization factor N . This overall factor can be considered as a bilinear
function of the twist-two associated CFF H or equivalently as a function of the
asymmetries. To a good approximation, it can be also expressed by the ratio of
the BH and DVCS cross sections

0 � N(A) ≈

π∫
−π

dφw(φ) dσBH(φ)

π∫
−π

dφw(φ) [dσBH(φ) + dσDVCS(φ)]
� 1. (57)

The solution of the linearized equations (55) is immediately obtained and, with
our twist-two dominance assumption, the imaginary and real parts of the leading
twist-two associated CFF read

ImH =
cIm

N(A)
A

sin (1φ)
LU,I and ReH =

cRe

N(A)
A

cos (1φ)
C , (58)

where cIm and cRe represent now two numbers for a given kinematical point.
The normalization factor is approximately given as

N ≈ 1

1 +
k

4
|H|2

with
k

4
|H|2 =

π∫
−π

dφw(φ) dσDVCS(φ)

π∫
−π

dφw(φ) dσBH(φ)

∣∣∣∣∣∣∣∣
Heff=HT =0

, (59)

where k is a known kinematical factor. Plugging the solution (58) into the
normalization (59) yields a cubic equation in N that has two nontrivial solutions:

N(A) ≈ 1
2

(
1 ±

√
1 − kc2

Im

(
A

sin (1φ)
LU,I

)2

− kc2
Re

(
A

cos (1φ)
C

)2
)

. (60)

The solution with the positive root satisˇes the boundary condition N(A = 0) = 1
and is the one to take if the BH amplitude overwhelms the DVCS one. Obviously,
the solution with the negative root satisˇes the boundary condition N(A = 0) = 0
and it is the one to take if the unpolarized DVCS cross section is larger than the
BH one. Finally, error propagation is done in the common manner. If the
experimental errors are uncorrelated, we may write the relative standard error
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in the following form:

(δ ImH)2

|ImH|2 =

(
δA

sin (1φ)
LU,I

)2

(
A

sin (1φ)
LU,I

)2 +
(δN)2

N2
− 2

∂N

N∂A
sin (1φ)
LU,I

1

A
sin (1φ)
LU,I

(
δA

sin (1φ)
LU,I

)2

,

(61)

(δ ReH)2

|ReH|2 =

(
δA

cos (1φ)
C

)2

(
A

cos (1φ)
C

)2 +
(δN)2

N2
− 2

∂N

N∂A
cos (1φ)
C

1

A
cos (1φ)
C

(
δA

cos (1φ)
C

)2

,

(62)

where the normalization uncertainty,

(δN)2

N2
=

∣∣∣∣∣ ∂N

N∂A
sin (1φ)
LU,I

∣∣∣∣∣
2 (

δA
sin (1φ)
LU,I

)2

+

∣∣∣∣∣ ∂N

N∂A
cos (1φ)
C

∣∣∣∣∣
2 (

δA
cos (1φ)
C

)2

+ . . . ,

(63)
can be easily evaluated by means of (60) and one may add a model estimate due
to the neglected twist-three and other transversity CFFs, which is indicated by
the ellipsis.

The method, i.e., the map of random variables, can be reˇned by the inclu-
sion of higher harmonics and it can be extended to a nucleon target. According
to the experimental observables and the assumptions, we have generically a set
of charge-odd asymmetries, arising from the interference of BH and DVCS am-
plitudes, that we arrange into an m-dimensional vector:(

AI)ᵀ
= (A1, . . . , Am) . (64)

For a complete twist-two DVCS off-the-nucleon analysis, we need four even and
four odd harmonics. Inclusion of the twist-three sector increases the number of
harmonics to 16, while for an hypothesis-free treatment we need 24 asymmetries.
Surely, hypotheses can be reˇned, e.g., in [23] the assumption Im Ẽ = 0 is made
in a twist-two analysis. Up to an overall normalization, we can formulate a linear
mapping problem as follows:

AI = N
(
AI |G

)
c−1 · F + N

(
AI |G

)
b · G, (65)

where F is the set of sub-CFFs (written as an m-dimensional vector) that one
wants to extract from the measurements and G is the set of sub-CFFs that is
considered as inaccessible within a given hypothesis. The inverse m × m coef-
ˇcient matrix c−1 and m × (n − m) matrix b of the inhomogeneous term are
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calculated from the theoretical formulae, e.g., for asymmetries proportional to the
interference term, we may use

c−1 =
∂AI

∂F

∣∣∣∣F=G=0

and b =
∂AI

∂G

∣∣∣∣F=G=0

. (66)

Obviously, the solution of the inhomogeneous problem (65) provides us the
sub-CFFs F in dependence on the m observables AI and the (n−m)-dimensional
set of unknown sub-CFFs G:

F =
1

N (AI |G)
c · AI − c · b · G. (67)

The variation of the solution w.r.t. both the measurement and the unknown
sub-CFFs can be written in terms of an m × m matrix and an m × (n − m)
matrix

∂F
∂AI =

1
N (AI |G)

[
c − c ·AI

N (AI |G)
⊗

∂N
(
AI |G

)
∂AI

]
, (68)

∂F
∂G = − c · AI

N2 (AI |G)
⊗

∂N
(
AI |G

)
∂G − c · b, (69)

where ⊗ symbolizes the direct product of two vectors, e.g.,{
A ⊗ ∂N

N∂G

}
ab

= Aa
1
N

∂N

∂Gb
, a, b ∈ {1, . . . , m}, b ∈ {1, . . . , n − m}.

In the case that (with a given hypothesis) the number of sub-CFFs matches
the numbers of observables, our equation (65) reduces to a homogeneous one,
i.e., we can set the inhomogeneous term in (67), containing the matrix b, to zero
and the variation of the solution is given by the Jacobian (68), which can be now
written in the form

∂F
∂AI =

1
N (AI)

[
c − F ⊗

∂N
(
AI)

∂AI

]
. (70)

From this we can easily transform the (variance-)covariance matrix of the exper-
imental measurements to that of sub-CFFs:

cov (F) =
[

∂F
∂AI

]
· cov

(
AI) · [ ∂F

∂AI

]ᵀ
, (71)



1324 KUMERI	CKI K., MéULLER D., MURRAY M.

where the result reads more explicitly as

cov (F) =
1

N2
c · cov

(
AI) · cᵀ−

− 1
N

[
c · cov

(
AI) · (F ⊗ ∂N(AI)

N∂AI

)ᵀ
+

(
F ⊗ ∂N(AI)

N∂AI

)
· cov

(
AI) · cᵀ

]
+

+
(

F ⊗ ∂N(AI)
N∂AI

)
· cov

(
AI) · (F ⊗ ∂N(AI)

N∂AI

)ᵀ
. (72)

This representation allows us to discuss separately the overall normalization er-
ror given by the last term on the r.h.s. of this equation. The normalization
factor N is determined as in our toy example from substituting the resultant
sub-CFFs into (57), which provides again a cubic equation for N . The cor-
rect solution is picked up by the requirement that N is real valued, lies in the
interval 0 < N < 1, and from the knowledge if the observables arise from a
BH (N > 1/2) or DVCS (N < 1/2) dominated scenario. If such a solution
does not exist, e.g., due to some large statistical 
uctuation of a mean value,
the mapping method is strictly-speaking not applicable; however, as we will see
below in Subsubsec. 2.3.1 in some of such cases it can be still considered as
a useful tool.

If no further experimental information in a given kinematical bin is available,
one may use a model estimate for the remaining unknown sub-CFFs G and
propagate the estimated uncertainties by means of a covariance matrix, providing
us with the sum

cov (F) =
[
∂F
∂A

]
· cov (A) ·

[
∂F
∂A

]ᵀ
+

[
∂F
∂G

]
· cov (G) ·

[
∂F
∂G

]ᵀ
. (73)

A more appropriate method would be to constrain the uniformly randomly distrib-
uted values of unknown sub-CFFs G and propagate the uncertainties numerically
to the errors of the extracted sub-CFFs F , formally written as

F =
〈

1
N (A|G)

c · A− c · b · G
〉

, (74)

∂F
∂A

=
〈

1
N (A|G)

[
c − c · AI

N (AI |G)
⊗ ∂N (A|G)

∂A

]〉
. (75)

A third possibility is that the remaining unknown sub-CFFs G could be
extracted from asymmetries in the charge odd sector, i.e., related to the DVCS-
squared term. Let us arrange these asymmetries as an (n − m)-dimensional
vector (

ADVCS
)ᵀ

= (Am+1, . . . , An) , (76)
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and let us suppose that we can complete the number of observables, written now
in terms of a n-dimensional vector

Aᵀ = (A1, . . . , Am, Am+1, . . . , An) . (77)

The charge-even observables are linear or quadratic in the remaining sub-CFFs G,
i.e., they are constrained by a system of linear constraints,

ADVCS
i = N (A)bᵀ

i (F) · G, i ∈ {m + 1, . . . , n}, (78)

such as those accessed by the transverse-target spin asymmetry (38), or quadratic
equations,

ADVCS
i = N (F)

[
ai(F) + bᵀ

i (F) · G + G
ᵀ
· ci · G

]
, i ∈ {m + 1, . . . , n},

(79)
where the overall normalization can now be considered as a function of the
complete set of asymmetries (77). Substituting the solutions of the linear con-
straints (67) into (78) and/or (79), one will generally end up with n−m quadratic
equations

ADVCS
i = N (A)

[
ai(AI |N (A)) +

+bᵀ
i (AI |N (A)) · G + G

ᵀ
· ci(AI |N (A)) · G

]
, (80)

where all coefˇcients explicitly depend only on the charge-odd asymmetries AI

and the normalization factor N , which appears on the r.h.s. as Np with p ∈
{−1, 0, 1}. The quadratic constraints (80) may be analytically solved, too, and
the solution may be written for convenience in terms of the matrix equation

G =
1

N (A)
cDVCS(A|N (A)) ·ADVCS, (81)

where cDVCS is an (n − m) × (n − m) matrix that explicitly depends on the
asymmetries and on the normalization, in general in a nonlinear manner (con-
taining roots). Of course, the solution (81) is not unique and only real-valued
sub-CFFs are of interest. Moreover, one would naturally utilize boundary con-
ditions to select the desired solution. Other disadvantages of using charge-even
rather than charge-odd observables are that the former asymmetries are expected
to be smaller than the latter ones and the cDVCS matrix is only known within
some given experimental uncertainty. The gradient of the remaining sub-CFFs is
calculated from

∂G
∂A

=
1

N (A)
cDVCS(A) · ∂ADVCS

∂A
+

+
1

N (A)
∂cDVCS(A)

∂A
· ADVCS − G ⊗ ∂N(A)

N (A) ∂A
, (82)
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where ∂ADVCS/∂A is a (n − m) × n matrix that projects on the subspace of
charge even asymmetries.

As we have shown, we can map, under certain assumptions, the measured
observables into the (sub)space of CFFs. We may collect these into the vector

Fᵀ = (F Im
1 , . . . ,F Im

n ,FRe
1 , . . . ,FRe

n ),

where the sub-CFFs G . . . ,Gn−m are now a part of F and n is now replaced by
the number 2n. Combining the linear and quadratic solutions (81) allows us to
ˇnd these 2n sub-CFFs from the asymmetries by means of

F =
1

N (A)
c(A|N (A)) · A, (83)

which can be nonlinear in the measured asymmetries A, speciˇed as vectors
in (77). The covariance matrix is calculated in the common manner as in (71),
replace there AI by A, where the gradient is now given as a 2n× 2n matrix

∂F
∂A

=
1

N (A)

[
c(A) +

∂c(A)
∂A

· A − F ⊗ ∂N(A)
∂A

]
. (84)

Let us recall that the normalization factor N as a function of the 2n asymme-
try measurements follows from substituting the solution of (83) into the deˇni-
tion (57), which also allows us to calculate its gradient:

N(A),
∂N(A)
N ∂A

. (85)

Remaining observables that are not used for the extraction of CFFs can be evalu-
ated from the solution (83) and may serve as a test for the validity of assumptions.

2.3. Local Extraction of Compton Form Factors. As explained in the
preceding section, the extraction of CFFs can be considered as a map of random
variables from the space of observables to the space of sub-CFFs rather than as a
ˇtting problem in which one relies on a given model and tries to ˇnd its parameters
by means of statistical methods. Of course, one may consider the theory as a
model and use the least-squares method (or maximum likelihood estimation) to
extract locally CFFs from measurements. In the following sections, we use both
points of view in local extraction procedures and confront the ˇndings.

The fourteen HERMES measurements, which we will utilize in different
variations, together with the deˇnition of asymmetries, described in Subsec. 2.1,
are listed in Table 2. Naturally, we will arrange the selected asymmetries as a
vector, e.g., an eight dimensional one Aᵀ = (A1, . . . , A8). In our analyses, we
assume that experimental errors are normally distributed, and the error propagation
is performed as described in Subsubsec. 2.2.1. The correlations of experimental
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Table 2. Observables from HERMES measurements that are utilized for the extraction
of twist-two associated CFFs

Observable Deˇnition Formulae
Data

from ref.

A
sin (1φ)
LU,I

π∫

−π

dφ sin φ

π
ALU,I(φ) (10) and (26), (28) [22], see

Subsec. 1.2

A
cos (1φ)
C

π∫

−π

dφ cos φ

π
AC(φ) (12) and (27), (28) [22], see

Subsec. 1.2

A
cos (0φ)
C

π∫

−π

dφ

2π
AC(φ) (12) and (41), (28) [22], see

Subsec. 1.2

A
sin (1φ)
UL,+

π∫

−π

dφ sin φ

π
AUL,+(φ) (13) and (29), (31) Table 4

from [21]

A
cos (1φ)
LL,+

π∫

−π

dφ cos φ

π
ALL,+(φ) (14) and (30), (31) Table 4

from [21]

A
cos (0φ)
LL,+

π∫

−π

dφ

2π
ALL,+(φ) (14) and (47), (48) Table 4

from [21]

A
sin (ϕ) cos (1φ)
UT,I

π∫

−π

dϕ sin ϕ

π

π∫

−π

dφ cos φ

π
AUT,I(φ, ϕ) (15) and (32), (34) Table 1b

from [13]

A
cos (ϕ) sin (1φ)
UT,I

π∫

−π

dϕ cos ϕ

π

π∫

−π

dφ sin φ

π
AUT,I(φ, ϕ) (15) and (35), (37) Table 1b

from [13]

A
sin (ϕ) cos (0φ)
UT,DVCS

π∫

−π

dϕ sinϕ

π

π∫

−π

dφ

2π
AUT,DVCS(φ, ϕ) (16) and (38) Table 1a

from [13]

A
sin (ϕ) cos (0φ)
UT,I

π∫

−π

dϕ sin ϕ

π

π∫

−π

dφ

2π
AUT,I(φ, ϕ) (15) and (42), (34) Table 1b

from [13]

A
sin (ϕ) sin (1φ)
LT,I

π∫

−π

dϕ sin ϕ

π

π∫

−π

dφ sin φ

π
ALT,I (φ, ϕ) (17) and (33), (34) Table 2

from [15]

A
cos (ϕ) cos (1φ)
LT,I

π∫

−π

dϕ cos ϕ

π

π∫

−π

dφ cos φ

π
ALT,I(φ, ϕ) (17) and (36), (37) Table 2

from [15]

A
cos (ϕ) cos (0φ)
LT,BH+ DVCS

π∫

−π

dϕ cos ϕ

π

π∫

−π

dφ

2π
ALT,even(φ, ϕ) (18) and (39) Table 3

from [15]

A
cos (ϕ) cos (0φ)
LT,I

π∫

−π

dϕ cos ϕ

π

π∫

−π

dφ

2π
ALT,I(φ, ϕ) (17) and (43), (37) Table 2

from [15]



1328 KUMERI	CKI K., MéULLER D., MURRAY M.

errors have not been analyzed to the full extent; however, the results for the
overall values as published by the HERMES Collaboration may suggest that the
covariance matrix is mostly diagonal [22]. Thus, we may safely assume in the
following that the experimental errors are uncorrelated, e.g., an eight dimensional
covariance matrix

cov (A) =

⎛⎜⎜⎜⎜⎜⎝
δ2A1 0 · · · · · · 0

0 δ2A2 0 · · · 0
... · · · . . . · · ·

...
0 · · · · · · δ2A7 0
0 · · · · · · 0 δ2A8

⎞⎟⎟⎟⎟⎟⎠ (86)

contains only diagonal entries, which for simplicity (actually, due to missing
information we cannot do better) are given as the sums of squared statistical and
systematic errors.

As there is no broad consensus for the precise deˇnition of CFFs, we adopt
here the conventions of [16] for unpolarized and longitudinally polarized target
asymmetries and take for transversally polarized ones the 1/Q expanded expres-
sions from [14]. Moreover, we will restrict ourselves here to the twist-two sector,
i.e., to the CFFs F ∈ {H, E , H̃, Ẽ} related to the observables by setting the
remaining eight CFFs Feff and FT to zero, which is justiˇed by the fact that
higher harmonics are compatible with zero or are difˇcult to interpret∗. The
imaginary and real parts of the twist-two associated CFFs F are collected in an
eight-dimensional vector

Fᵀ =
(
HIm, H̃Im, EIm, EIm

,HRe, H̃Re, ERe, ERe
)

, (87)

written below as F =
(

F Im

FRe

)
in terms of two four-dimensional column vectors

F Im = Im

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ and FRe = Re

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ , (88)

where we use E =
xB

2 − xB
Ẽ .

∗In contrast to other higher harmonics, in the longitudinal single target asymmetry, a relatively
large sin (2φ) moment with large uncertainties has been observed, which increases with growing −t
and which is maximally up to ∼ 2σ deviations away from zero [21]. However, this large value is
concentrated in a single bin in the xB projection, which is supportive of concluding that the amplitude
is simply a 
uctuation.
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The (approximate) redeˇnition of Ẽ into E removes the factor xB/(2 − xB)
that enters in the common form factor decomposition and makes the kinematical
coefˇcients of Ẽ in the cross section rather small. This redeˇnition restores also
the common ®Regge¯ behavior, i.e., E ∝ x

−α(t)
B for small xB (see [48]), and

simpliˇes the discussion of the real photon limit for CFFs [17]. However, the
common deˇnition is better suited to relate GPDs to form factors.

2.3.1. Maps of Asymmetries to CFFs. To determine the sub-CFFs (88) by
means of a map (83), we select eight twist-two related asymmetries out of the
measured ˇrst harmonics, listed in Table 2. Thereby, we take the kinematical
means from Table 1. In any of the possible maps we assume the twist-two
dominance hypotheses and we naturally employ for the access of the imaginary
parts of the twist-two associated CFFs F (speciˇed in (88)), the dominant single
spin asymmetries in the following sequence:

Asin ≡

⎛⎜⎜⎝
A1

A2

A3

A4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
A

sin (1φ)
LU,I

A
sin (1φ)
UL,+

A
sin (ϕ) cos (1φ)
UT,I

A
cos (ϕ) sin (1φ)
UT,I

⎞⎟⎟⎟⎟⎟⎠ ⇒ F Im = Im

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ , (89)

see expressions (26), (29), (32), (35) for asymmetries in terms of CFF combina-
tions (28), (31), (34), (37). The analogous relation for the corresponding even
harmonics and the real parts of CFFs reads

Acos ≡

⎛⎜⎜⎝
A5

A6

A7

A8

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
A

cos (1φ)
C

A
cos (1φ)
LL,+

A
sin (ϕ) sin (1φ)
LT,I

A
cos (ϕ) cos (1φ)
LT,I

⎞⎟⎟⎟⎟⎟⎠ ⇒ FRe = Re

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ , (90)

see (27), (30), (33), (36) and (28), (31), (34), (37). In the following we utilize,
however, two different analytic methods for the extraction of the real parts.

First, we consider a linearized map (67), where we take only charge-odd
asymmetries that arise from the interference of BH and DVCS processes. Thus,

we transform the single longitudinally polarized target spin asymmetry A
sin (1φ)
UL,+

and the longitudinally double spin-
ip asymmetry A
cos (1φ)
LL,+ (both measured only

with a positron beam), appearing in the four-dimensional vectors (89) and (90),
into the charge-odd sector. In doing so, we eliminate the interference term
in the denominator of these asymmetries by means of the known beam charge
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asymmetry, i.e., we ˇnd from relation (19):

A
sin (1φ)
UL,I = A

sin (1φ)
UL,+

[
1 + A

cos (0φ)
C − 1

2
A

cos (2φ)
C

]
+

+
1
2
A

sin (2φ)
UL,+

[
A

cos (1φ)
C − A

cos (3φ)
C

]
+ . . . − A

sin (1φ)
UL,DVCS,

(91)
≈ A

sin (1φ)
UL,+

[
1 + A

cos (0φ)
C

]
,

A
cos (1φ)
LL,I = A

cos (1φ)
LL,+

[
1 + A

cos (0φ)
C +

1
2
A

cos (2φ)
C

]
+

+ A
cos (0φ)
LL,+ A

cos (1φ)
C

1
2
A

cos (2φ)
LL,+

[
A

cos (1φ)
C + A

cos (3φ)
C

]
,

+ . . . − A
cos (1φ)
LL,BH − A

cos (1φ)
LL,DVCS, (92)

≈ A
cos (1φ)
LL,+

[
1 + A

cos (0φ)
C

]
− A

cos (1φ)
LL,BH ,

and we neglect the twist-three related asymmetries A
cos (2φ)
C , A

sin (2φ)
UL,+ , A

cos (2φ)
LL,+ ,

A
sin (1φ)
UL,DVCS, A

cos (1φ)
LL,DVCS, and higher harmonics, indicated by ellipses. Moreover,

for the charge-odd double longitudinal spin asymmetry, the ˇrst harmonic of
the BH contribution turns out to be small and can thus be safely subtracted
(proton form factor uncertainties are neglected). The imaginary and real parts
of the CFFs follow from the solution of two linearized homogeneous equations,
see (67) with b = 0, which we write in the form of the map (83) as(

F Im

FRe

)
=

1
N (A)

(
cIm 04×4

04×4 cRe

)
·
(

Asin

Acos

)
. (93)

Here 0n×m denotes a n-by-m zero matrix in the 8 × 8 coefˇcient matrix c,
calculated by the inversion of (66), and the ˇrst odd and even harmonics

Asin ≡

⎛⎜⎜⎝
A1

A2

A3

A4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
A

sin (1φ)
LU,I

A
sin (1φ)
UL,I

A
sin (ϕ) cos (1φ)
UT,I

A
cos (ϕ) sin (1φ)
UT,I

⎞⎟⎟⎟⎟⎟⎠
(94)

and Acos ≡

⎛⎜⎜⎝
A5

A6

A7

A8

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
A

cos (1φ)
C

A
cos (1φ)
LL,I

A
sin (ϕ) sin (1φ)
LT,I

A
cos (ϕ) cos (1φ)
LT,I

⎞⎟⎟⎟⎟⎟⎠ ,
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respectively. Consequently, in this linearized map, the cross talk of imaginary
and real parts of sub-CFFs arises only via the overall normalization factor, which
we analytically determine from the cubic equation (57). The gradient of this
linearized sub-CFFs solution can be analytically calculated by means of (70) and
the covariance matrix follows from (71), (72), and (86).

Unfortunately, the statistics in the double spin-
ip asymmetry measurements

are rather limited, in particular, for the A
sin (ϕ) sin (1φ)
LT,I and A

cos (ϕ) cos (1φ)
LT,I har-

monics that essentially constrain the real value of E and E . Hence, we try a
more general map (83), where we replace the two longitudinal-transverse double-

ip asymmetries in the charge-odd sector by the two DVCS-squared related asym-

metries A
sin (ϕ) cos (0φ)
UT,DVCS and A

cos (0φ)
LL,+ , which are in general measured with smaller

uncertainties, exempliˇed in Fig. 2. We arrange our eight asymmetries now into
three parts,

A =

⎛⎝ Asin

Acos

ADVCS

⎞⎠ with Acos ≡
(

A5

A6

)
=

(
A

cos (1φ)
C

A
cos (1φ)
LL,I

)
,

(95)

ADVCS ≡
(

A7

A8

)
=

(
A

sin (ϕ) cos (0φ)
UT,DVCS

A
cos (0φ)
LL,+

)
,

and Asin is the same vector as in (94). For the ˇrst even harmonics of the charge-
odd asymmetries Acos we take here the ˇrst two entries of the corresponding
four-dimensional vector in (94), which are mostly sensitive to the real parts of
CFFs H and H̃. Consequently, we split the four-dimensional vector FRe into
two two-dimensional vectors,

FRe =
(

HRe

ERe

)
with HRe = Re

(
H
H̃

)
and ERe = Re

(
E
E

)
.

(96)
Here, HRe (= F in the notation of Subsubsec. 2.2.1) is considered as a so-
lution of the inhomogeneous equation (67), and ERe (= G in the notation of
Subsubsec. 2.2.1) governs its inhomogeneous term, i.e.,

HRe =
1

N(A)
cRe ·Acos − cRe · bRe · ERe. (97)

The transverse single target spin asymmetry in the charge-even sector is propor-
tional to the real parts of CFFs E and Ẽ , see (38), and provides us one linear
constraint

A7 ≡ A
sin (ϕ) cos (0φ)
UT,DVCS = N(A)cᵀ

E (Asin,Acos)ERe, (98)
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where the cᵀ
E -coefˇcient depends on the six charge-odd asymmetries Asin

and Acos or sub-CFFs F Im and HRe that are extracted from the set of lin-
ear equations. Our system of equations is completed by the measurements of the
longitudinal double spin 
ip asymmetry (47),

A8 ≡ A
cos (0φ)
LL,+ = A

cos (0φ)
LL,BH + A

cos (0φ)
LL,I + A

cos (0φ)
LL,DVCS.

It contains (in addition to a large BH-squared term) contributions from the po-
larized interference term and the twist-two DVCS-squared contribution in the
numerator. Here we cannot assume that the interference term overwhelms the
DVCS-squared term; rather we assume that the two terms enter kinematically on
the same level. Hence we have a quadratic constraint for the CFF, which we
write as

A8 ≡ A
cos (0φ)
LL,+ = N(A)

[
a(Asin,Acos) + bᵀ(Asin,Acos) · ERe+

+ EReᵀ
· c(Asin,Acos) · ERe

]
, (99)

where all coefˇcients depend again on the six measurements Asin and Acos, used
previously. The linear constraint (98) together with the quadratical one (99) can
be analytically solved, giving us the desired last two sub-CFFs which we write
as a matrix equation, too

ERe =
1

N (A)
cE (A|N(A)) · ADVCS, (100)

where the 2 × 2 matrix cE (A|N(A)) is a nonlinear function of the eight asym-
metries A. The ˇnal solution can be written as in (83) with a 8 × 8 coefˇcient
matrix c(A|N(A)),⎛⎝ F Im

HRe

ERe

⎞⎠=
1

N (A)

⎛⎜⎝ cIm 04×2 04×2

02×4 cRe −cRe · bRe · cE(A|N(A))

02×4 02×2 cE(A|N(A))

⎞⎟⎠ ·

⎛⎝ Asin

Acos

ADVCS

⎞⎠ .

(101)
The normalization N(A) is again determined by the consistency equation (57).
The gradient of the sub-CFFs solution is calculated by means of (84) and the
covariance matrix cov(F) is calculated from (71), replacing there AI by A,
and (86).

A few comments are in order.
It is clear that, within our hypothesis of twist-two dominance, the matrix

valued equations (93), (101) are solutions of well-deˇned problems. However,
in practice we have to deal with the fact that the eigenvalues of c−1 (or its in-
verse c) matrix can become very small (big). Obviously, this unpleasant property
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arises from the fact that in particular the helicity target 
ip CFFs E and E are
kinematically suppressed in the set of observables.

In addition, we have six observables, namely, the three lowest harmo-
nics (41)Ä(43)

A
cos (0φ)
C , A

sin (ϕ) cos (0φ)
UT,I , A

cos (ϕ) cos (0φ)
LT,I ,

and three twist-two related asymmetries (38), (39), (47)

A
sin (ϕ) cos (0φ)
UT,DVCS , A

cos (ϕ) cos (0φ)
LT,BH +DVCS, A

cos (0φ)
LL,+ for our linearized map (93),

or alternatively the asymmetries (33), (36), (39)

A
sin (ϕ) sin (1φ)
LT,I , A

cos (ϕ) cos (1φ)
LT,I , A

cos (ϕ) cos (0φ)
LT,BH +DVCS for our map (101),

which are predicted by the extracted twist-two associated CFFs and serve as a
consistency check of our extraction procedure. However, we should bear in mind
that the three lowest harmonics (41)Ä(43) may be more strongly contaminated by
twist-three related CFFs.

For comparison, we will also employ the brute force method, where we solve
eight quadratic equations numerically and numerically evaluate the variation of
the solution. This allows us to judge the validity of the approximation used to
linearize the constraints. Thereby, we can employ the original HERMES data for
the ˇrst even and odd harmonics (89), (90) rather than the transformed ones (94).
As for the linearized map, we obviously have six observables for consistency
checks available.

Let us now present our results. Within the linearized map we ˇnd that the
consistency equation for the normalization (57) has two nontrivial real-valued
solutions in eleven out of the twelve kinematic bins and the overall asymmetry
values, shown in Fig. 2. According to the experimental indications, we pick the
solution for the BH regime, where we ˇnd for the weighted cross-section ratio

0.75 �

π∫
−π

dφw(φ) dσBH(φ)

π∫
−π

dφw(φ) [dσBH(φ) dσDVCS(φ)]
� 0.95. (102)

The inverse transformation of the sub-CFF solution back to the original asym-
metries, where we use the set of nonlinear equations, reproduces, in general, the
means and standard errors of the seven asymmetries{

A
sin (1φ)
LU,I , A

sin (1φ)
UL,+ , A

sin (ϕ) cos (1φ)
UT,I ,

A
cos (ϕ) sin (1φ)
UT,I , A

cos (1φ)
C , A

cos (0φ)
LL,+ , A

sin (ϕ) cos (0φ)
UT,DVCS

}
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(the derivatives of which we have used for the map to the sub-CFFs space) in
most of the cases on the level of a few percent. We observe in some bins

a larger deviation only for A
cos (1φ)
LL,+ , which is naturally explained by the fact

that we neglected in our linearization procedure the DVCS-squared term, which
becomes important if the asymmetry is small. However, also in this case the
original data can be considered as well reproduced. This inverse map is shown
for all considered observables in Figs. 8Ä11, shown in Appendix, as empty circles.
We add that a typical mapping example is presented for the overall asymmetry
values in Fig. 2.

A true one-to-one map of random numbers is reached if we use the brute
force method, where the start values may be taken from the solution of the
linearized map. Moreover, the mean values of the remaining asymmetries, used
for the consistency check, are well reproduced on the ∼ 1σ level, see stars
in Figs. 3 and 4.

Let us have a closer look to the problematic bin No. 3. The linear map (93)
yields

Im

⎛⎜⎜⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎟⎟⎠ =
1

N(A)

⎛⎜⎜⎜⎜⎝
7.6 ± 1.2

1.8 ± 1.3

−4.5 ± 6.0

11.0 ± 6.1

⎞⎟⎟⎟⎟⎠
(103)

and Re

⎛⎜⎜⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎟⎟⎠ =
1

N(A)

⎛⎜⎜⎜⎜⎝
0.4 ± 2.1

5.7 ± 4.1

−28.7± 21.2

−24.8± 22.2

⎞⎟⎟⎟⎟⎠ ,

where the uncertainties are calculated from (72) by neglecting the variation of the
normalization. The consistency equation (57) provides us two complex valued
solutions N = (0.5 ± 0.06)i, where the smallness of the imaginary part tells
us that the inconsistency is rather weak. From (103) we may conclude that the

large mean values for ERe and ERe
, which suffer from a large uncertainty, ruin

in turn the normalization constraint (57). Indeed, setting one (both) of them
to zero allows us to solve the normalization constraint, where N ∼ 0.75(0.85).
There are other possibilities to turn around the normalization inconsistency. In
our case the data mapping and/or the linearization procedure imply this inconsis-
tency. Applying the brute-force method to the eight original observables provides



HERMES IMPACT FOR THE ACCESS OF COMPTON FORM FACTORS 1335

the solution:

Im

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ =

⎛⎜⎜⎝
11.8 ± 8.9
2.6 ± 2.4

−8.1 ± 13.2
15.6 ± 12.7

⎞⎟⎟⎠
(104)

and Re

⎛⎜⎜⎝
H
H̃
E
E

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.8 ± 3.6
6.2 ± 9.9

−41.9± 52.4
−43.3± 66.6

⎞⎟⎟⎠ ,

where the errors are propagated as discussed above. From these ˇndings we
obtain the relatively small normalization factor∗ N = 0.64 ± 0.28. Substituting
this number into (103) shows us that the sub-CFF mean values from the linear
map are compatible with those of (104), obtained with the brute-force method.
However, in particular, the net error for the sub-CFF ImH, calculated from the
sub-CFF errors (103) and the normalization uncertainty, turns out to be smaller
than that in (104).

The resulting CFFs from the linearized (circles) and one-to-one (stars) maps
are presented for all twelve bins in Fig. 5. Both maps provide rather similar re-
sults, except that the errors for the sub-CFF ImH in bins No. 3, No. 7, and No. 11
are approximately two times larger. In these three bins the cross-section ratio
N � 0.7, calculated from the one-to-one map, is rather small. We conclude
that nonlinear effects in these circumstances are rather important for the error
propagation (see above discussion for bin No. 3). Clearly, the imaginary part
of H is (as expected) positive, rather large and incompatible with zero. Note
that the relatively large errors in bin No. 5 and No. 9 are (partially) induced by
the 
uctuations of Im E ; see, for example, the analytic expressions for the beam
spin (26), (28) and the cosφ projection (32), (34) of the single transverse-target
spin asymmetries.

All other sub-CFFs can be considered within the uncertainties as compatible
with zero. Surprisingly, the imaginary part of H̃ possesses even smaller absolute
errors than ImH. Both of these sub-CFFs are contaminated in the ˇrst place
by proton helicity 
ip sub-CFFs Im E and Im Ẽ , respectively (see CFF combina-
tions (28) and (31)), which both suffer from larger uncertainties. However, com-

paring the approximated expressions (26) and (29) for the asymmetries A
sin (1φ)
LU,I

∗We neglected here correlation of sub-CFF errors otherwise the normalization error increases
to 0.48. In turn we also neglect the error correlation in utilizing this normalization error in the linear
map (103).
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Fig. 5. Resulting sub-CFFs from a linearized (circles, shifted to the left) and a one-to-one
map (stars) of eight twist-two dominated charge-odd asymmetries as well as from the least
squares ˇt (triangles, shifted to the right) to fourteen twist-two related observables for each
of 12 HERMES bins

and A
sin (1φ)
UL,+ ,

A
sin (1φ)
LU,I

A
sin (1φ)
UL,I

� − y(2 − y)
2 − 2y + y2

Im
[
F1H− t

4M2
F2E + . . .

]
Im

[
F1H̃ − t

4M2
F2Ē + . . .

] ,

one realizes that the beam spin asymmetry has an additional relative suppression
factor,

y(2 − y)
2 − 2y + y2

∼ 0.5 with xB ∼ 0.1 and Q2 ∼ 2.2 GeV2,

for typical HERMES kinematics. Hence, the larger errors of the polarized
longitudinal-target spin asymmetry are reduced in the propagation to the sub-
CFFs by a factor of two or so. Another reason why the absolute error of ImH is
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larger than of Im H̃ is that the former sub-CFF is more sizeable and so it is also
more important for the normalization ratio (57) than the latter. In return, ImH
suffers from a larger absolute error, see, e.g., the explicit form of the covariance
matrix (72) for a linearized map. Note, however, that the twist-two hypothesis
may induce here a bias, since we neglected here the twist-three induced sin φ
harmonic of the DVCS-squared term.

The imaginary parts of the proton helicity 
ip CFFs E and Ẽ are less con-
strained, partially due to larger errors of the single transversely polarized target
spin-
ip asymmetries Å however, also in part due to their being kinematically
suppressed, see (32), (34) and (35), (37). Only the real part of the CFF H, also
compatible with zero, can be deˇnitely considered as well constrained due to the
precise data and since H dominantly enters in the charge asymmetry (27), (28)
even without additional y suppression. As one sees, the real parts of the remain-
ing three sub-CFFs are very noisy, in particular, those of the proton helicity 
ip
CFFs. A generic GPD model interpretation of our sub-CFF ˇndings is presented
below in Subsec. 2.4.

In the alternative map we replace the charge-odd asymmetries A
sin (ϕ) sin (1φ)
LT,I

and A
cos (ϕ) cos (1φ)
LT,I by A

cos (0φ)
LL,+ and A

sin (ϕ) cos (0φ)
UT,DVCS that contain the DVCS-squared

term in the numerator. The normalization is now determined by the nonlinear
equation, see also (59),

N = N(A, N) with N ∈ R and 0 < N < 1,

the solution of which yields now four roots. Literally taken, the mapping method
is now only applicable in 7 out of 12 bins, namely, in

No. 1, No. 2, No. 4, No. 9, No. 10, No. 11, No. 12,

and the overall bin. The failure of the method in bins No. 3 and No. 6 is caused
by the longitudinal double spin asymmetry measurements Acos (0φ)LL, +, which,
as mentioned above, contradicts the assumptions that the BH amplitude over-
whelms the DVCS one, see Fig. 3. The failure in bin No. 8 is related to the large

transverse spin asymmetry A
sin (ϕ) cos (0φ)
UT,DVCS (see Fig. 4), while the inconsistencies

in the mapping method for bins No. 5 and No. 6 are rather weak. Hence, we
conclude that, even if the uncertainties of both the replaced charge-odd asymme-
tries are rather large, these observables yield important constraints that ensure the
consistency of the mapping method.

2.3.2. Local Least Squares Fits to Asymmetries. Let us now employ the
method of least squares, where one looks for the minima of the χ2 function

χ2(F) =
[
Â − A(F)

]ᵀ
· cov−1(Â) ·

[
Â − A(F)

]
. (105)
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Here, the vector Â contains the measured asymmetries and cov−1(Â) is the
inverse of the covariance matrix. For uncorrelated errors the covariance ma-
trix (86) and its inverse are diagonal and the χ2-function (105) reduces to the
most common form

χ2(F) =
n∑

i=1

1
(δAi)

2

[
Âi − Ai(F)

]2

,

which is well known. The error propagation is often performed via the Hessian
matrix

H =

⎛⎜⎝ H11 · · · H1n

...
...

...
Hn1 · · · Hnn

⎞⎟⎠ with Hij =
1
2

∂2χ2

∂Fi ∂Fj

∣∣∣∣
χ=χmin

, (106)

where its inverse provides the covariance matrix for the sub-CFF

cov(F̂) = H−1. (107)

Let us ˇrst remind the reader that, instead of ˇnding a one-to-one map
of normally distributed random variables with the methods outlined in Subsub-
sec. 2.2.1 and used in Subsubsec. 2.3.1, one may equivalently utilize the least
squares method. Obviously, if a solution (83) exists, written as

F̂ = F(Â) and Â = A(F̂),

the χ2 function (105) takes exactly the value χ2 = 0. However, using blindly
a ®black box¯ ˇtting routine to extract the CFF values from DVCS asymme-
tries, one may ˇnd only one global minimum with χ2 ≈ 0 due to numerical
errors. This solution may be associated to an unphysical root, e.g., in HERMES
kinematics it may be associated with a solution where the DVCS cross sec-
tion dominates the BH cross section. Hence, in such ®ˇts¯ one must search
for all χ2 ≈ 0 minima and decide then by means of the cross-section ra-
tio (57) which of them is to be considered as the physical one. Alternatively,
one may implement the constraint N(F̂) > 1/2 for the BH dominated regime[
N(F̂) < 1/2 for the DVCS dominated regime

]
or one can constrain the value

of a single sub-CFF that is not very well determined by the data. It is easy to real-
ize from (105)Ä(107) that, if a one-to-one map exists, the covariance matrix (107)
can be written in the form

cov(F) =
[
∂A(F)

∂F

]−1

· cov(A) ·
[
∂Aᵀ(F)

∂F

]−1

, (108)
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or by means of the inverse function theorem in the form of (71), constructed from
the Jacobian (84). We emphasize that the use of constraints (particularly if the
ˇtted parameter ends on the boundary) may in
uence the results and so a true
one-to-one map cannot be obtained.

We used the equivalence of brute-force and least squares methods, employed
for the set of charge-odd asymmetries (94), for a numerical cross check be-
tween two independent software tools. Utilizing the popular minimization routine
MINUIT [49] in one code and the brute-force method in the other, we obtain
(except for bins No. 3 and No. 4) the same one-to-one map that is shown in Fig. 5
(stars). In these two bins, MINUIT ˇnds global minima in the DVCS dominated
regime rather than the BH one, exemplifying that taking here the global minima
gives an answer that we consider to be wrong. The small deviation of the total

χ2 = 2.95 · 10−4 or χ2/nd.o.f. = χ2/(12 · 8 − 8) = 3.35 · 10−6

value for all 12 bins from zero is here to be considered as a measure of the
numerical accuracy rather than re
ection of statistical 
uctuations.

Obviously, we can employ the least squares method to an ill-posed mapping
problem, e.g., as discussed in Subsubsec. 2.3.1 for the alternative map with the
set of eight observables (95), where an inconsistency appeared in a few bins. Of
course, in such a case the χ2 value will differ from zero and can be taken as a
measure of the inconsistency, which may originate from the statistical 
uctuation
of means in data.

Moreover, we can use the least squares method also in the case of an over-
complete set of equations. In such a case the χ2 value of a global minima
will also differ from zero. Including the two twist-two associated observables

A
sin (ϕ) cos (0φ)
UT,DVCS and A

cos (ϕ) cos (0φ)
LT,BH +DVCS in the set of the interference term dominated

asymmetries (89), (90), the total χ2 = 14.3 value differs now signiˇcantly from
zero. Note that

χ2/nd.o.f. = 14.3/(12 · 10 − 8) ≈ 0.13

is naturally a small number and that the χ2 value in a given bin can be considered
as a measure of the size of statistical 
uctuations and/or the validity of the utilized
twist-two dominance hypothesis. The resulting sub-CFFs are entirely compatible
with those from the one-to-one map (not shown).

Extending the twist-two dominance hypotheses also to the lowest asymmetry
harmonics, we have 14 observables available and we may consider the twist-two
associated sub-CFFs as eight separate independent parameters that we would like
to extract. Formulating the extraction problem in such a manner makes closer
contact to the work in [27], where all 24 asymmetries that were available at that
time were used. In our ˇt, the total χ2 value increases to

χ2 = 67.7 or χ2/nd.o.f. = 67.7/(12 · 14 − 8) ≈ 0.42,
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the mean values remain in general stable (see triangles in Fig. 5) except for
bins No. 8 and No. 12, in which the solution in the DVCS dominated regime is
again obtained. For No. 8, we present the MINUIT outcome and one realizes that
the solution in the DVCS dominated regime possesses a very large uncertainty.
For bin No. 12, we used the constraint |Re Ē | < 40, to ˇnd the local minimum
that provides the BH dominated solution. Thereby, the ˇt ends on a boundary
Re Ē = −40, and, hence, the error propagation for Re Ē completely fails Å
see the corresponding triangle in bin No. 12 in Fig. 5. Compared to the one-to-
one map, the uncertainties naturally decrease and become even smaller than in
our linearized map (ˇlled circles). As a consequence of this decrease, one may
view now the real part of E as not any more entirely compatible with zero. In
conclusion, extending the twist-two dominance hypothesis also to observables that
are potentially more contaminated by the remaining sixteen sub-CFFs and/or the
inclusion of constraints may underestimate the errors and can potentially result in
an overinterpretation of the resulting sub-CFFs.

Finally, let us compare our ˇndings with those obtained from a regression
analysis. Here, one would consider the χ2 value as a statistical measure and
would consider a solution with the value of χ2/d.o.f. ≈ 1 as optimal. As we
have seen, the precision of data and the fact that for any given observable most of
the sub-CFFs are kinematically suppressed, presently prevent us from accurately
determining all eight sub-CFFs. Although we have already answered the question
®Which sub-CFFs can be extracted with some reliability?¯, in the rest of this
section, we attempt to address this same question using the method of stepwise
regression. Thereby, one ˇrst performs eight separate single-sub-CFF ˇts and
sees which sub-CFF alone describes the data best (measured by χ2 value). Then
one proceeds to two-sub-CFF ˇts, where the best sub-CFF from the ˇrst step is
combined with each of the seven remaining sub-CFFs and the best-ˇtting pair
of sub-CFFs is retained. This procedure is continued until there is either no
improvement in the description of the data or new sub-CFFs are not extracted
with any statistical signiˇcance.

To make this stepwise procedure more reliable, we temporarily remove from

consideration the observables A
sin (ϕ) cos (0φ)
UT,DVCS and A

cos (ϕ) cos (0φ)
LT,BH+ DVCS because, for

these harmonics, squared combinations of sub-CFFs play a dominant role, so
a) they cannot be reasonably described in ˇrst-step single-sub-CFF ˇts and b) their
inclusion would introduce strong correlations between sub-CFFs in the second and
further steps thus potentially introducing bias for some sub-CFFs.

Fitting was performed by standard minimization of the χ2 function separately
in each kinematic bin, using the MINUIT package. As expected, it is ImH that
gives clearly the best description of all data. The single-sub-CFF ˇt of ImH
gives χ2/nd.o.f. = 198.4/132, with the second best being ReH with χ2/nd.o.f. =
472.7/132.
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In the second step, we have two equally good ˇts:
Å ˇt of ImH and ReH with χ2/nd.o.f. = 102.3/120, and
Å ˇt of ImH and Re E with χ2/nd.o.f. = 103.0/120.

(Next best being ˇts to ImH and Re H̃ with χ2/nd.o.f. = 122.4/120 and to ImH
and Re Ẽ with χ2/nd.o.f. = 185.4/120.) Trying now the third step, for several
choices of the third sub-CFF, quality of the ˇts improved somewhat (measured
by their p-value) but the values of this third sub-CFF cannot be extracted with

any statistical signiˇcance. Furthermore, after adding the A
sin (ϕ) cos (0φ)
UT,DVCS data,

the ˇts of ImH and ReE improve much more than the other scenarios due to
the dominant contribution of terms involving the ImH · Re E product to this
observable, cf. (38). Thus, as our ˇnal results we present two scenarios: one
selected by this stepwise regression procedure and another, more in agreement
with common expectations, where ˇts are done with the predetermined set of
sub-CFFs ImH, ReH and Im H̃. In both scenarios we now perform ˇts to the
complete set of 14 HERMES observables.

Fig. 6. Color online. Results of least-squares ˇts in two scenarios with only a small
number of CFFs locally ˇtted to data separately for each of 12 HERMES bins, ˇrst, with
only ImH and Re E ˇtted (red diamonds) and, second, with ImH, ReH and Im ˜H (purple
pluses). For comparison, result of one-to-one mapping procedure from Subsubsec. 2.3.1 is
also shown (green stars)
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• Scenario 1: Fit of ImH and Re E . χ2/nd.o.f. = 134.2/144, when adding
χ2 values for all 12 bins. Fits are bad for bin No. 3 (χ2/nd.o.f. = 19.9/12) and
bin No. 8 (χ2/nd.o.f. = 21.1/12). Other bins are ˇne.

• Scenario 2: Fit of ImH, ReH and Im H̃. χ2/nd.o.f. = 148.8/144.
Bins No. 3 and No. 8 again show a bad ˇt result, with χ2/nd.o.f. = 21.8/11
and χ2/nd.o.f. = 21.1/11.

We note that, in both scenarios, the ˇt in bin No. 8 is ˇne if the A
sin (ϕ) cos (0φ)
UT,DVCS

and A
cos (ϕ) cos (0φ)
LT,BH +DVCS data points are removed. The resulting sub-CFFs from both

scenarios are plotted in Fig. 6 and are compared with the one-to-one map. One
realizes that the sub-CFF ImH is quite robust and that the real part of CFF E
differs on some 2σ level from zero. The results from the second scenario es-
sentially agree with those in [27], showed there for three selected bins No. 2,
No. 3, and No. 4. We add that those results were obtained by means of model-
independent least squares ˇts to twenty-three asymmetries. However, most of the
asymmetries were not related to twist-two dominated quantities and the sub-CFF
parameters were deliberately chosen with reference to GPD model constraints.
How successfully ˇts from our two scenarios (and a global world ˇt presented in
Subsec. 2.4) describe particular observables is visible in Figs. 8Ä11 in Appendix.

2.4. Uses of HERMES Data for Model Builders and in Global Fits. Let us
discuss the constraints from HERMES DVCS data, presented in terms of CFFs
in Fig. 5, for GPD model builders. We consider here the GPD framework in the
perturbative leading order (LO) approximation and we can safely restrict ourselves
to the qualitative aspects. We adopt and reˇne here some older discussions, given
in Subsec. 5.1 of [50] and illuminated with BMK model predictions in Subsec. 5.2
there. The imaginary part of CFFs is, in this approximation, given by the GPDs
on the crossover line:

F (x, x, t, μ2 = Q2) LO=
1
π

ImF(xB , t,Q2)
∣∣∣∣
xB= 2x

1+x

.

As known, the valence quark part of GPD H is essentially governed by the

asymmetry A
sin (1φ)
LU , which is almost saturated by the valence quark content of

the forward PDF, decorated with some t dependence. On the other hand, rather
generic model estimates tell us that sea quark contributions are important in
HERMES kinematics, i.e., the partonic decomposition∗ reads

ImH = ImHval + ImHsea with ImHsea ∼ ImHval. (109)

∗Our decompositions of CFFs, which are charge even, in valence and sea quark parts contain
squared quark charges and the terms valence and sea are adopted from the common terminology as
used in global parton distribution function ˇts.
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Consequently, the HERMES data, taken in terms of ImH, require a small skew-
ness effect for GPD H , which is also required for the LO description of HERA
collider data. To get an easy handle on the real part of CFF H, one may use
instead of the LO convolution formula a signature-even GPD dispersion relation,
see [40Ä42,51] and references therein,

Re
{
H
E

}
(xB , t,Q2) LO= PV

1∫
0

dx
2x

ξ2 − x2

{
H

E

}
×

× (x, x, t, μ2 = Q2) ±D(t,Q2)
∣∣∣∣
ξ=

xB

2 − xB

. (110)

For HERMES kinematics, we can take for granted that the sign of the resulting
real part is determined by the ®Regge¯ behaviour, inherited from the PDF behav-
ior. Hence, valence quarks provide a large positive real part, while sea quarks
contribute a negative part and, in addition, there is a subtraction constant that is
related to the ®D-term¯ [52]. The HERMES data, taken in the form of ReH, tell
us that the modulus of this quantity is rather small and, hence, we would interpret
it as representing a cancelation between the three contributions. Note that the
experimental constraint on the subtraction constant depends also on details of the
GPD model and it is therefore rather weak.

Going along the same line, we can now discuss the CFF H̃. Its real part
arises from a signature-odd GPD dispersion relation,

Re

{
H̃
Ẽ

}
(xB , t,Q2) LO= PV

1∫
0

dx
2ξ

ξ2 − x2

{
H̃

Ẽ

}
×

× (x, x, t, μ2 = Q2)
∣∣∣∣
ξ=

xB

2 − xB

, (111)

where no subtraction is needed. From phenomenological PDF parameterizations,
one expects that the GPD H̃ , taken on the cross-over line and as it enters in
the DVCS amplitude, is (much) smaller than GPD H . Hence, one expects that
both the real and imaginary parts of CFF H̃ are relatively small. This is entirely
compatible with HERMES data, which surprisingly provide us also with a rather
strong constraint for Im H̃.

A generic discussion can also be given for the CFF E . However, here only
form factor information is available. Hence, one would assume that the zero-
skewness GPD has a simple functional form in which nodes are absent that arises
from Regge and large-x arguments. The normalization of such valence quark
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GPDs is adopted from the anomalous magnetic moments

κuval = 1.673 and κdval = −2.033,

taken from the nucleon. A crude approximation of the size of the valence part
of Im E is obtained if we assume that the same functional form holds for all
valence quark contributions,

Im Eval

ImHval
∼ e2

uκuval + e2
dκdval

e2
u + e2

d

∼ 1 ⇒ Im Eval ∼
1
2
ImH,

where we used (109). However, we should keep in mind that the functional form
w.r.t. both the t- and x-dependences may alter our estimates. It is expected that
the t- and x-falloff for E GPDs is steeper than for H GPDs [53], i.e., GPD-model-
reˇned estimates would give even smaller predictions for Im Eval. Considering the
CFF data in Fig. 5, one realizes that the noise of Im E is of the order of the means
of ImH. Hence, contrary to GPD-model-based claims, e.g., that HERMES data
provide a constraint on the quark orbital angular momentum decomposition [13]
or the suggestion that negative sea quark contributions to Im E are favored [54],
our generic arguments tell us that a partonic interpretation of HERMES data in
this speciˇc case is entirely biased by model assumptions. Let us add that the
dispersion relation (110) that we used for an estimate of Re E , together with
the standard model assumptions, tells us that the large negative Re E scenario
that we obtained from the regression method is difˇcult to understand from
the GPD model perspective (positive subtraction constant for negative D-term,
positive contribution for valence quarks, and positive contribution for negative
sea quarks).

To complete our short examination of the CFF data, we mention that the
CFF Ẽ should contain a pion pole contribution that should be large at small −t [55,
56]. Sometimes, GPD model builders believe that this is the most important
contribution and neglect for that reason the imaginary part. If one wishes, one
can see sizeable and negative Ẽ sub-CFFs at small −t Å see the ˇrst bin in Fig. 5,
where the signiˇcance for the imaginary part is even more pronounced than for the
real part. This clearly contradicts the common GPD model assertion. However,
since these data are very noisy, a deˇnite conclusion cannot be drawn and we
consider the CFF Ẽ as essentially unconstrained from HERMES DVCS data.

For comparison purposes, we also performed one global model ˇt to the
world DVCS off-the-proton data with a version of the hybrid model used in [43]
that we initially used to access the GPD H from unpolarized proton DVCS
data. The hybrid model comprises a full GPD model in the 
avor singlet sector
(dominated at small xB by sea quark and gluon contributions), while in the

avor nonsinglet (or valence quark) sector dispersion relations are used and,
hence, only the GPDs on the crossover line are needed. Keeping in mind that,
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apart from HERMES, no other experiment with a proton target could provide
information on the full separation of the various CFF contributions, we neglect
in our ˇt the Im E and Im Ẽ contributions, which are compatible with zero for
HERMES kinematics. However, we do include Re E and Re Ẽ , which are related
to subtraction constants in the dispersion relation (110) and in the oversubtracted
analog of (111), respectively. The reason for doing so is that Hall A unpolarized
cross-section measurements [30] indicate a rather large unpolarized DVCS cross
section, which suggest that the DVCS amplitude contains a large real part. In
our hybrid model, the contributions of sea quarks and gluons are modelled using
conformal moments of GPDs Hsea and HG, respectively, and LO QCD evolution
is taken into account, while the contributions of valence quarks are described by
directly modelling ImH and Im H̃ and using dispersion relations to obtain ReH
and Re H̃ (and evolution is neglected). Details of the model are given in [43], to
which we refer the interested reader.

In particular, we used the following data sets:

• The HERMES combined data on A
sin (1φ)
LU,I , A

cos (0φ)
C , and A

cos (1φ)
C [22]; on

A
sin (1φ)
UL,+ and A

cos (0φ)
LL,+ [21]; and on A

sin (ϕ) cos (1φ)
UT,I [13]. To work with statistically

independent data, we considered only the projection of the data along the −t axis,
i.e., just the ˇrst third of the published 18 [22] or 12 [13,21] kinematic bins. This
gives 3 × 6 + 2 × 4 + 4 = 30 data points.

• The ˇrst (sin φ) harmonics of the CLAS data on a) the beam spin asymme-
try with an unpolarized target [29], where we used only data with Q2 > 2 GeV
(4 points), and b) the longitudinal target spin asymmetry with a polarized tar-
get [28] (6 points).

• Fourier transforms of the Hall A measurements of beam spin difference
(12 points) and beam spin sum (8 points) [30], where cross sections were weighted
with the inverse product of the BetheÄHeitler propagators.

• Measurements by the H1 collaboration of
Å The DVCS cross section differential in t [57], Table 1, 1996Ä1997 data

(4 points) and 1999Ä2000 data (4 points).
Å The DVCS cross section differential in t [58], Table 3, (12 points).
• Measurements by the ZEUS Collaboration of
Å The DVCS cross section differential in t [59], Table 1, only Q2 > 4 GeV2

points (5 points).
Å The total DVCS cross section [59], Table 4 (4 points).
Å The total DVCS cross section [60], Table 1 (6 points).

In total, we have 95 data points. Fitted to these points was a version of the
model used in [43]. Here we only describe differences, and list the free ˇtting
parameters. The ˇrst difference is that, beside leading partial wave in SO(3)
expansion of conformal moments of GPDs Hsea and HG (the normalization
of which is ˇxed by DIS F2 data, and residual t dependence of Hsea being
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determined by free dipole mass parameter M sea) and subleading partial wave
with relative strength parameters ssea

2 and sG
2 , we take here into account also the

third partial wave with two new strength parameters ssea
4 and sG

4 . The second
difference to [43] is that Re Ẽ is here modelled by a shape suggested by the
pion pole contribution, but with normalization rπ and additional t-slope dipole
mass Mπ as two additional free parameters. Together with parameters Mval, rval,
and bval parameterizing ImH, C, and MC parameterizing subtraction constant∗,
and M̃val, r̃val, and b̃val parameterizing Im H̃ in the same way as in [43], this
brings the number of parameters to a total of 15. The ˇt of this model to all of
the above data results in χ2/nd.o.f. = 124.1/80, which is strictly speaking not a
good ˇt, but it is acceptable for a global ˇt to data coming from such a variety of
experiments and observables. Parameters of the ˇtted model are given in Table 3,
and the values resulting from this global ˇt for the 10 HERMES observables used
for local ˇts in the previous sections are given by the solid lines in Figs. 8Ä11 in
Appendix.

Table 3. Valence (top) and sea quark (bottom) related hybrid model parameters,
extracted from the global DVCS ˇt KMM12

Mval rval bval C MC M̃val r̃val b̃val rπ Mπ

0.95 1.12 0.40 1.00 2.08 3.52 1.30 0.40 3.84 4.00

(M sea)2 ssea
2 ssea

4 sG
2 sG

4

0.46 0.31 Ä0.14 Ä2.77 0.94

Now we ˇnally consider the possible tension between our simple GPD model
ˇt and the data. As one can see in Fig. 8, our ˇt reasonably describes the beam
spin and beam charge asymmetries, but shows a slight tendency for the mean
values to slightly overshoot the data values. This, as discussed above, is related
to the problem of overshooting the beam spin asymmetry measurements, taken
from events selected by the missing mass technique, with GPD models which
employ a leading order description that have skewness ratios r � 1. The tension
that appears in the lowest xB and Q2 bins for the ˇrst harmonic of the beam
charge asymmetry may be related to a technicality; namely, our input scale for
evolution is chosen to be 4 GeV2 and backwards evolution to Q2 � 1.5 GeV2

in the 
avor singlet sector is a delicate procedure that is rather sensitive to the
initial conditions. The dominant longitudinal proton spin-
ip asymmetry is also
overvalued by the model, see Fig. 9, which just re
ects the fact that the description
of unpolarized Hall A cross-section measurements requires a large real part in the

∗Note that the subtraction constant here is given by −D, appearing in (110).
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DVCS amplitude which is partially also obtained via a GPD dispersion relation
from the imaginary part of CFF H̃. Such a parameterization, which is effective for
unpolarized DVCS measurements, is clearly disfavored if longitudinal proton spin

ip asymmetry data are included. The transverse proton spin 
ip asymmetries,
shown in Fig. 10 are well described by our Im E = Im Ẽ = 0 models, within the
large experimental uncertainties. Mostly, this is also the case for the transverse
proton spin-
ip asymmetries, presented in Fig. 11. As an exception one might

view A
cos (ϕ) cos (1φ)
LT,I , given in (36), where one may see some hint that the sign of

the real part of Ẽ , adopted from the pion pole, contradicts data. Let us emphasize
that the basic modeling of Ẽ in terms of pion pole contribution is oversimpliˇed
and already contradicts the GPD interpretation of π+ electroproduction data in
the collinear framework [48,61].

Compared to previous good DVCS world data ˇts to data from an unpo-
larized proton, having χ2/d.o.f. ≈ 1, we may interpret our ˇndings here as a
slight tension between a very simple model and ˇxed target data. One may ar-
gue that this tension is induced by the attempt to explain the unpolarized photon
electroproduction cross-section data from JLab Hall A by means of the common
four twist-two GPDs, which have an oversimpliˇed functional form. A deˇnite
conclusion cannot be given, however, since one may use more intricate para-
meterizations of these four twist-two GPDs, or use an improved framework by
inclusion of perturbative corrections, certain twist-three [62Ä64] and twist-four
contributions [65, 66], or extend the number of GPDs and thus CFFs. Certainly,
there are also experimental uncertainties related to the issue of exclusivity, in
particular, the potential inclusion of events including a Δ-resonance within the
experimental data set. We emphasize, however, that the inclusion of polarized
proton data does not contradict the conclusion that GPD H plays the dominant
role in the description of present DVCS data.

3. SUMMARY AND OUTLOOK

In this article we analyzed, by means of mapping and regression methods,
the ˇnal set of DVCS off-the-proton data from the HERMES Collaboration ex-
tracted using a missing-mass event selection method. Thereby, we still utilized the
twist-two dominance hypothesis and, thus, we restricted ourselves to an overcom-
plete set of fourteen asymmetries. We showed that the HERMES Collaboration
provided an experimental proof of principle that, with an (almost) complete mea-
surement of eight ˇrst harmonic asymmetries in the charge-odd sector, all four
twist-two associated CFFs can be accessed in a BH dominated regime. In the
remaining six zero harmonic asymmetries the CFFs are kinematically suppressed
and we used them to check the twist-two dominance hypothesis or, alternatively,
employed them to access twist-two associated CFFs. Higher harmonics, in the
ˇrst place related by the remaining set of eight CFFs, were not considered.
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Apart from restricting ourselves to the twist-two sector, our analysis is rather
general. We tested different methods to access CFFs: mapping, local regression
analysis, and model ˇts. In any CFF (or GPD model) extraction procedure from
a set of asymmetries, one must bear in mind that separate solutions may exist for
the BH dominated and the DVCS dominated regimes. Based on experimental evi-
dence and model expectations, we took in our analysis the BH dominated solution.
A one-to-one map of asymmetries to the space of CFFs can be either found by
picking up the appropriate roots of a nonlinear equation system (in our case eight
equations that can be linearized) or, equivalently, by the least squares method.
However, numerical noise in a blind ®ˇtting¯ technique can provide an unphysical
solution. Constraining the value of CFFs to force a ®black box¯ ˇtting routine to
provide the physical solution, a rather popular method, may have the disadvantage
that a true one-to-one map cannot be obtained. The inclusion of more (twist-two
related and unrelated) asymmetries in a ˇtting procedure will increase the noise
and the physical solution is not necessarily obtained from the global minimum.

In a one-to-one map of interference dominated, mostly charge-odd asymme-
tries, it turns out that only the imaginary part of CFF H is not compatible with
zero, and all other seven sub-CFFs can be considered as compatible with zero.
Surprisingly, it also turns out that the best constrained quantity is the imaginary
part of CFF H̃, followed by the real and imaginary parts of H, and to a much
lesser extent also by the imaginary part of CFF E . The remaining four sub-CFFs
are very poorly constrained. One may be tempted to consider the extraction of
CFFs as a regression problem, and thus use selection criteria for ˇltering out the
noise. As expected, in this approach it turns out that ImH is a robust quantity,
but the method otherwise does not necessarily yield a unique solution. We present
two solutions: one obtained by the strict use of selection criteria and the other
a more hand-picked solution informed by standard GPD model considerations.
The ˇrst one suggests that the negative real part of CFF E can be considered
as large and the second solution suggests that one may consider the real part of
CFF H̃ as negative and the imaginary part of H̃ as positive. Certainly, from
the GPD model point of view one would give the hand-picked standard solution
preference. However, we emphasize that our one-to-one map only shows that
this well-constrained quantity Im H̃ is small and does not allow a further partonic
interpretation, e.g., extraction of any t dependence. A rather analogous situation
appears for the imaginary part of CFF E Å its magnitude is only loosely con-
strained by the data. The relation of GPD E to the spin sum rule inspires both
experimentalists and theoreticians to make deˇnite GPD model statements that
certainly cannot, at present, be justiˇed by simply describing experimental DVCS
data with a given model. This we have illuminated in our global GPD model
ˇt example where the GPD E (in the standard double distribution representation)
has been set to zero, giving us the perhaps best (however, not perfect) DVCS
world data description that is presently available.
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Let us illustrate that with the HERMES experiment, switched off 2007, our
knowledge about CFFs could have been much better. Supposing that the longitu-
dinally polarized proton asymmetries AUL,I and ALL,I would have been measured
in the charge-odd sector with the same statistics and slightly better systematics
than the existing data taken with positron beam, the proton helicity conserved
CFFs H and H̃ could have been accessed with roughly the same accuracy. Alter-
natively, a decrease of the large statistical uncertainties for the ALT,I quantities to
a typical value of other HERMES asymmetries would have drastically improved
the constraints for the real parts of proton helicity 
ip CFFs E and Ẽ (note, how-
ever, that these CFFs naturally suffer from a larger uncertainty). The effect of a
decrease in the uncertainties that would be feasible at a ˇxed target experiment
such as HERMES is illustrated by the ˇlled triangles in Fig. 7, where we naively
assumed for all polarized charge-odd asymmetries a δA ≈ 0.03 error (statistical
and systematic uncertainties are added in quadrature).

The HERMES Collaboration provided a total set of thirty-four asymmetries
that includes an (almost) complete measurement of the second harmonic asymme-
tries in the charge-odd sector, which are primarily associated with four twist-three
and four twist-two related CFFs. In principle, twenty-four asymmetries can be
utilized in a one-to-one map, which leaves us ten asymmetries for a consistency
check. Due to kinematic suppressions and noise it is expected that access to the

Fig. 7. a) Two projections with total errors 0.01 � δA � 0.03 (ˇlled triangles) and δA ≈
0.01 (empty triangles) of charge-odd asymmetries (left) for xB = 0.1, t = −0.1 GeV2,
and Q2 = 2.5 GeV2 are compared with HERMES measurements in bin No. 2 (solid
circles). b) The resulting CFFs from a one-to-one map, based on the twist-two dominance
hypothesis
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eight twist-tree and transversity associated CFFs is not achievable; however one
may hope for a test of whether our (and other) results are robust in an unbiased
map, i.e., where one drops the twist-two dominance hypothesis. Before one un-
dertakes such an attempt, several improvements and technicalities should be taken
into account, which are partially also needed on more general grounds:

• A physically motivated parameterization of the DVCS tensor in terms of
twelve CFFs.

• A code which relates the set of twelve well-deˇned CFFs to observables in
an exact manner, perhaps for different conventions.

• The (small) differences between proton polarization vector, deˇned in the
lab frame, and those in the rotated frame, see Fig. 1, should be taken into account,
at least from the principled point of view.

• It would be desirable that the covariance matrix for experimental measure-
ments would be available for each given kinematical bin.
Let us add to the ˇrst two points that various codes are presently used that relate
(twist-two associated) CFFs (in most cases understood as quantities that are ex-
pressed by conventionally deˇned GPDs) that are based on different conventions
and approximations. At present numerical differences do not matter, neverthe-
less, it is not desirable to proceed in this manner to the next generation of DVCS
experiments. The remaining obstacles can be overcome by means of the parame-
terization for the virtual Compton scattering tensor and the analytic cross-section
results that are presented in [17].

In planned DVCS experiments at JLAB@12GeV, having an electron beam
and ˇxed proton target, it is expected that experimental uncertainties will become
much smaller, as already demonstrated by the Hall A collaboration in measure-
ments of DVCS cross sections. Altogether in such an experimental setup one
can measure eight (seven) azimuthal angular-dependent cross-section combina-
tions (asymmetries), compared to sixteen (ˇfteen) for both charges of electrons.
Having precise cross-section measurements, one can form, at least in principle,
4× 4 even and 4× 3 odd harmonics, giving us twenty-four independent and four
dependent (constant term) observables. Hence, one may have a handle on the
CFF separation via a harmonic analysis [14]. Qualitatively or semiquantitatively,
one may also employ Rosenbluth separation to address the three separate parts
of the photon electroproduction cross section. To which extent this separation
is feasible requires detailed studies, where, unfortunately, the results will depend
on assumptions. However, the possibility of obtaining any unbiased extraction
of CFFs cannot be clearly stated at present. Certainly, a clean separation of the
charge-odd (interference term) and charge-even parts (sum of BH and DVCS
cross sections) requires a high-luminosity positron beam, too. Supposing that in
a (next-to-) next generation of leptonÄproton scattering experiments both kinds of
electrons are available and the total experimental uncertainties for all asymmetry
(or, better, cross-section difference) measurements are three times smaller than
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those of the beam-spin asymmetry measurements at HERMES, see empty trian-
gles in Fig. 7, we may expect that the CFF E can be accessed in the BH-dominated
DVCS regime with an accuracy that is presently available for CFF H.
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Appendix
VISUALIZATION OF HERMES DATA DESCRIPTIONS

Fig. 8. Color online. Fits to harmonics of asymmetries of scattering on an unpolarized
target. Black dots are HERMES data with systematic errors added in quadrature. Local
ˇts in two different scenarios are shown as red diamonds (ˇt to ImH and ReE) and
blue pluses (ˇt to ImH, ReH, and Im ˜H), slightly displaced to the right for legibility.
For comparison, we also show the result of a global ˇt to world DVCS data as a green
solid line
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Fig. 9. Fits to longitudinally polarized target asymmetry harmonics. Legend is as for Fig. 8

Fig. 10. Fits to transversely polarized target asymmetry harmonics. Legend is as for Fig. 8
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Fig. 11. Fits to asymmetry harmonics of polarized electron/positron beam scattering on a
transversally polarized target. Legend is as for Fig. 8
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