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Properties of gauge-invariant two-point quark Green's functions, deˇned with polygonal Wilson
lines, are studied. Green's functions can be classiˇed according to the number of straight line segments
their polygonal lines contain. Functional relations are established between Green's functions with
different numbers of segments on the polygonal lines. An integrodifferential equation is obtained for
Green's function with one straight line segment, in which the kernels are represented by a series of
Wilson loop vacuum averages along polygonal contours with an increasing number of segments and
functional derivatives on them. The equation is exactly solved in the case of two-dimensional QCD
in the large-Nc limit. The spectral properties of Green's function are displayed.
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INTRODUCTION

Path-ordered gluon ˇeld phase factors (Wilson lines) play a fundamental role
in deˇning gauge-invariant Green's functions in QCD [1, 2]. As complementary
objects to these, Wilson loops appear through the role of potentials [3Ä12] or
kernels [13, 14] in the evaluation of physical quantities. Properties of Wilson
loops were thoroughly studied in the past [15Ä20].

The present paper is a summary of recent investigations of the author to
obtain integrodifferential equations for gauge-invariant quark Green's functions
constructed with phase factors along polygonal lines [21,22]. Polygonal lines are
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of particular interest, since they can be decomposed as a succession of straight line
segments. The latter are Lorentz-invariant in the form and have an unambiguous
geometric limit when their end points approach each other. Furthermore, polygo-
nal lines can be classiˇed according to the number of segments they contain and
this, in turn, leads to a similar classiˇcation of Green's functions themselves.

A polygonal line representation appears as a natural generalization for light
quarks [21, 23] of the representation of heavy quark propagators in the presence
of external ˇelds [6]. Although the explicit use of representations of propagators
in external ˇelds is not a requisite to obtain functional equations for Green's
functions, since the use of the equations of motion of the latter, associated with
appropriate integrations, may produce the same effect, the former may provide a
more illustrative algorithm of the various mechanisms at work.

Polygonal lines for Wilson lines have also been introduced in the literature,
for the study of the high-energy behavior of scattering amplitudes. At high
energies, the propagators of fast moving quarks in the presence of external gluon
ˇelds are well approximated by including the contributions of the latter in Wilson
lines along straight line segments collinear to the world lines of the quarks [24Ä
26]. These naturally generate lightlike polygonal lines or lightlike Wilson loops
associated with high-energy scattering amplitudes.

The aim of our approach is to investigate the nonperturbative regime of
QCD, and therefore we focus on exact functional equations, at least on formal
grounds, of gauge invariant quark Green's functions, in analogy with the DysonÄ
Schwinger equations satisˇed by ordinary Green's functions. Applications in
two-dimensional QCD in the large-Nc limit allow us to check the consistency
and the degree of predictivity of the approach.

1. QUARK GREEN'S FUNCTIONS WITH POLYGONAL LINES

We designate by U(y, x) a path-ordered phase factor along an oriented
straight line segment going from x to y. A displacement of one end point
of the rigid segment, while the other end point remains ˇxed, generates also a
displacement of the interior points of the segment. This deˇnes a rigid path
displacement. Parametrizing the interior points of the segment with a linear para-
meter λ varying between 0 and 1, such that z(λ) = λy + (1− λ)x, the rigid path
derivative operations with respect to y or x yield

∂U(y, x)
∂yα

= −igAα(y)U(y, x) + ig(y − x)β×

×
1∫

0

dλλU(y, z(λ))Fβα(z(λ))U(z(λ), x), (1)
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∂U(y, x)
∂xα

= +igU(y, x)Aα(x) + ig(y − x)β×

×
1∫

0

dλ(1 − λ)U(y, z(λ))Fβα(z(λ))U(z(λ), x), (2)

where A is the gluon potential; F , its ˇeld strength; and g, the coupling constant.
In gauge-invariant quantities, the end-point contributions of the segments are

usually cancelled by other neighboring-point contributions and one remains only
with the interior-point contributions of the segments, represented by the integrals
above. We introduce for them a condensed notation:

δ̄U(y, x)
δ̄yα+

= ig(y − x)β

1∫
0

dλλU(y, z(λ))Fβα(z(λ))U(z(λ), x), (3)

δ̄U(y, x)
δ̄xα− = ig(y − x)β

1∫
0

dλ(1 − λ)U(y, z(λ))Fβα(z(λ))U(z(λ), x). (4)

The superscript ®+¯ or ®−¯ on the derivative variable takes account of the
orientation on the segment and speciˇes, in the case of joined segments, the
segment on which the derivative acts.

The vacuum expectation value (or vacuum average) of a Wilson loop along
a contour C will be designated by W (C). In the case of a polygonal contour
Cn, with n segments and n junction points x1, x2, . . . , xn, it will be designated
by Wn and represented as an exponential functional [17,19]:

Wn = W (xn, xn−1, . . . , x1) = exp [Fn(xn, xn−1, . . . , x1)] = eFn . (5)

The two-point gauge-invariant quark Green's function (2PGIQGF) with a
phase factor along a polygonal line composed of n segments and (n−1) junction
points is designated by S(n):

S(n)(x, x′; tn−1, . . . , t1) =

= − 1
Nc

〈ψ(x′)U(x′, tn−1)U(tn−1, tn−2) · · ·U(t1, x)ψ(x)〉, (6)

the quark ˇelds, with mass parameter m, belonging to the fundamental repre-
sentation of the color gauge group SU(Nc) and the vacuum expectation value
being deˇned in the path integral formalism. (Spinor indices are omitted and the
color indices are implicitly summed.) The simplest such function is S(1), having
a phase factor along a straight line segment:

S(1)(x, x′) ≡ S(x, x′) = − 1
Nc

〈ψ(x′)U(x′, x)ψ(x)〉. (7)

(We shall generally omit the index 1 from that function.)
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For the internal parts of rigid path derivatives, we have deˇnitions of the type

δ̄S(n)(x, x′; tn−1, . . . , t1)
δ̄xμ− =

= − 1
Nc

〈ψ(x′)U(x′, tn−1)U(tn−1, tn−2) · · ·
δ̄U(t1, x)

δ̄xμ− ψ(x)〉. (8)

2. FUNCTIONAL RELATIONS

The above Green's functions satisfy the following equations of motion con-
cerning the quark ˇeld variables:

(iγ · ∂(x) − m)S(n)(x, x′; tn−1, . . . , t1) =

= iδ4(x − x′)eFn(x, tn−1, . . . , t1) + iγμ δ̄S(n)(x, x′; tn−1, . . . , t1)
δ̄xμ− , (9)

which become for n = 1

(iγ · ∂(x) − m) S(x, x′) = iδ4(x − x′) + iγμ δ̄S(x, x′)
δ̄xμ− . (10)

Similar equations, with slight changes, also hold with the variable x′.
Multiplying Eq. (9) with S(t1, x) and integrating with respect to x, one ob-

tains functional relations between various 2PGIQGFs. A typical such relation is

S(n)(x, x′; tn−1, . . . , t1) = S(x, x′) exp [Fn+1(x′, tn−1, . . . , t1, x)] +

+
(

δ̄S(x, y1)
δ̄yα1+

1

+ S(x, y1)
δ̄

δ̄yα1−
1

)
S(n+1)(y1, x

′; tn−1, . . . , t1, x). (11)

(Integrations on intermediate variables are implicit and will not be written through-
out this paper. Here, y1 is an integration variable.) Equation (11) can also be
obtained, within a two-step quantization method, by using a speciˇc representation
for the quark propagator in the external gluon ˇeld, based on a gauge-covariant
expansion with phase factors along polygonal lines [21].

Equation (11) expresses S(n) in terms of two quantities: the ˇrst one, which
plays the role of a driving term, contains the simplest 2PGIQGF, with one straight
line segment, together with a Wilson loop average along a polygonal contour
with (n + 1) segments; the second term, which appears as a corrective term, is
represented by the contribution of a higher-index 2PGIQGF. However, since this
equation is valid for any n � 1, one can use it again in its right-hand side for
S(n+1). One therefore generates an iterative procedure that eliminates successively
the higher-index 2PGIQGFs in terms of the lowest-index one, S(1). Assuming
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that the terms rejected to inˇnity are negligible, one ends up with a series where
only S(1) appears together with Wilson loop averages along polygonal contours
with an increasing number of sides and rigid path derivatives along the segments.
This result shows that among the set of the 2PGIQGFs S(n), n = 1, 2, . . ., it is
only S(1), having a phase factor along one straight line segment, that is a genuine
dynamical independent quantity. Higher-index 2PGIQGFs could, in principle, be
eliminated in terms of S(1), together with polygonal Wilson loops and their rigid
path derivatives.

3. INTEGRODIFFERENTIAL EQUATION

The construction of S proceeds from the resolution of the equation of motion
(10). It is then necessary to evaluate the action of the rigid path derivative on S as
it appears in the right-hand side of the equation. This is done by using again the
functional relations (11), where the driving term of the right-hand side gives the
main contribution. Thus, the rigid path derivative acting along the segment xt1 of
S(n), acts in the right-hand side in the ˇrst place on the logarithm of the Wilson
loop average Fn+1; it also acts on the remainder containing S(n+1). Using back
Eq. (11), one obtains an equation for δ̄S(n)/δ̄x− which expresses the latter as a
product of δ̄Fn+1/δ̄x− with S(n) plus a remainder containing the derivative of
S(n+1). Continuing the procedure, one factorizes in front of every S(n′) (n′ > n)
derivatives of Wilson loop averages.

Selecting in the above set of equations the case n = 1, one ˇnds

δ̄S(x, x′)
δ̄xμ− =

δ̄F2(x′, x)
δ̄xμ− S(x, x′)− δ̄2F3(x′, x, y1)

δ̄xμ−δ̄yα1+
1

S(x, y1) γα1 S(2)(y1, x
′; x)−

−
(

δ̄S(x, y1)
δ̄yα1+

1

+ S(x, y1)
δ̄

δ̄yα1−
1

)
γα1

δ̄2F4(x′, x, y1, y2)
δ̄xμ−δ̄yα2+

2

S(y1, y2) γα2 ×

× S(3)(y2, x
′; x, y1) −

∞∑
n=4

(
δ̄S(x, y1)
δ̄yα1+

1

+ S(x, y1)
δ̄

δ̄yα1−
1

)
γα1 × · · · ×

×
(

δ̄S(yn−3, yn−2)

δ̄y
αn−2+
n−2

+ S(yn−3, yn−2)
δ̄

δ̄y
αn−2−
n−2

)
γαn−2 ×

× δ̄2Fn+1(x′, x, y1, . . . , yn−1)

δ̄xμ−δ̄y
αn−1+
n−1

S(yn−2, yn−1) γαn−1 ×

× S(n)(yn−1, x
′; x, y1, . . . , yn−2). (12)

The above equation displays the structure of the rigid path derivative of S
in terms of Wilson loop averages and other 2PGIQGFs. It is the analogue of
the self-energy DysonÄSchwinger equation for ordinary quark Green's functions.
One observes in its right-hand side the appearance of the whole set of 2PGIQGFs.
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Gluon propagators are replaced here by Wilson loop averages along polygonal
contours and rigid path derivatives acting on them. This ensures gauge invariance
of every term of the expansion. We notice that each derivative acts on a different
segment from the others and therefore one does not meet singularities arising
from the action of functional derivatives on the same point.

One should complete representation of Eq. (12) by bringing all derivatives to
the utmost right. The resulting expression, for the ˇrst few terms, can be found
in [21]. One ˇnds that the 2PGIQGF S(n) is accompanied by one or several
Wilson loop averages and by the 2PGIQGF S, these factors being globally sub-
mitted to n derivatives, S being individually submitted to at most one derivative.
The structure of the terms allows a classiˇcation of the kernels into categories
that can be described as connected, crossed, and nested, all of them being of the
irreducible type.

One major difference of the integrals present in the right-hand side of Eq. (12)
with those of the DysonÄSchwinger equation is the property that they are not of
the convolution type. This is due to the presence of the Wilson loops, whose
contours pass by all points of the accompanying terms and do not allow for a
convolutive factorization in x space.

The equation of motion (9), together with the result (12), takes now the
following form:

(iγ · ∂(x) − m)S(x, x′) = iδ4(x − x′) + iγμ

{
K1μ−(x′, x)S(x, x′)+

+ K2μ−(x′, x, y1)S(2)(y1, x
′; x)+

+
∞∑

n=3

Knμ−(x′, x, y1, . . . , yn−1)S(n)(yn−1, x
′; x, y1, . . . , yn−2)

}
, (13)

where the kernels Kn (n = 1, 2, . . .) contain Wilson loop averages along polyg-
onal contours that are at most (n + 1)-sided and (n − 1) 2PGIQGF S and its
derivative. The total number of derivatives contained in Kn is n. Once the
Wilson loop averages and the various derivatives have been evaluated and the
high-index S(n)s have been expressed in terms of S, Eq. (13) becomes an integro-
differential equation in S, which is the primary unknown quantity to be solved.

Equations (12), (13) can also be analyzed, at least superˇcially, from the
viewpoint of a perturbative expansion. According to Eqs. (3), (4), each deriv-
ative operator results in an insertion of the gluon ˇeld strength, leading to the
appearance of a valence gluon, accompanied multiplicatively by the coupling con-
stant. In the short-distance regime, where perturbative QCD should be applicable,
a naive counting of the number of derivatives would give us an indication about
the size of the corresponding term, the leading terms corresponding to those
having the least number of derivatives. Here, perturbation theory would be af-
fected in the presence of the polygonal Wilson loops for each term. At large
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distances, it is expected that Wilson loop averages are saturated by minimal sur-
faces [17,23]. Here also, increasing the number of derivatives would lead to less
dominant terms. It thus seems reasonable to assume, as a starting hypothesis, that
Eq. (12) does, on practical grounds, represent a perturbative expansion. The ˇrst
term of the series, corresponding to a single derivative term, is null for symmetry
reasons. Therefore, the leading term of the series would be represented by the
two-derivative term with a Wilson loop average along a triangular contour.

4. SPECTRAL REPRESENTATION

The analyticity properties of the 2PGIQGFs could be studied by passing to
momentum space. The polygonal structure of the phase factor lines facilitates
this task. The 2PGIQGF S(n) is a translation-invariant function of its (n + 1)
x-space arguments, having well deˇned Lorentz transformation properties, the
geometric conˇguration of the straight line segments being completely deˇned
by their end-point positions. The situation is even simpler for S which depends
only on the variable (x − x′); in momentum space it is dependent on a single
momentum p.

The singularities of the 2PGIQGFs in momentum space could be studied by
inserting in them a complete set of intermediate states. Here, however, a difˇculty
arises: intermediate states inserted in expressions (6) or (7) are necessarily colored
states, since no color singlet states can be made from gluons and single quarks
belonging to the fundamental representation. This means that if the theory is
conˇning, hadronic states, which are expected to form the complete sets of states,
could not contribute to the singularities of the 2PGIQGFs. One might then
conclude that the latter do not have singularities at all and are completely analytic
functions. However, the equations of motion (9), (10) do have singularities
resulting from the presence of the free quark propagator (the inverse of the Dirac
operator). To remedy this difˇculty, one has to admit that quark and gluon states,
although colorful objects, continue forming complete sets of states. It is the
solution of the equations that should provide their precise status. We admit that
hypothesis and assume at the same time that the quark and gluon states contribute,
like other states, with positive energies and that their ˇelds satisfy the causality
property.

With these assumptions, the analysis of the spectral properties of Green's
function S can be done as for ordinary propagators [27Ä29]. The phase factor
can be decomposed into a series of gluon ˇelds and the contribution of each ˇeld
along the straight line can be analyzed. One obtains at the end a generalized
version of the KéallenÄLehmann representation:

S(p) = i

∞∫
0

ds′
∞∑

n=1

[γ · pρ
(n)
1 (s′) + ρ

(0)
0 (s′)]

(p2 − s′ + iε)n
. (14)
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Simpliˇcations may occur by recombining several terms by integrations by parts
or by the inˇnite summation.

The above representation, or a simpliˇed version of it, might serve us as a
guide for searching for solutions of the integrodifferential equation (13).

5. TWO-DIMENSIONAL QCD

The equations obtained in the previous sections remain also valid in two
dimensions and could be analyzed more easily in that case. Two-dimensional
QCD in the large-Nc limit [30, 31] provides a simpliˇed framework for the
study of the conˇnement properties which are expected to prevail also in four
dimensions. Wilson loop averages can be explicitly calculated [32Ä34]: for simple
contours they are equal to the exponential of the areas enclosed by the contours. In
that case, the second-order derivative of the logarithm of the Wilson loop average
reduces to a two-dimensional delta-function. Higher-order derivatives give zero,
since they act on different segments of the polygonal contour. The case of
overlapping self-intersecting surfaces, which give more complicated expressions,
should be analyzed separately. A detailed analysis suggests that the residual terms
they produce are probably of zero weight under the integrations that are involved.
We assume that hypothesis.

In the series of terms of Eq. (12) it is only the second-order derivative that
survives, and the integrodifferential equation (13) takes the following (exact)
expression:

(iγ · ∂ − m)S(x) = iδ2(x) − σγμ(gμαgνβ − gμβgνα)xνxβ ×

×

⎡
⎣ 1∫

0

dλλ2 S((1 − λ)x)γαS(λx) +

∞∫
1

dξ S((1 − ξ)x)γαS(ξx)

⎤
⎦, (15)

where σ is the string tension.
The above equation can be analyzed by ˇrst passing to momentum space.

Designating by S(p) the Fourier transform of S(x), one can decompose it into
Lorentz invariant components:

S(p) = γ · pF1(p2) + F0(p2). (16)

The solution of Eq. (15) can be searched for by using the analyticity properties of
the 2PGIQGF as discussed in Sec. 4. It turns out that the equation can be solved
exactly and in analytic form. The functions F1 and F0 are found having an inˇnite
number of branch cuts located on the positive real axis of p2 (timelike region),
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starting at thresholds M2
1 , M2

2 , . . . , M2
n, . . ., with fractional power singularities

equal to −3/2. Their expressions are [22], for complex p2,

F1(p2) = −i
π

2σ

∞∑
n=1

bn
1

(M2
n − p2)3/2

, (17)

F0(p2) = i
π

2σ

∞∑
n=1

(−1)nbn
Mn

(M2
n − p2)3/2

. (18)

The masses Mn (n = 1, 2, . . .) are positive, greater than the free quark mass m and
ordered according to increasing values. For massless quarks they remain positive.
The masses Mn and the coefˇcients bn, the latter being also positive, satisfy,
for general m, an inˇnite set of algebraic equations that are solved numerically.
Their asymptotic values, for large values of n such that n � m2/(πσ), are

M2
n � πnσ, bn � σ2

Mn + (−1)nm
. (19)

The functions (M2
n − p2)−3/2 are deˇned with cuts starting from their branch

points and going to +∞ on the real axis; they are real below their branch points
on the real axis down to −∞.

The expressions (17), (18) are represented by weakly converging series. The
high-energy behavior of the functions F1 and F0 is obtained with a detailed study
of the asymptotic tails of the series and the use of the asymptotic behaviors of
the parameters Mn and bn (Eqs. (19)). One ˇnds that they behave as in free ˇeld
theories, which is here a trivial manifestation of asymptotic freedom [35]:

F1(p2) =
p2→−∞

i

p2
, (20)

F0(p2) =
p2→−∞

im

p2
for m �= 0, (21)

F0(p2) =
p2→−∞

− 4iσF0(x = 0)
(p2)2

for m = 0. (22)

In summary, the solution of Eq. (15) is nonperturbative and infrared ˇnite.
The masses Mn are dynamically generated, since they do not exist in the La-
grangian of the theory. They could be interpreted as dynamical masses of quarks
with, however, the following particular features. First, they are inˇnite in number.
Second, they do not appear as poles in Green's function, but rather with stronger
singularities. In x space, the latter do not produce ˇnite plane waves at large
distances and therefore quarks could not be observed as free asymptotic states.
Nevertheless, the above singularities being gauge-invariant should have physical
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signiˇcance and would show up in the infrared regions of physical processes in-
volving quarks. Finally, since they appear only in the timelike region of real p2,
one concludes that the quark and gluon ˇelds satisfy, even in the nonperturbative
regime, the usual spectral properties of quantum ˇeld theory [27Ä29].

CONCLUSION

The consideration of gauge-invariant Green's functions with phase factors
along polygonal lines allows for a systematic investigation of their properties
through the functional relations they satisfy. An equation playing the same role as
the DysonÄSchwinger equation for ordinary Green's functions has been obtained,
in which the kernels are represented by Wilson loop averages along polygonal
contours with rigid path derivatives on their segments.

The application of this equation to two-dimensional QCD in the large-Nc limit
provides an exact nonperturbative analytic solution, not known from conventional
approaches, which displays the spectral properties of quark ˇelds: the latter
behave like ˇelds of physical particles, with the difference that their singularities
in momentum space are stronger than simple poles.

The consistency of the results obtained in two-dimensional QCD is a positive
test for the general approach presently developed and provides hints for the
continuation of investigations in four dimensions.
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