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The integrable closed and open chain models can be formulated in terms of generators
of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for
the integrable XXX and XXZ closed chain models. We find the Bethe vectors for two-
component and inhomogeneous models. We also find the Bethe vectors for the fermionic
realization of the integrable XXX and XXZ closed chain models by means of the algebraic
and coordinate Bethe ansatzes. Special modification of the XXZ closed spin chain model
(“small polaron model”) is considered. Finally, we discuss some questions relating to the
general open Hecke chain models.

HHTerpupyeMble MOIEIIN OTKPBITHIX M 3 MKHYTBIX LIEMIOYEK MOTYT OBITh C(HOPMYIHPO-
B HBI B TEPMHH X reHep TopoB Inre6p I'ekke. B 1 HHOIT 0030pHOIl CT The MBI OIICBHIB €M
B JIeT JIiX H3 1l bere mid MHTErpupyeMmbix, 3 MKHYThIX XXX- u XXZ-mogeneii. [loctpo-
eHbl BEeKTOpbI bere 11 IByXKOMIIOHEHTHBIX 1 HEOAHOPOAHBIX Mojiesieil. C UCIIO/Ib30B HUEM
nre6p MYECKOro M KOOpAWH THOro H3 ues bere H iimeHsr BekTopsl bere mis cdepmuon-
HBIX pe Ju3 1mid nHTerpupyeMbix XXX- n XXZ-moneneir. OOCyXn 0TcS T KXe CBOICTB
OOIIMX OTKPBITHIX Lierovek I'ekke.

PACS: 02.20.Uw; 03.65.Aa

1. INTRODUCTION

A braid group By, in the Artin presentation is generated by invertible elements
T; (i=1,...,L —1) subject to the relations:
T T T =TiaTiTiy, TiT; =T;T; for i#j+1. (L.1)
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The A-type Hecke algebra Hy,(q) (see, e.g., [1]) is a quotient of the group algebra
of By, by additional Hecke relations

T?=(q—q¢ HTi+1 (i=1,...,L—1), (1.2)

3

where q is the parameter (deformation parameter). Let x be the parameter (spectral
parameter) and we define elements

Ti(z) := 22Ty, — 22T € Hy(g), (1.3)

which are called baxterized elements. By using (1.1) and (1.2), one can check
that the baxterized elements (1.3) satisfy the Yang—Baxter equation in the braid
group form

T (2)Ti41 (2y) Tk (y) = D1 (9) T (2y) Thot1 (x) (1.4)

and
Te(2)Te(y) = (¢ — ¢ )Tkl(ay) + (@72 =2 2)(y /2 =y /2). (1.5

Equations (1.4) and (1.5) are baxterized analogs of the first relation in (1.1) and
the Hecke condition (1.2).
The Hamiltonian of the open Hecke chain model of the length L is

L—-1

Hr =Y T € Hy(q) (1.6)
k=1

(see, e.g., [2] and references therein). Any representation p of the Hecke algebra
L-1

gives an integrable open spin chain with the Hamiltonian p(Hy) = > p(Tk).
k=1

Define the closed Hecke algebra H 1.(q) by adding additional generator T}, to the
set {T4,...,Tr—1} such that T}, satisfies the same relations (1.1) and (1.2) for
any ¢ and j # i + 1, where we have to use the periodic condition T = Tj.
Then the closed Hecke chain of the length L is described by the Hamiltonian

L A A
Hr = > Ti € Hr(q) and any representation p of Hp,(q) leads to the integrable
k=1
closed spin chain with the Hamiltonian

L

p(Hr) = p(Th). (1.7)

k=1

In Secs.2-4, special representations p = pr of the algebra Hp(q), called
the R-matrix representations, are considered. In the case of GL,(2)-type R-
matrix representation pr, the Hamiltonian (1.7) coincides with the XXZ spin
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chain Hamiltonian. It is clear that in the case of ¢ = 1 we recover the XXX
spin chain. The integrable structures for XXX spin chain are introduced in
Subsec.2.1. We discuss some results of the algebraic Bethe ansatz for these
models. In Sec.3, we formulate the so-called two-component model (see [3,4]
and references therein). The two-component model was introduced to avoid
problems with computation of correlation functions for local operators attached
to some site x of the chain. Using this approach, we obtain in Sec. 4 the explicit
formulas for the Bethe vectors, which show the equivalence of the algebraic and
coordinate Bethe ansatzes.

In Sec. 5, we generalize the results of Secs. 2—4 to the case of inhomogeneous
XXX spin chain.

The realization of the XXX spin chains in terms of free fermions is considered
in Secs.6—8. Here we explicitly construct the Bethe vectors for XXX spin chains
in the sectors of one, two, and three magnons. In Sec.9, we discuss another
special representation p of the Hecke algebra H,(g) which we call the fermionic
representation. In this representation, the Hamiltonian (1.7) describes the so-
called “small polaron model” (see [5] and references therein). In Secs. 10 and
11, we construct the Bethe vectors and obtain the Bethe ansatz equations for
the “small polaron model” and for the XXZ closed spin chains by means of the
coordinate Bethe ansatz and compare the results with those obtained by means of
the algebraic Bethe ansatz in Sec.2. We show that the Hamiltonian of the “small
polaron model” has the different spectrum compared with the XXZ model in the
sector of an even number of magnons.

Finally, in Sec. 12, we discuss the general open Hecke chain models which
are formulated in terms of the elements of the Hecke algebra H,,(q). We present
the characteristic polynomials (in the case of the finite length of the chain) which
define the spectrum of the Hamiltonian of this model in some special irreducible
representations of H,,(g). The method of construction of irreducible representa-
tions of the algebra H,,(¢q) is formulated at the end of Sec. 12.

In Appendix, we give some details of our calculations.

2. ALGEBRAIC BETHE ANSATZ

At the beginning, we describe some basic features of the agebraic Bethe
ansatz. The method was formulated as a part of the quantum inverse scattering
method proposed by Faddeev, Sklyanin, and Takhtadjan [6,7]. The main object
of this method is the Yang—Baxter algebra generated by matrix elements of the
monodromy matrix. The main rules for the Yang—Baxter algebra were elaborated
in the very first papers [9-11]. Many quantum integrable systems were described
in terms of this method, cf. [13-15]. We strongly recommend the review paper [8]
for introductory reading and [12] for a more detailed review.
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2.1. L-Operator and Transfer Matrix for XXX Spin Chain. Suppose we
have a chain of L sites. The local Hilbert space h; corresponds to the jth site.
For our purposes, it is sufficient to suppose h; = C2. The total Hilbert space of
the chain is

L
A =[] @h;. @2.1)

j=1
The basic tool of the algebraic Bethe ansatz is the Lax operator. For its

definition, we need an auxiliary vector space V, = C2. The Lax operator is a
parameter-dependent object acting on the tensor product V, ® h;,

Loi: Va®hi —V,®@hy, (2.2)
explicitly defined as
1 3
Lai(\) = (A + 5) T + ;1 oS, (2.3)

where S = (1/2)of* is the spin operator on the ith site, 0y = (07,0¥,07)
are Pauli sigma-matrices which act in the space V, (o are Pauli sigma-matrices
which act in the space h;), and I, ; is the identity matrix in V, ® h,;. Operator

Lg,i(A\) can be expressed as a matrix in the auxiliary space

1
At =+ 57 S
Lai(N) = 2 1 (2.4)
’ S At =5

Its matrix elements form an associative algebra of local operators in the quantum
space h;.
Introducing the permutation operator P,

3
1
P—§<H®H+;aa®aa>, 2.5)

(here I denotes a 2 x 2 unit matrix), we can rewrite the Lax operator as
Lo i(A) = Mg,; + P, . (2.6)

Assume two Lax operators L, ;(A) resp. Ly ; (@) in the same quantum space
h; but in different auxiliary spaces V, resp. Vj. The product of L, ;(A) and
Ly (1) makes sense in the tensor product V, ® V;, ® h;. It turns out that there
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is an operator R,,(A — p) acting nontrivially in V, ® V}, such that the following
equality holds:

Rap(A — i) Lai(A) Lp,i(p) = Lp,i(p1) Lai(A) Rap (A — p)- 2.7

Relation (2.7) is called the fundamental commutation relation. The explicit ex-
pression for Rgp(A — ) is

Rab()\ - M) = (/\ - N) I[a,b + Pa,b7 (28)

where I, , resp. P, is identity resp. permutation operator in V, ® V}. In the
matrix form we get for Rgp(\ — )

A—p+1 0 0 0
0 A— 1 0

Rap(A = 1) = 0 Al o (29)
0 0 0 A—p+1

The operator Rgp(\ — p) is called the R-matrix. It satisfies the Yang-Baxter
equation

Rab(>\ - M)Rac(A)Rbc (,LL) = Rbc(u)RaC(A)Rab(A - ‘LL) (210)

inV,®V,® V..

Comparing (2.6) and (2.8), we see that the Lax operator and the R-matrix
are the same.

We define a monodromy matrix

To(AN) = La,i(AN)La2(A) -+ La,.(N) (2.11)

as a product of the Lax operators along the chain, i.e., over all quantum spaces
h;. As a matrix in the auxiliary space V,, the monodromy matrix

AN BN
Ta(N) = ( o) D) ) 2.12)

defines an algebra of global operators A(\), B(A),C(\), D(A) on the Hilbert
space J#. It is called the Yang—Baxter algebra. The monodromy matrix T (\)
is a step from local observables Si* on h; to global observables on 7.
The trace
7(A) = TroTu(\) = A(\) + D()) (2.13)

of T, (A) in the auxiliary space V, is called the transfer matrix. It constitutes
a generating function for commutative conserved charges. Assume the Lax
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operators L, = Ly ;(A\),Ly = Lpi(1), L), = Lgi+1(N), L, = Lp41(p), and
Rap = Rap(X — p) in the tensor product V, ® V, ® J#, then

RayLoL!LyLy = RayLoLy L. L}, = LyLoRay L, L} =
= LyLoLyL' Ray = LyLy Lo L. Rap.  (2.14)

Here we used (2.10) and the fact that operators acting nontrivially in different
vector spaces commute. Hence, we can deduce commutation relations between
the elements of the monodromy matrix

Rap = i) Ta(N (1) = Ty(u)Ta(\) Rap(A — ). (2.15)

Equation (2.15) is a consequence of (2.7) for global observables A(\), B(\), C()),
and D()\). We call it the global fundamental commutation relation. The commuta-
tivity of transfer matrices obviously follows from (2.15). After multiplying (2.15)
by R;' (A — ) we get

Ta(NTh() = Ry (A — )T (1) T () Ran (A — p). (2.16)
Taking the trace over auxiliary spaces V, and V}, we obtain
TNT(R) = 7()T(N). (2.17)

Obviously, the monodromy matrix (2.11) is a polynomial of degree L with
respect to the parameter \

L L-1 L 3
Ta(A)—()\—k%) H+(>\+%> SN or@sr+.. (2.18)

i=1 a=1

Therefore, the transfer matrix 7(\) is also a polynomial of degree L
INE L2
- k
T(A) =2 ()\ + 5) + ;—0 AN Q. (2.19)

The term of order A1 vanishes because Pauli matrices are traceless. Due to
commutativity (2.17) of transfer matrices also

[Qj,Qr] = 0. (2.20)

We see that the transfer matrix is a generating function for a set of commuting
observables.

The Hamiltonian of the system appears naturally amongst the observables Q.
From the definition of the Lax operator (2.3) we see that

La,i(=1/2) = Py ;. (2.21)
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Hence,
To(—1/2) = Py1Pao- - Por =Pr_11- PasPi 2P, 1. (2.22)

If we differentiate T, (\) with respect to \, we get

L
dT,(\) ‘ S P Pag o Bag =
dx D=1z & NG/ “

mlSSlng

= Z Proip- Peoigyr--PraPay. (2.23)

Remind that Tr P, ; = I;. Differentiating the logarithm of the transfer matrix
we get:

d

4
ot
L

= -1 = 2.24
T()\)‘)\:q/z | (/\)‘,\:71/2 ( )

(Pr—1,0- Po—iit1--Pr2)(PiaPas--- Pr_11) :Zpk,k+1- (2.25)

k=1 k=1

The Hamiltonian of the system is

L 3 1 L I
=2 Z FSR =5 Prkst — (2.26)
k=1a=1 k=1

where we set S, =S, resp. Pr 41 = Pr1. We can see that

1d L
H=Z—nr (A)’Az_m -1 (2.27)

This is the reason why we can say that the transfer matrix 7(\) is a generating
function for commuting conserved charges.

Remark. Let S be the generators of the Lie algebra su(2) in ith site
(57, 57] = ie"757 b5, (2.28)

and we take generators S{* in any representation of su(2) which acts in the
space h;. Then equations (2.3) and (2.4) define L-operator for the integrable chain
model with arbitrary spin in each site. Relations (2.7) with R-matrix (2.8) are
equivalent to the defining relations (2.28). Formulas (2.11), (2.12), (2.13), (2.17),
(2.18), (2.19), and (2.20) are valid for this generalized spin chain models as well.
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2.2. Some Remarks on the XXZ Chain. The fundamental R-matrix for the
quantum group GL4(N) is [16,17]

N
R=gq Zeii X e + Zeij ®ej; + (¢ — qil) Ze” ® €4, (2.29)
=1

i#] 1<j

where e;; is the N x N matrix unity. In a particular case of GL,(2), the
R-matrix (2.29) can be written in terms of Pauli matrices

. 1 -1
R:E(U’C®U’”+ay®ay+q—|—Tqaz®az>+

3 _ —1
%1{2@12. (2.30)

_ -1
+%(02®H2—H2®0Z)+

Here and below we use notation I for the N x N unit matrix. The fundamental
R-matrix (2.29) satisfies the Hecke condition (1.2)

RP=(q—q¢ HR+1Iy ®1y. (2.31)

If we define R .
RO =13% Ve ReIg Y, (2.32)

we obtain the R-matrix representation pr of the Hecke algebra (1.1), (1.2)
pr : T — R (2.33)
: kk+1- .

Then, the baxterized R-matrix is (see Eq. (1.3))

RkkJrl(M) = PR (Nil/QTk - ﬂl/QTigl) = u71/2R1(€(§€)+1 - ﬂl/Q(Rl(ﬁc)H)fl =
_ (/fl/Q _ ul/Q)RI(&)H +M1/2(q _ q—l). (2.34)
This R-matrix is a solution of the Yang—Baxter equation in the braid group form

Riet (V) Ricier2 (N - 10) Rirg1 (1) = Ririer2 (1) Riert (N - 1) Rigig2 (V).
(2.35)
Note that if there is a solution of equation (2.35), the solution of the equation

R o1 (N) B2 (M) Riet1 ko2 (1) = Rioter o2 (1) Rie o2 (At) Rie o1 ()
(2.36)
can be easily found as

Rir1(N) = Ry py1(N) Prgr - (2.37)
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The R-matrix Ry k42(A) has to be defined as Pyy1 g2 Rk k+1(A)Pit1 k+2. The
validity of (2.36) is very important for correct definition of the transfer matrix.
We are able to define the Lax operator as the R-matrix

Lai(A) = Rai(A) (2.38)

and the monodromy matrix in the form (2.11). Commutativity of the transfer
matrix is just a matter of proving

Rt (1) Tu M) T5(A) = To(\) T (A) Ra (1. (2.39)

The R-matrices (2.29), (2.34) for NV = 2 are the basic building blocks for
the XXZ spin chain. Let us write (2.37) for N = 2 as follows:

Rrer1 (V) =12% Y @ R(A) @ IS, (2.40)

where R(\) = (A"Y/2R — AY/2R~1)P, the matrix R is given in (2.30), and R())
has the matrix form

)\71/2(]_ )\1/2(]71 0 0 0

0 /\—1/2 _ /\1/2 )\—1/2(q _ q—l) 0

R(N)= 0 )\1/2(q _ q—l) A—1/2 _)\1/2 0
0 0 0 ATH2q — A2t

(2.41)

which is important to write the commutation relations (2.39) in components. We
see that the form (2.41) of the R-matrix is not symmetric to transposition, as
usually appears in literature, cf. [8,4], etc. We use the Drinfel’d—Reshetikhin
twist to symmetrize it, cf. [18].

The R-matrix R,;(\) acts in the tensor product of the auxiliary spaces V,®V,.
The monodromy matrix T, () acts in V, ® 5. Let U be a diagonal matrix. It
can be easily seen that [U @ I, + I, ® U, Rap(A)] = 0. We introduce the twisted
R-matrix resp. the monodromy matrix

Rab(/\) = (/\U ® I[b)Rab(/\)(/\_U ® Hb), (2.42)
T.(N) = W @ Lp)Ta(\ VY @1y). (2.43)
If
Rap N Ta ) Th (1) = Ty (1) Ta(At) R (V) (2.44)
is satisfied, then also
Rap N T T (1) = To (1) Ta (M) Rap(N). (2.45)

In other words, the global fundamental commutation relations remain unchanged.
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This twist differs slightly from the twist proposed in [4]. The author supposes
a matrix w, whose tensor square commutes with R-matrix [w ® w, Rep(A)] = 0,
and concludes that the matrix T,(\) = wT,()\) satisfies (2.44) as the original
untwisted matrix T, (A). In both cases, the crucial premise for usability of the
twist is the commutativity of w ® w, or its infinitesimal form U @ I +1® U, with
the R-matrix.

Below we will consider only the case of N = 2. Taking U = (1(/)4 _? / 4>
in (2.42), where R,;()) is given by (2.41), we get

ATV2q — N2t 0 0 0

_ 0 )\71/2 o )\1/2 q-— qfl 0

R(N)= 0 q— q_l A—L/2 172 0
0 0 0 AT 2q = \2gE

(2.46)
which corresponds to the R-matrix appearing in [8,4]. Moreover, it is easy to
see that

To(A) = Raa(M)Ra2(\) - Rar(N). (2.47)

It can also be seen that

- (AN B _ AN M/2B(N)
TM(G(A) D<A>)<A-1/QC<A> DY) ) (249

where A, B, C, D correspond to the original monodromy matrix T,()\). More-
over, one can easily realize that

N
AQ) = G2 N2 gh R T Ty

1
+ W2 =NV g2 TNt (2.49)

B\ =(g—q o, (2.50)
CA)=(g—q )", (2.51)
D) = %(xlﬂ CAVZ f a2 2y

n %(A—l/z A2 V2 4 D20 (252)

where o = (1/2)(0” +io¥). The twisted R-matrix Ry 1 ()\) resp. the twisted
monodromy matrix 7, ()\) will be used throughout the text.

2.3. Global Fundamental Commutation Relations. Global commutation
relations are determined by Eq.(2.15) resp. (2.44) for XXX resp. XXZ in the
tensor product V, ® V;, ® . They are explicitly expressed by multiplication
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of matrices in the tensor product of the auxiliary spaces V, ® V;,. After simple
factorization, the R-matrices (2.9) resp. (2.46) can be written uniformly in the
following way:

f) 0 0 0
_ 0 1 g(A) 0
Rab(A) - 0 g()\) 1 0 ) (2.53)
0 0 0 f)
where for the XXX chain we have
A+1 1
[ — = — 2. 4
F == g =1, (254)
and for XXZ chain we have
A—1/2g  \1/2g-1 qg—qt
f()\) = )\_1/2 _ )\1/2 I g()\) = A_1/2 _ )\1/2 . (255)

We take the monodromy matrix (2.43) resp. (2.47) for the XXZ chain. For
more comfort, we omit the tilde over the corresponding operators. The matrices
T, () resp. Tp(p) take the form

A(N) B(\)
T = | o AR by B (2.56)
C(\) D(N)
resp.
A(p)  B(p)
C(p) D(p)

Multiplying and comparing the left- and right-hand sides of (2.15) resp. (2.45),
we obtain the set of commutation relations. Comparing the matrix elements on
the positions (1,1), (1,4), (4,1), (4,4), we obtain

[AN), A(w)] = [B(A), B(w)] = [C(N), C(w)] = [D(N), D(p)] = 0. (2.58)
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From a comparison of the matrix elements (1,3), (3,4), (2,1) resp. (4,3) we
obtain

A(p)B(A) = f(A ) BN A(p) + g(p, A)B(1) A(N), (2.61)
D(u)B(A) = [, N)BA)D(1) + g(A, 1) B() D(X), (2.62)
A(p)CA) = [ NYCN)A(1) + g(A, 1) C () AN), (2.63)
D(u)C(A) = f(A ) CN)D(p) + g1, A)C (1) D(N), (2.64)
where for the XXX chain we have
FO = FO =) = 22 ) = g0 - = 1 269

and for XXZ chain we have

(2.66)

FOu ) = fFON ) = % g ) =g\ p) =/ qu__(f :

We see that g(u, \) = —g(\, p).

2.4. Eigenstates of the Transfer Matrix. The uncovering of the spectrum of
the transfer matrix 7(\) = A(\) + D(\) is now the natural next step. In Sub-
sec.2.3, we get four operators A(A), B(A\), C(A), and D(A) under commutation
relations (2.58)—(2.65). They generate an associative algebra. Relations (2.58)-
(2.65) together with an assumption that the Hilbert space ¢ has the structure
of the Fock space, are sufficient to find the spectrum 7()). From the beginning,
we work on the Hilbert space .2 = (C2)®L, ie., we choose a specific repre-
sentation. But the content of this chapter is valid in general, i.e., also for other
representations.

To uncover the Fock space structure in 7, let us find a pseudovacuum vector
|0) € A such that C'(\)|0) = O which is an eigenvector of the operators A(\)
and D(\)

AN[0) = a(N)[0),  D(AN)[0) = 5(A)[0). (2.67)

Let us remind that there is a state |0); in each hj such that the corresponding
Lax operator is of the upper triangular form

Lax(N)]0)% = < G(OA) SO”;(’&};ing ) 10}, (2.68)

where a(X), d()\) are the functions of the parameter A\. We see that for XXX
a(AN)=A+1, dN) =X (2.69)
and for XXZ
a(\) = A2 = \V2g7h 0 d(h) = A2 - a2 (2.70)
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The vector |0) € 4 is of the form

[0) =0)1 ®1[0)2®...®|0)L. (2.71)

. . 1 .
In our particular representation, hj, = C2, we have |0); = (0) It can be easily

seen that

a L sometnin
Ta<A)IO>=( ) o g>|0> @.72)

We have found that the state |0) € . satisfies

C(AN)0) =0, A(N)|0) = a(N)]0), D(A)[0) = 6(A)|0), (2.73)
where
a(\) =aNE, s\ =dNE, (2.74)

i.e., |0) € A is the eigenstate of the transfer matrix 7(\) = A(X) + D(A).
Other eigenstates of the transfer matrix (2.13) are of the form

{AD = A1, Am) = B(AM)B(A2) - B(Am)[0) = [M). (2.75)

They are called the Bethe vectors. For M € N, we will call the Bethe vector
[A1,..., Aar) the M-magnon state. It turns out that there have to be some
restrictions on the parameters {\} = {A1,..., Ay} to get the eigenstates of the
transfer matrix. First, we note that in view of commutativity of the operators
B (2.58) we have

|>‘17"'a)\M>:|O—(>‘1a"'7>\]\4)> (276)

for any permutation o € Sy of {A1,...,Ax}. Then, using (2.61), (2.73),
and (2.76), we deduce

A sy ) = AQA) B(A) - B(Am)|0) =
= (f(A, ) BA)AR) +g(A M) BN A)) B(A2) - - B(Am)|0) =

= (F(M,A) + 9N A1) Paxy ) B AN B(A2) - - - B(Aw)|0) =
M
= .= [T(FOw X + 9O AP eV Ar, - Aar) =
= M
=a(N) [] FOw ML, )+
. k=1

+ Z(bi(/\,)\l, AL AL A i), (277)
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where Py, is a permutation operator of the parameters A and A, and it is
clear that

M
1\ AL, ) = a(A)g M) T FO% ). (2.78)
k=2
Since the left-hand side of (2.77) is symmetric under all permutations of
{A1,...,Anm}, we obtain

M
(A M- A) = a)gW ) ] FOw M), Vi=1,..., M. (2.79)
i
In the same way by using (2.62), (2.73), and (2.76), we deduce

DN A1 Aar) = D) BO) -+ B(Or)|0) =

M
= [T (FO ) + 90, M) Pax, )N, Aar) =
k=1

M
H )\ /\k |)\1,...,)\]\4>—|—

M
+Z\Ifl(>\, >\17~'~7>\]\4)|>\17~'~7>\i71;)\7>\i7~'~;)\M>7 (2.80)

i=1

where
M
Ui(A A1, ) = 0)g(A A) [T FOa M), Vi=1,..., M. (2.81)
k=1
k#1

The combination of (2.77) and (2.80) gives that |A1,..., Ap) is the eigenvector
of the transfer matrix (2.13) 7(A\) = A(\) + D(A)

(AN + DAY = AN ADHAD, A = {0 A

(2.82)
M
A AN = af Hf A A) 60 [T x)
i=1 i=1
if the set of parameters {1, ..., A\ps} satisfies the so-called Bethe equations:
DA A1, A )+\II~()\ Ayeo o Am) =0 =
M

k=1
k;éz k#1
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If the Bethe equations are satisfied, we call the Bethe vectors |Aq,..., Ap) on-
shell, otherwise off-shell.

For the XXX chain, using explicit formulas (2.65) and (2.73), we write (2.82)
and (2.83) in the form

(A(A) + D(A)) |>‘1a .- '7)\]\l> = A(A7>‘z) |>‘17 e '7)\]\l>a

o (2.84)
Ai—A+1 A—Ai+1
AN} = A+1LH - + ALH +
if the set of parameters {1, ..., Ajs} satisfies the Bethe equations in the following
form:
(Akﬂ) Hi::ii_—l—[iz:i ey
The Bethe equations for the XXZ chain possess the following form:
— Moo~} L 1 1
(%) = (=" 1H Akq_ikg H izg_ _ i‘f. (2.86)

J#k

Setting \; = ¢~2% and ¢ = ¢"/2 in (2.86), we get (2.85) in the limit h — 0.
The corresponding eigenvalue is

_ —1/2 1/2 —1 L zq—)\q

Ag— g~
A2 - Al/QLH%. (2.87)
i=1

3. GENERALIZATION OF THE TWO-COMPONENT MODEL

In the literature, cf. [3,4], etc., there appears the so-called two-component
model. The two-component model was introduced to avoid problems with com-
putation of correlation functions for local operators attached to some site x of
the chain in the algebra of global operators (2.12) A(X), B(\), C(X), and D())
defined on the chain as a whole.

We divide the chain [1,...,L] into two components [1,...,z] and [z
1,..., L]. Then we have the Hilbert space splitted into two parts & = J4 ® /5,
where 74 = h1®...Qh,y and 9% = h;11®...®@hr. We see that pseudovacuum
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|0) € A is of the form |0) = |0); ® |0)2, where |0); € 54 and |0)2 € 4. We
define on V, ® /A ® J# the monodromy matrix for each component

Ti(A) = Lg1(A) -+ Lo z(X) = (éi&; gii;\\;) 3.1

resp.

TQ(A) = La,erl()‘) e La,L(A) = <é§gi\\; gz%i%) . (3.2)

Each of these monodromy matrices satisfies exactly the same commutation re-
lations (2.15) as the original undivided monodromy matrix (2.11). Moreover,
we have

A;(N)[0); = a;(N)]0);,  D;(N)[0); = 3d;(N)[0);,  C;(A)]0); =0.  (3.3)

Operators corresponding to different components mutually commute. From con-
struction, it is easy to see that

a(A) = ar(MNaz(A), 6(A) = 01(A)d2(A). (3.4)
For the whole chain [1,..., L], the full monodromy matrix T is
T(\) = <é8; EA%) — TN Ta(\) =
_ ( 1(A)A2(A) + B1(A)Ca(N) Al()\)BQ()\)"‘Bl()\)DQ()\)) (3.5)
Ci(M)A2(A) + Di(N)C2(A)  Ci(A)B2(A) + D1(A)D2(N) )7 ™

and the M-magnon state is represented in the form

M

A, = [ BOWI0) =
k=1

M
H (A1(A\)B2(Ak) + Bi(M\)Da(Mi))[0)1 © |0)2.  (3.6)

The beautiful result of Izergin and Korepin [3] states that the Bethe vectors of
the full model can be expressed in terms of the Bethe vectors of its components.
To obtain this expression, we should commute in (3.6) all operators A; (\x) and
D5 (Ar) to the right with the help of (2.61) and (2.62) and then use (3.3). Finally,
we obtain the following result [3].

Proposition 1. An arbitrary Bethe vector corresponding to the full system
can be expressed in terms of the Bethe vectors of the first and second component.
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Let I = {)1,..., A} be a finite set of spectral parameters. To concise notation
below, we will consider the set I as a finite set of indices I = {1,..., M}, then
[TBOWI0) = > TT (G20)B1(0)) [T (01(hka) B2 () %
kel I1Uls k1€ ko€ls

<0y @002 [T TI £k M), 3D

k1€l k2€1>

where (Mg, , Ak, ) is defined in (2.65) resp. (2.66) and the summation is performed
over all divisions of the index set I into two disjoint subsets I, and I», where
I=1UlI.

Proof. The proof is just a matter of commutation relations (2.15) resp. (2.61)—
(2.65). We use induction on the number of elements M of the index set 1. We
see that

B()\)|0> = (Al()\)BQ()\) + Bl()\)DQ(/\)) |O>1 X |0>2 =
= (0&1()\)32(/\) + (52()\)31 (/\)) |0>1 X |0>2, (3.8)

which is exactly formula (3.7) for M = 1. Let us suppose that (3.7) is valid for
the index set I = {1,..., M — 1}. Then we have

N TTBOWI0) = (A1 (M) B2 (A) + Bi(A) D2 (V) X

kel
ST G2000)B1(0)) T (ea(Aka)Ba(Ar,)) x

Ii, I ki€l ko€l
I=11Uly
< (01 @002 [T TI £ dea) = > <A1(>\) 11 52(>\k1)31(>\k1)> X
ki€l k2€l2 I,1> ki€l
I=I1UIy

x (Bz(k) 11 al(Akz)Bz(Ak2)> 01 @102 [T TT fOwis M) +

ko€la k1€l ko€l

+ oy <Bl(/\) 11 52(>\k1)31(/\k1)> <D2(/\) 11 041(/\@)32(&2)> X

I,I> ki€l ko €12
I=11UI>

< (01 @002 [T TI £k M) 39

k1€l k2€1>

In the first sum we use (2.77) to commute A; (\) with [ Bi(Ax,) resp.(2.80),
ki€l
to commute Dy(\) with J] Bz2(Ag,) in the second sum. Using just the second
ko €12
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term in (2.77) we get for the first sum:

Z Z )\ >\k 041 Ak)52(>\k Bl H 52

I1,I, kel jelL
I=1,Ul, G#k
< [T eaa) B0} @ [0)2 [T £ x) TT TT FOkas Aea). (3.10)
i€l llgélkl k1€l k212

Similarly, using just the second term in (2. 80) we get for the second sum:

Z Z (A A)ar (A )02 (A ) B (A H52

I,I> kel Jj€nI
I=I11UIly
< [T eai)B2()I0)1 @ 02 T £k M) T TT £ Okas M) =
i€l lely ki€l ka€l2
ik 1k
= > 9w Nar(Ae)s2(A)Bi(A)B2(A) T 6202
1,1, k€I] Jel;
=101 i#k
x [T eai)B2(A)I0)y1 @ 10)2 TT T £k i) T £ Ak), Bo11)
i€l k1€l] ko €1} mel;

m,;ék’
where we introduced new partition I; = I; U {k} and I}, = L\{k}. We see
that (3.11) is almost the same as (3.10) with only one difference. In (3.10), there
appears a factor g(A, A\x) and in (3.11) there appears g(\x, A). Using the fact that
g\ Ak) = —g( Ak, A), cf. (2.65), we see that these two sums cancel each other.
Therefore, only the first parts of (2.77) and (2.80) contribute to (3.9). We get

N[ BOWI0) = Y (m(A) 11 f(Ak17A>62<Ak1>Bl(Akl>>x

kel 1,13 ki€l
I=I1UIly

x (BQ()‘) I ex(.)Ba(Ars) ) ho@l0) [T TI FOw )+

ko€l k1€l k2€12

+ > (Blo\) 11 52()%1)31()%1)) <52()\) IT ron Akz)al(Akz)BQ(Ak2)>X

I,1> ki€l ko€l
I=11Uls

< (01 @002 [T TT £k Ar.) 3.12)
k1€l k2€1>
which proves the induction.

This result can be straightforwardly generalized to an arbitrary number of
components N < L.
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Proposition 2. An arbitrary Bethe vector of the full system can be expressed
in terms of the Bethe vectors of its components. For N < L components, the
Bethe vector is of the form

[IBowiy=">  II IT - II II x
kel I1UILU..UIN k1€ kao€1> kn€ln 1<i<j<N
X (i ( Ak )05 (A ) f (ks Aky ) X
% Bi(Aey)|0)1 ® Ba(A,)[0)2 ® - . @ By (e )0V, (3.13)

where summation is performed over all divisions of the set I into its N mutually
disjoint subsets I, 1s, ..., In.

Proof. The proof is simply performed by induction on the number of com-
ponents N and by using (3.7). For N = 2 is (3.13) just (3.7). Let us suppose
that (3.13) is valid for some N < L and make induction step to N + 1. The chain
[1,...,L] is divided into N subchains [1,...,21], [x1 + 1,..., 23], etc., up to
[tny—1+1,...,L]. Let us divide the last interval, if possible, into two subchains
[tn—1+1,...,zn] and [xx + 1,..., L] and apply (3.7) to a set of B operators

[I Bn(Aey)|0)n. We get

kn€Iln

II BxOwadloow =% J[ II ~

kn€ln I;VUIZlv+1kN€IJ/VkN+1EI]’V+1
X5§V+1(>\kN)O/]V(>\kN+1)f(>\kN7>\kN+1)B§V(>\kN)B§V+1()\kN+1)|O>I]V®|O>§V+17

(3.14)

where the sum goes over all divisions of Iy into its two disjoint subsets I}
and Iy, such that Iy = I}y U Iy, and operators B7(A) and By ,()) act
on the new subchains [zy_1 + 1,...,2n] resp. [xny + 1,...,L]; the same for
o’y (A) resp. %1 (\) and the pseudovacuum vectors |0)’y resp. [0)%y, . Let us

remind that
II = 11 I - (3.15)

kneln  kn€Ily knt1€IN

Inserting (3.14) into induction assumption (3.13), we get

180w = 3 ITIr-- 10 II -

kel IluIQU...uIJ’VuI]’VH ki1€11 ko€ kn€l) kN+1EI]'\H_1
X H (O‘i(/\kj)éj (Aki)f(Aki7)\k’J))X
1<i<j<N+1
X Bl()‘k’l)m)l ® BQ(/\k2)|O>2 ®...0 BEV(AkN”O)?V ® B;V+1()\k3N+1)|O>§V+17

(3.16)

which proves the induction.
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4. BETHE VECTORS

In this section, we will see that computation of the Bethe vectors in the
algebraic Bethe ansatz is just a matter of using proposition 2. By assumption
we have a chain of length L. Let us divide it into L components, i.e., into L
subchains of length one (1-chains). Using proposition 2 we get for the M -magnon
(Bethe vector) with M < L the following:

Meowo- ¥ T~ I -

LUl U---UIL k1 €11 ko €12 krelp 1<i<j<L

X (@i ( Ak )05 (Aks ) f (Akis Ak ) B1(Ak, )|0)1 @ B2(Ak,)[0)2®. .. @ Br (A, )|0) L.
“4.1)

It can be easily seen that for 1-chain, i.e., for a chain with Hilbert space h = C2,

B(\)B(u)[0) = 0. “2)
Therefore, the sum over all divisions of {1,..., M} into L subsets contains just
divisions into subsets containing at most one element, i.e.,
only M of them is nonempty, let us denote them I, ,I,,,...,I,,,. We have

to sum over all possible combinations of such sets, i.e., over all M-tuples n; <
ng < ... < ny. Next, we have to sum over all distributions of the parameters
A1, A2, ..., Ay into the sets I, , ..., I,,,. We can simplify our life assuming that
Aj € I,,. Then, by summing over all permutations oy € Sy of {A1,..., A},
we get exactly all the other distributions.

Let us study what happens to the coefficient

IT (O, )85 () f ks Aky)- (4.3)
1<i<j<L
It is easy to see that
j—1
T Ow)=TTTT ), (4.4)
1<i<j<L j=1i=1
but only A, from the sets I,,, ..., I5,, are relevant and by assumption \; € I,.

Therefore, we can replace

M n;—1

IT «ow) =TI I «:x (4.5)

1<i<j<L Jj=1 i=1
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Similar considerations can be conducted for both §; (A, ) and f(Ax,;, Ar,). We get

ﬁ B(\g)|0) = Z X

k=1 1<ni<na<..<ny <L
M /nj—1 L j—1
< 2 I e TT 600 [T700 A )=
TNESM j=1 i:n]Jrl =1

By, (A1) Bn,(A2) - 'BnM(/\M)> [0)1 ®1[0)2®...®1|0)L. (4.6)

For 1-chain, it holds that B( ) = B is parameter-independent. Moreover,
eigenvalues «;(A) = a(X), 0;(A) = d()\) are still the same for all components
i=1,...,L, where a()\) and d(\) are defined in (2.69) resp. (2.70). We get

B(\)[0) = Z X

,’:ls

k=1 ISni<n2<...<npy <L
X Ej@(Ha X)) me Ais A )
oceSm

X Bp,Bp, - nM|O>1 ® |0>2®...® |O>L =

) x
1<ni<ne<...<npy <L
M n;
a(M)\ 7
f >\’Lv>\ ( : ) X
1<i<i<M ( ])31;[1 d(X;)

X By Bpy o Bnyl0)1 @[0)2®...0|0)L. (4.7)

X
(]
>
Y

5. INHOMOGENEOUS BETHE ANSATZ
We start with the inhomogeneous monodromy matrix
Te(N) = Lag(A+ &) Laz(A + &) -+~ Lot (A +€1), 5.1)

where L, j(\) are the Lax operators defined in (2.3) resp.(2.46) depending on
whether we consider XXX or XXZ spin chain. Let us remark that for the XXZ
chain the monodromy matrix is of the form

TE(N) = Laa(A - &) Lao(N- &) La (X €L). (5.2)
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In what follows, we will use the notation connected with the XXX chain, but we
can do for the XXZ chain the same as well.
Expressing 7()) in the auxiliary space V,, we get

¢ ¢
TE(N) = (éggg gggg) , (5.3)

where, again, the operators A%$()\), B&()\), C¢()\), and D®()\) act in J# =
h1 ®...® hg. Acting on the pseudovacuum vector |0) € S, we get

A5(X)[0) = a4 (N)]0), (5.4)
DE(N)[0) = 65(X)[0), (5.5)
CE(N)|0) =0, (5.6)
where
a®(\) =a(A+&)a(A+ &) ---a(A+ &1), (5.7)
56(N\) = dA + E)d(\ + &) - d(N +E1). (5.8)

Here, the functions a(\) and d(\) are defined in (2.69) for XXX resp. in (2.70)
for XXZ.

For the inhomogeneous version we can introduce the same /V-component
model as for the homogeneous Bethe ansatz. For the 2-component model, for
example, we have

Tag(A) = La 1(>\ + 51) L, z(>‘ + fm) a z+1(>‘ + ferl) T La,L()\ + fL) =
Ist component 2nd component

=TH(NTE(N), (5.9
where & = (&1,...,&;) resp. &5 = (Eut1,---,€L). We have
AE(N)[0) = af (N)as2(N)[0),  DEN)|0) = 85 (A)d52(N)]0). (5.10)

A very important property of the inhomogeneous chain is that its operators A% (),
B&(\), C&()\), and D&()) satisfy the same fundamental commutation relations as
the homogeneous chain (2.58)—(2.65), i.e., commutation relations are independent
of the inhomogeneity parameters €. Therefore, an analogy of propositions 1 and 2
can be easily formulated.

Proposition 3. Let N < L. An arbitrary Bethe vector of the full system can
be expressed in terms of the Bethe vectors of its N components

[T B*0wlo) =

kel

= > I I I @ )8 0w s O ) x

ILU..UINy k1€1; kn€ln 1<i<j<N
X BE (A )B5? (M) - BSY ey )[0). (5.11)
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To get an explicit formula for the Bethe vectors, we have to divide the chain
into L components of length 1, as we did in the last section. We get for the
M-magnon

I B5w)l0) =
k=1

M /mj—1 L J—1
-y X UA(H(HO‘?(/\J‘) 11 6§i<Aj>Hf<Ai7Aj>>x

1<ni<...<ny <L ox€ESMm j=1 i=n;+1

x Byt (A1) -+ Byt <AM>> 0) =

M /nj—1 L j—1
- ¥ 3 JA<H IT oy 11 55"'(Aj)_]_[f(&-vkj)>>x

1< <...<ny <L oxE€Sn j=1 \ i=1 i=n;+1

M L
XBnanM|O>:HHd(>‘j+£z) Z X

j=1i=1 1<ni<...<npm <L
M n j—1
X Z 0A< . f(Alv)‘])>Bn1 BnM|0>7
oNESM Jj=1 a(/\j + &)7) i=1 d(/\j +€z) =1

where again the B-operators Bf,? (\) = B, are parameter-independent

for 1-chains.

6. FREE FERMIONS

In this Section, we recall the well-known construction [19] of L-dimensional
free fermion algebra in terms of the Pauli matrices. First, in C? one can easily
define 1-dimensional fermions using the properties of the Pauli matrices. Let

(c® —idY). (6.1)

N =

1 _
wzaJr:E(az—l—ioy), =0 =
Thus defined 1, ¢ satisfy the fermionic relations

W, ¢ =1 *=0, ¢*>=0. (6.2)

For a tensor product of L copies of C? we can define fermions as

k—1 k—1
ve=|Tloi o o= |]loi|or (k=1,....L), (63
J=1 Jj=1
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where o7 denotes the sigma matrix attached to the jth vector space, i.e.,
o =1°07D @ g~ @ [¥(E79), (6.4)

This concise notation is used throughout the whole text. Commutation relations
for the fermions (6.3) are of the form

[&ivlpj]Jr = 6%]]17 [1/_}“ 1/_}j]+ = 07 W’iﬂ/’jh = 0. (65)

It is a straightforward task to check the following identities:

Uk 1V + Vet + Urtrt1 + Yop1¥n = 050741, (6.6)
V19 + V1 — Vrthrgr — Yrprthn = 0p0) 4, (6.7)
[¢r, i) = oF, (6.8)

(1 = 20t ) (1 — 204 1¥p41) = 040 f41- (6.9)

7. FERMIONIC REALIZATION OF XXX

We have seen that our definition (2.3) of the Lax operator L, ;(\) led to
expression (2.4) which is in fact identical to the definition of the R-matrix (2.8).
Let us remind that the identity operator I is a member of the algebra of fermions
because of commutation relation (6.5). Therefore, from expression (2.4) for
L, i(A\) we see that it remains to know a fermionic realization only for the
permutation operator P, ;.

Let us start with the permutation operator P} ;41 which permutes the neigh-
boring vector spaces hj and hy41. Due to identities (6.6)—(6.9) and definition of
permutation operator (2.5) it is straightforward to check that

Pi i1 = I+ Yri1¥n + Ortorg1 — Yutor — V1 ¥rs1 + 2060k ¥r1¥igr. (7.1)

Problems appear when we try to find a fermionic realization of the permutation
operator P; ;, in non-neighboring vector spaces h;, hi, where j < k — 1. It turns
out that P;j; becomes nonlocal in terms of fermions. Using properties of the
Pauli matrices, P;; could be rewritten as

1 - -
Py = (I +0j07) + (0 0y + 05 07). (7.2)

The first part is local even in terms of fermions

1 _ _ L
5(11 +oior) =1 — ek — Y905 + 20brjiby, (7.3)
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but the second part is nonlocal

k-1 k-1
of oy, 405 of = (Wybe+ ) [ [ of = Wy +dgun) [[(T=2dun). (7.4)
=3 =3

Therefore, the fermionic realization of P; ) for j < k — 1 is a nonlocal operator.
The nonlocality of P;j resp. R, (\) is a serious problem. There appear
difficulties when we attempt to express the monodromy matrix (2.11) in terms of
such nonlocal operators. We need to avoid the nonlocality.
Let us remind once again that L, ;(A\) = Rg,;(A). For the R-matrix Rqp())
satisfying the Yang—Baxter equation (2.10), we can define the matrix Rab()\) =
Rap (M) Py, which satisfies

Rap (N Roc(A + 1) Rap (1) = Rap (1) Rye (X + 1) Rap (). (7.5)

We substitute L, ;(A) = Ra,i()\)Pa,i in the monodromy matrix (2.11) and obtain
a very convenient expression

To(A) = La1(AN)La2(X) -+ Lo n(A) =
.1Ra,2()\)Pa,2 T Ra,L()\)Pa,L =

= a71()‘)Pa,
= Ra1(NR12(N\) - Rp 1., (AN)Pu1Pao---Pop =

a0
= Ra,1(>\)R1 2(A)--- RL—LL(/\)PL—LL - PioPy 1. (7.6)

—~

It contains the operators Rk7k+1 resp. Py 41 acting only in the neighboring
spaces hjy ® hi41. From (7.1) we know the fermionic realization of P 41, and
the fermionic realization of the R-matrix Ry j41(X) is

Rics1(N) = APrir + 1= (A + DI+ Nps1r +
+ Yptri1 — Ukl — Yrp1Vig1 + 2050k U1 ¥rg1).  (7.7)

The natural next step is to express the monodromy matrix (7.6) as the 2 x 2
matrix in the auxiliary space V, = C2. For this purpose we rewrite (7.6) as

Ta(N) = Raa (N X (M) Py, (7.8)
where the operator X (),
X(\) = Rl,z()\) - 'RL—l,L()\)PL—l,L <Py g, (7.9)

acts nontrivially only in the quantum spaces J# = h; ® ... ® hp, and is a scalar
in the auxiliary space V,. Moreover, we know, due to Egs.(7.1) and (7.7), how
to express X () in terms of fermions.
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What remains is to express le and P, ; as the 2 X 2 matrix in the auxiliary
space V,. The permutation matrix (2.5) can be rewritten as

1
Pa,1=§(H®H+U”®U”+0y®ay+az®az):

{602 ) (b )T )

and using (6.3) and (6.8) we get

_<¢1¢1 1 >_<H—N1 ¢1>7 7.11)

Y1 P Y1 Ny
where Ny = p1901. For Ry 1()), we get
: T . _( O+ DI=AN, My
Ra,l(/\) - I[(qu + )\Pa,l - ( )\wl >\N1 + ]I . (712)

Using (7.11) and (7.12), the monodromy matrix (7.8) can be written in the
following form:

Ta(/\)_<(>\+1)H—AN1 Ay )X(/\)<]I—N1 151)

pXIN ANy +1 U1 Ny
_( AN B
= < c(\) D(\) ) (13
where

A) = (A +1 = AN)X(A)(1 = N1) + A1 X (N, (7.14)
B(A) = (A4 1= AN)X (A1 + M1 X(A) Ny, (7.15)
C(A) = M X(A)(1 = Ni) + (AN + 1) X (M), (7.16)
D(X) = A1 X (N1 + (AN1 + 1) X (A) V1. (7.17)

8. BETHE VECTORS OF XXX
The goal of our text is to find expression for the Bethe vectors (2.75)

A, Aa) = B(A1) -+ B(Aa)|0). (8.1)
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For this purpose, the fermionic realization (7.15) of the creation operator B (\) is
very convenient. The operator X (\) = Ri2(\) -+ Rp—1,0(A\)Pr—1, - - - P12 can
be written in terms of fermions due to Egs.(7.11) and (7.12). From Eq.(2.71),

our special representation, where |0);, = (é), and the definition of free fermi-

ons (6.3), we can see that
Y0y =0 (8.2)

forall k=1,..., L.

If we were to write B()) in the normal form, our work would be simple.
Unfortunately, it seems a rather difficult task. Instead, we have to use the “weak
approach”, i.e., to apply B(\) to the pseudovacuum |0) and try to commute the
fermions v, to the left and see what happens.

The details of this section are postponed to Appendix A. Here, we only write
down the results.

We get the 1-magnon simply by application of (7.15) to pseudovacuum (2.71)

Mh

W010) = n(w) S 1] dnl0), (8.3)
k:l
where we use the concise notation
ptl "
(1] L n(p) i (8.4)
The 2-magnon state is of the form
B(p)B(A)[0) =
B s A—p+1 sh—=A+1
—nn) 3 (WA A ) o,
1<r<s<L
(8.5)

and the 3-magnon state is
BW)B(u)BOVI0) = n(v)n()n(A)x

— lv—-A+1 A+1)\- - -
< Y Yo < . et )wqwrwsm»

v— A
1<g<r<s<LocES3 K K=

(8.6)
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From the results (8.3), (8.5), and (8.6) we can conjecture that the general
M-magnon state is of the form

Ats-. s Aa) = B(A1) - B(Ay)|0) = <Hn )
X Z Z U/\< %])\]HH[/\z]kL>wk1 .'.’lLk’J\/I|O> =
i<j ¢

1<ki<.. <k]u<LO’,\ESM =1

(H" )Kﬂ = 3 3~y x

1<k1<...<kp <L ox€ESM

M M B B
X O <H(/\i —Aj+1) H[Ai]ki>¢k1 i [0),  (8.7)

i<j i=1

where o is a permutation of the parameters {A1,..., Ax}; p(on) = 0, 1(mod 2)

is the parity of the permutation oy, and > is the sum over all such permuta-
oNESM

tions. However, in the light of previous results this is no more a conjecture but
a special representation of (4.7).

9. FERMIONIC REALIZATION OF XXZ

Substituting (6.6)—(6.9) into (2.30) gives a fermionic representation for the
generators (2.32) of the Hecke algebra

Rzﬁ?ﬁ = Yrp1¥r + Urthir1 — @ktor — ¢ bartp 1 Prga+
+ (4 ¢ Urtrtbrr1tesr + gl (9.1)

In the following, we will use the baxterized R-matrix (2.34) multiplied by p'/2
for a simpler formula, which is of the form

Rypsr(p) = (1— p) [Vrr1¥% + Yr¥re1 — @outon — ¢ Yrp1rs1+
+ (¢ + ¢ )rtrtr1¥es1] + (@ — pg DL (9.2)
We repeat the construction used in Sec. 7 with the R-matrix of the form (9.1)
instead of (7.7) and the Yang—Baxter equation (2.35) instead of (2.10) resp. (7.5).

We recall the monodromy matrix of the form (7.6). Again, we write it in the
form (7.8)

Ta(p) = Ra,1(p) - Raz(p) - Ro—1,0()Pr_1,L - Pra-Pa1. 9.3)

X(p)

The fermionic representation of X (1) is obtained by (7.11) and (9.2).
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As we have seen, we need to express the monodromy matrix (7.8) as a matrix
in the auxiliary space V,. The generator of the Hecke algebra (2.30) is of the

form - ;
Ala) _ (94— q "IV 1
R = ( " qu> . 9.4)
Then (2.34) is
Raa(u) = (1= @B + p(q — g I =
_ ((q —pg = (1= p)g ' N (1—p)in ) ©.5)
(1= )t (I-paN +plg—q "))

The form of P, ; is known from (7.11).
Using (7.11) and (9.5), we get for the matrix elements of T, (u)

0 = Rualx P = (A0 DY), ©.6
that is,
A(p) = [(¢ — pg = (1 = p)g~ "N1] X (u) (T — N1) + (1 — w1 X (0)ir,
9.7)
B(p) = [(¢—pg I — (1 — p)g "N | X ()1 + (1 — )1 X (1) N1, (9.8)
Cp) = (1 = w1 X () (T = Ny) + [(1 = pw)gNy + plg — ¢~ )] X (w)¢1, (9.9)
D(p) = (1 — w)tr X (u)r + [(1 — p)gN1 + p(q — ¢ )] X (1) Ny (9.10)

10. BETHE VECTORS FOR THE HOMOGENEOUS XXZ MODEL
As in Sec. 8, we are interested in the Bethe vectors (2.75)
A1, ..., Am) = B(A1) - B(Awm)[0) (10.1)

with the opeartor B(u) of the form (9.8). The details are postponed to Appen-
dix B.
For the 1-magnon we get

L
1) = B(u)|0) = ng (1) [l F vk[0), (10.2)
k=1
where we introduce )
q— Kq
[1]q o (10.3)
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and the normalization

(g—¢H—p"
q—pgt

ng () = (10.4)

The 2-magnon state is obtained in the following form:
i) = BOVB(1) = ng(Nng () x
1

- {/\ql_’“‘q[/\]g[u]ng“q —Aq[ﬂ]gwg}@woy (10.5)

1<r<s<L A—p p=A

We can see that the situation is very similar to that in Sec.8. Again, we
propose that the general M-magnon state possesses the form

M
s ) = [ ne() > X
=1

1<k1<...<km <L

M Mgl — Mg M B B
< 2 oI5 =0 I w0}, 106)
i=1

oNESM 1<J

where Sj; is the symmetric group of order M, and o) € Sj; permutes the
parameters {A1,..., Ay }. Again, this is just a special representation of (4.7). In
the next section, we prove formula (10.6) by using the coordinate Bethe ansatz.

11. FERMIONIC MODELS AND COORDINATE BETHE ANSATZ

In this Section, we will use the coordinate Bethe ansatz method to construct
Bethe vectors for the periodic chain models which are formulated in terms of
free fermions. The coordinate Bethe ansatz method is named after the sem-
inal work by Hans Bethe [20]. Bethe found eigenfunctions and spectrum of
the one-dimensional spin-1/2 isotropic magnet (which we called above as XXX
Heisenberg closed spin chain model). The review of the applications of the co-
ordinate Bethe ansatz method can be found in the book [21] (see also [22] and
references therein).

11.1. R-Matrix, Hamiltonian and a Vacuum State. Recall that the fermionic
representation of the Hecke algebra (2.33) is based on the realization of the
R-matrix in the form

Rk,kﬂ = Y 1¥k + Ver1—
— @tk — ¢ " Vps1¥rsr + (@ + ¢ ) retrr1 e + g
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Consider the Hamiltonian for the periodic fermionic chain model (“small polaron
model”, see [5] and references therein)

~
|

1
H = Ripy1 + R —ql =
1

h
L
Eond
I

(Vrt 1k +Vetrt1 — a0k — ¢ Yrp1¥is1 +(q+0 D) Uretri 1)+
1
+ 1 + Y — qbrr — ¢ s + (g + ¢ YL =
L-1

= (V1% + Vetrr + (@ + ¢ D) Urrr 1 Yr)+
k=1

=~
Il

L
+ 0L+ Or + (g + g Drtrtis — (@ + g Y rtbk. (1L1)
k=1

This model is not coincident with the XXZ spin chain in view of the repre-
sentation of the matrix RLJ given in (2.30) in terms of fermions (6.3). In the
XXZ case the fermionic representation of ELJ is nonlocal.

The vacuum state |0) of the Hamiltonian is defined by the equations 5|0) = 0
fork=1,2,..., L.

11.2. The 1-Magnon States. We look for the 1-magnon solution in the form

L
1) =" cnnl0). (11.2)
n=1

Substitution of (11.1) and (11.2) in the eigenvalue problem H|1) = E|1) gives
the following equation for the coefficients c,, (the 4-fermionic term in (11.1) does
not contribute to the equations):

ch1tenpr=(E+(q+q"))cn, 1<n<L, (11.3)

where c,4+1 = ¢y, 1., ¢ = cr, and cp41 = c;. Since Eq.(11.3) is the discrete
version of the ordinary differential equation of the second order with constant
coefficients, one can solve (11.3) if we insert ¢, = X™. As a result, we obtain
the condition

E+(q+q¢ghH=X+X1 (11.4)

which is symmetric under the exchange X <> X 1. Thus, the general solution
of (11.3) is
cn = A1 X+ A X (11.5)
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where arbitrary constants Ay, As are independent of n. The boundary conditions
cr = cr+ lead to the equation for X:

Xt =1. (11.6)

However, in this case, we have X" = XL~ and linearly independent solu-
tions are

¢n = X", where X' =1. (11.7)
Thus, to each solution X = X}, of equation (11.6),
2mik
Xk—exp< 7; ) (k=0,....,L—1), (11.8)

we have two 1-magnon states (orthogonal to each other)

L L
Dk =Y X7 al0), [1) =Y X ™n|0) (11.9)
n=1 n=1

with the same energy
E=(+q ")+ Xe+ X ). (11.10)

On the other hand, we have Xk_1 = X1, and the set of vectors |1),_ coincides
with the set of vectors |1)}.. All these solutions correspond to the spectrum of
free fermions.

11.3. The 2-Magnon States. We write |n1,n2) = ty,,%n,[0), where 1 <
n1 < ng < L. It is easy to find that the action of the Hamiltonian on the vector

2) = > Cn17n2|n15n2> is
1<n1 <na <L
H|2> = Z ((1_671171)0711*1,”2+(1_6n1+17n2)(cn17n2*1 +Cn1+1,n2)+
1<n1 <na <L

+ (1 - 5n27L)Cn1,n2+1 - 5n171(1 - 5nz,L) Cny, L — (1- 5n171) Ona, LCLny T
+ (q + qil)(énﬁrl,nz + 5”1715712,11 - 2) Cnl,’ﬂz) |7”L1, n2>'

Equation H|2) = £|2) is then equivalent to the system of equations
(1 - 6”171) Cni—1,np T (1 - 6”14‘17”2)(6”17"2—1 + cn1+17n2)+

+ (1 = 6ny,L)Cn1 a1 — 5n1,1(1 - 5nz,L)Cn27L = (1 =00y ,1)0n,,LC1,0, =
= (5 + 2((] + q_l) - (q + q_l)(6n1+1,n2 + 5”1,15712,1/))0”1,”2

for any 1 < ny <ngo < L.
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The coordinate Bethe ansatz is based on the idea to write
E+20q+a ) =X1+ X+ X+ X5
and to find solution of the system in the form
Cnyns = A1 X7 X% + Aoy X1 X2,

where Ao and As; are independent of nq and ns, but they can depend on X3
and Xos.
Substituting this assumption into the equation, we obtain

Snvtims (A12(X1 X — (q+q )Xo+ 1)+ Ao (X1 Xo — (g + ¢ X1 + 1)) x
X (X1X2)T + (A1g + X A01) (80, 1 X5 4 Oy 1. X1 X5 )+
4+ (Aoy + XFA19) 0y 1 X772 + 6y L X X2) = 6y 1001 X
< (N1 Xo)" + X1 Xo)(A1z + Ao1) + (g4 ¢7 ) (A2 X1 X3 + An X X))
To fulfill these equations, we put
Ap(X1Xs — (q+q )Xo+ 1)+ An (X1 Xo — (¢ + ¢ X1 4+1) =0,
A+ X{An =0, Ay + X3 A15 =0,
or equivalently

Aoy X1Xo—(q+qg )Xo+ 1

Ay X1 Xo—(q+q¢ HX1+ 1

L_ X1Xo—(g+q¢ HX1+1

1 X1 Xo—(g+q¢ )Xo+ 1’
_Xh X - (g+qHXa+1
X1 Xo—(g+q¢ V)X +1°

11.4. The %—Me_lgn(_)n States. For 1 < n; < ne < ng < L, we put
[Py, m2,M3) = P, Yn,¥n,|0). The action of the Hamiltonian 7 on a vector

X

Xy

|3> = Z Cni,na2,n3 |TL1, na, TL3> is
1<ni<n2<ns<L
H|3> = Z ((1 - 5”171)0711*1,”2,”3—’_
1<ni<nz<ns<L

+ (1 = 0ny+1,m2)(Cny no—1.ms + Crat1,n2ns)+
+ (1 = 0nyt1.n5)(Cnynons—1 + Cnymating) + (1 — Ong £)Cny g ns+1+
+ 000,11 — Oy 1) Crpms, L+ Ong, (1 — 60y 1)C1 ng mat
F(q+ ) Onit 1m0 + Ongtting + 0ny10ng. L — 3)Cnnaing ) 121, 2, 103).
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Equation H|3) = £|3) is equivalent to the system of equations

(1 = 0ny.1)Cn1—1.m2.m5 + (1 = 0y 41.m0) (Cnyna—1,m5 + Cny+1,m9.m5)+
+ (1 = 0nyt1.n5)(Cnynans—1 + Cnymating) + (1 — Ong £)Cny o ns+1+
+0n1,1(1 = 0y, 1) Crpmg. L + Ong . L(L = Ony 1) Cling g =
= (8 +3(q + q_l) —(q+ q_l)(5n1+1,n2 + Onyt1,ng + 5n1,15n37L))Cn17n2,n37

where 1 < np < ne < nsg < L. When we put
E+3(g+q ) =X1+ X7+ Xo+ X3 + X3+ X5

and look for solution of ¢, n,.n, in the form

Conmais = Y, Ac X0l X0 X0,
og€S3

we obtain the following system of equations:

Snitins D Ar(Xo)Xo() = (@ +07)Xo(@) + 1) (Xo) Xog)™ X5+

og€eSs3
FOnatiins Ao (Xo(@) Xo@ =@+ 67 Xo@) +1) X 01 (Xo(2) Xo)) "+
og€S3
01 D A (X000 X0 = X000 X0t X))+
og€S3
n n L+1 n n
+ Ons,L Z AU(Xa(ll)XU(22)XU(3) - Xo(l)Xa(lz)Xa(23))+
oc€S3
+ Oni10nyn > Ag (X028 X o) Xoa) + Xo(1) Xo(2) X i) —

og€S3

—(a+ 0 )Xoy X2 X0(5) =0.

Let 7 be the transposition 1 <> 2; and 9, the transposition 2 < 3. To cancel
the terms at 0y, 41,n, and dp,41,n,, it is sufficient for any o € S3 to put

Ao (Xo)Xo) — (q+ 0 ) Xo@ + 1)+

+ Agory (Xo()Xo2) — (¢ + ¢ )Xoy +1) =0,

As (XU(Z)XU(S) - (q + qil)XU(3) + 1)+
+ Aao7r2 (XU(Q)XU(3) - (q + q_l)XU(Q) + ]‘) =0.
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If we consider the element € € S5 defined by the relations €(1) = 3, €(2) = 1,
€(3) = 2, we obtain

> A (X[E XD - XI2 X1 X)) =

a(2)“*o(3) a(1)*a(2)
o€S3
. . n no ns L —
- zs: (A X (2 )X (3 3) —A XUOE(Q)XUOE(B)XUOE(I)) o
gESs3

L
= Z (AU - AUO€_1XU(1)>XTL(22)X:83)
o€S3

So, we put for any o € S3
AU - Aaoefl Xf(l) = 0, i.e., AUO€ - A XU(B)

It is easy to show that these three assumptions solve the whole system for

Cn17n2;n3 °

We obtained for the A, conditions

A _ - Xo)Xo@) —(a+4 “NXo) +1
7em XoyXo@) — (@+ ¢ HXpqy+177
(11.11)
4 _ - Xo@Xo@ —(a+4 “NXo@ +1
rem Xo@)Xo@) — (@+ ¢ )Xo +1

It follows from these relations that for any o € S3

A( ) _ _XO'O7T1(1)XO'O7T1(2) - (q + q_l)XUowl(z) +1 Ao 4
T XeomXoom2) — (44 Xoom@y +1 7

holds. Similarly, we can show that A(;or,)om, = Ao
Moreover, we have

4 KXo Xo — (¢ + g ") Ags +1 _
((oomy)oma)omy XJ(Q)XJ(B) — ((] T qil)Ag(Q) 1 (oomy)oma
_ Xo@Xog — (g + e ) As3) 1 XoyXo@) — (@ + ¢ 1Ay +1 4
Xo@Xoi3)—(a+ 0 A2 + 1 XoyXo@) — (@ + ¢ ) Asa)+1 =77
XX —(a+ a7 N Ae) + 1 XoyXom) — (@ + 0 )Asp) +1 "
Xo@)Xo@) = (@+q7 1) A2 +1 XoyXo@) — (@ + ¢ 1) A0 +1
XoyXo@) — (@+ ¢ )Xo +1
XoyXo@) — (@+ ¢ HXpqy +177
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Xo)Xo) — (@ +a DA +1 oo =
XoyXo@) — (@+q 1 )Asqy + 17777
_ X Xo@) — (a+a 1A+l Xo1)Xoi) — (@ + ¢ ) Asi)+1 _
Xo)Xo2) — (@+ ¢ D Ara)+1 Xoy Xo@) — (@ + ¢ 1) Aya)+1 7 77"
XoyXo@ — @+ As2) + 1 Xo1)Xoi) — (@ +a DAse) +1
XoyXo@) = (@+q ) Az +1 XoyXo@) — (@ + ¢ Az +1
" Xo@)Xo@) — (@+ a7 )Xo +1 A
Xo@)Xo@) — (@ +q7 )Xo +1

A((aowz)owl Yoma —

So for any o € S3 the relation A((or,)ors)om; = A((ooms)om )om, holds. There-
fore, A, is really a function of the symmetric group Ss.
Since € = w9 o w1, the equality Ao = X£(3)Ag leads to the relation

- Xo)Xo@ — (a4 g ") Xe3) +1
XoyXo@) — (@ +q¢7 )Xoy +1

_ Xo)Xo@) — (@+a )Xo +1 Xo0)Xoi) — (@ + 0 )Xo + 1 A
Xo)Xo@3) — (@+ ¢ )Xoy +1 Xo@2)Xo@) — (@ +q71)Xp2) +1

_ L

A00€ = A(o’oﬂ'z)0ﬂ'1 = AUO?T2 =

So for any o € Ss3, the relation

_ XoyXo@) — @+ 0 ) Xo@) +1 Xo@) Xo@) — (@+ ¢ )Xo +1
B X o) Xo@) — (@ + ) Xo) + 1 Xo@)Xo@) — (@ + ¢ 1) Xog) + 1

has to hold. It is possible to rewrite these relations in the form

xL _ XXy —(g+qHX; +1

i ] - -1 :
i Xsz (q+q )Xk'f'].

(11.12)

11.5. The M-Magnon States. For 1 < n; <no < ... <npy_1 <ny < L
we denote

|Il> = |n17n27 SRR nM> = 11_)7111/_}712 e u_)nﬂl|0>
and take the vector
|M) :ch|n> = Z Cryyeoomar N1, - -+, ).
n 1<ni<ne<...<npy <L

When we write

(niek) = (nl,...,nk_l,nk + 1,7’Lk+1,...,n1\4),
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it is possible to show that

M—-1
H|M> = Z ((1 - 6"171) Cn—e; T Z (1 - 6nk+17nk+1)(cn+ek + Cn—ek+1)+

n

+ (1 - 6”AI7L) Cnten T ( 1)M 15”17 ( - 5”A{7L) Cn27---anM7L+
+ (_I)Mil(snM,L(l - 5”1,1) Cling,.onar—1 T

M-—1
+(a+q Z nk+1,nk+lcn+(q+q1)5m,15nM,Lcn—M(q+q1)cn>|n>-

Equation H|M) = £|M) is then equivalent to the system

M—-1
(1 - 5”171) Cn—e; + Z (1 - 5nk+17nk+1)(cn+ek + Cn—ek+1)+

+ (1 - 6’”«M7L) Cntey Tt ( 1)M 15”1 1( - 6”M7L) Cna,..nar, LT
+ (_1)M_15n1\/1 L(l - 6n1,1) C1, MLy —1

= <€+M(Q+q D-(a+a Z Oyt L (q+q1)5n1;16nM7L> Cn-

When we write the eigenvalue of the Hamiltonian as

M
= (Xp+X;)—Mg+q"), (11.13)
k=1

look for the solution in the form

Cn = Z A XX oy - X

gESN

and substitute these assumptions into the system, we obtain

M-1
5nk+1,nk+1 Z AU(]- +Xa(k)Xa(k+1) - (Q+q71)XU(k+1))X
k=1 ocESM
X X2ty (Ko Xoerr)™ - XJ0in T 0 D Ac(X]h) - X+

oc€ESM
+ (= )MXn(21)Xn(32) X:€&71)X£(M))+
+ 0nnr L Z Ag(X7ty - X0 11)X5(JJF\})+
og€ESM
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M n n -1
+(=1) XU(I)XU(IQ)XU(23) v 'X:(Ai{) )—
_(_1)M6n1715nMyL Z Ag (X;L(ZI)X:&) o 'th(l\l—l)Xzf(M)—’_

oc€SM
+Xo (1) Xo@) X5 Xy + (DM (g +a71)x

n - L
xXo)Xoty) - Xo(uln Xoan) = 0-

Let i, k=1, ..., M — 1, be transpositions k < k + 1. When the relation

(Xot) Xotrr1) — (@ + ¢ D Xo@i1) + 1) As+
+ (Xom) Xo(a1) = (@ + ¢ )Xo + DAsor, =0 (11.14)

is true for any o € Sy and k=1, ..., M — 1, the terms at d,, 11,5, , Vanish.
Let € € Sy be defined by the relations ¢(k) =k — 1 for k=2, ..., M and
e(1) = M. If we require

A+ ()Y XL ) Agoer =0, e, Agoe = ()M XL A, (11.15)

for any o € Sy, the terms at d,, 1 and dy,,, 1 are annulled.
Combining (11.14) and (11.15) we get

n n L L n M —
> A (X0 X0 Xy Xgan T Xaw Xo@ Xof) - Xoin'+
oceSM
M -1 : M — L =
+ (D" + 0 )Xoy X)) Xt iy Xoan) =

-1 N —
= Y A (14 Xo) Xo) = (0 + 07 ) Xo2)) X020 X0y - Xl = 0.
ocESM

Therefore, the assumptions (11.14) and (11.15) solve the system for cj,.
We rewrite relation (11.14) as

 XowXower) — (0 + a7 )Xo +1

A,. (11.16)
Xot)y Xo+1) — (@ + a7 1) Xomy +1

Aaowk =

From this relation it is easy to show that forany 0 € Syy and k=1, ..., M —1,
the relations

A(aowk)owk = AU; A((JOWk)OWk+1)O7Tk = A((aowk+1)o7rk)o7rk+1

are valid. Therefore, A, is really a function on symmetry group Sy;.
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If we write ¢ = mpy—1 0ompr—20...0mg 0m and use (11.16), it is possible
to rewrite (11.15) as

XoyXoon — (@ + a7 )Xo +1

Xo)Xo(ary = (@ + a7 1) Xpqy +1 7777100
_(-1)? XoyXoon — (@ +a )Xoy + 1

B XoyXory — (@ +q7 1) Xoy +1

Xo@Xoon — (@+a )Xo +1 B

XU(Q)XU(M) —(g+ Q’I)Xa(z) 41 T mOmeTs

Aaoe = -

_ YM -1 H —(g+q” 1)XU(M)+1A
Xa(k)Xa(M) (+q 1) Xom +1

= (_1)M71X£(1\1) Ao

This implies that for any ¢ =1, 2, ..., M, the relation

X X5 — ( X +1
H e (gt )Xt (11.17)

XXk— (g+q¢ HXp+1

has to be true.

11.6. Comparison with the Standard XXZ Model. In the standard XXZ
model, the eigenvalues of the Hamiltonian are also given by relation (11.13).
Moreover, relations (11.16) are also of the same form, i.e., the relations

Xo Xopt) — (@ + a1 Xoprr) +1
Xot)y Xo+1) — (@ + a7 1) Xow) +1

Aaowk = -

are valid also for the XXZ model.
However, there is one important difference. In the relation corresponding
to (11.15) the multiplier (—1)»~1 is missing, i.e., for XXZ, the relation

L
Agoe = XU(M)AU
is valid. Therefore, we obtain in the XXZ model the relation

X = M1HXXk_‘I+q DX, +1
! XX — (g +q ) Xp+1

(11.18)

instead of (11.17). Comparing (11.17) and (11.18), we conclude that the spectrum
of the fermion (soft polaron) and the standard XXZ model are the same for odd
M, but if M is even, the spectrum of these models can be different.
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The Bethe equations (11.18) are equivalent to the Bethe equations (2.86) if
we substitute )
4—q Ak
Xp=——""—7—.
k 1— X
For this substitution, the right-hand side of (11.18) is simplified and coincides
with the right-hand side of (2.86).

12. SOME REMARKS ON THE OPEN HECKE CHAIN

Let H,(q) be the Hecke algebra generated by the invertible elements T}
(k=1,...,n— 1) subject to relations (1.1) and (1.2). For future convenience,
instead of (1.6), we will consider the following form of the Hamiltonian:

n—1 n—1
n—1 _
Hn:ZTk—( 5 )(q—q D= sk € Halg), (12.1)
k=1 k=1
where we have introduced the new generators of the A-type Hecke algebra H,,(q)
—qt
s =Tj — 2 2q = % Ty ()| g1/2s, (12.2)

and Ty (z)|,1/2_; are the baxterized elements (1.3) taken at the point z'/? = i.

Remark. The representation theory of the Hecke algebras H,(q) is well
known. For the details of this representation theory, see, e.g., [24-27,30-33, 36,
41] and references therein. Each irreducible representation (irrep) of the Hecke
algebra H, (q) (¢ is a generic parameter) corresponds to the Young diagram A
with n nodes. The dimension of the irrep A is given by the hook formula (see,
e.g., [28] and [32])

dim (A) = n—!h’ (12.3)
aEA “
where h,, is a hook length of the nod o € A. Recall, that the Young diagram A
with m rows of the lengths (A1, Aa, ..., Am),

m

MZXZ2An, Y A=n,
k=1

is called dual to the diagram A’ if (A1, A2, ..., \,) are the lengths of the columns
of A’. Tt is clear that dim (A) = dim (A’).

The quantum integrable systems with the Hamiltonians (12.1) were consid-
ered in [2,23]. In the next subsection, we list the characteristic identities for the
Hamiltonians H,, for the cases n = 2,...,6. These identities define the whole
energy spectrum of the Hecke chains of the length n = 2,... 6.
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12.1. Characteristic Identities for 7{,,.. Here, we use the notation

1

A=q—q ', qg=q+q"

1 —1

12.1.1. The Case n = 2. The characteristic identity for the Hamiltonian

HQ = T1 — A/Q is
1 1\
(Hz - 5(]) (Hz + ?J) =0.

Two eigenvalues (1/2)g and —(1/2)g correspond to the one-dimensional irreps
Ty = gand Ty = —q~ ! labeled, respectively, by the Young diagrams (2) and (12).
12.1.2. The Case n = 3. Here, we have the set of commuting elements [2]

n=T1+T, jo=TTo+T5Ty, js=TT1To+T+T>. (12.4)

Note that the elements js, j3 are expressed in terms of j;:
=7t =N =2 g =57 = 207 + (A = 1)j1 + 23,

The element H3 = j; — A is the Hamiltonian (12.1) for the open Hecke chain and
Js is a central element in H3. The characteristic identity for the Hamiltonian Hj3 is

(Hs +9)(Hs —q)(Hz — 1)(H3 + 1) = 0. (12.5)

This means that Spec(H3) = {£q, £1}. The first two eigenvalues £ correspond
to the one-dimensional representations 7; = +¢*! (i = 1,2) of Hz(q), which are
related to the Young diagrams (3), (1%). The eigenvalues (41) correspond to the
two-dimensional irrep (2, 1) of Hz(q).

12.1.3. The Case n = 4. In this case, we have the following set of commuting
elements:

3
1= T jo={T1,Ta}ly + {To, Ts}; + 27571,

i=1
3
Js={NT5,To}t + (Th + T3)To(Ty + T5) + NT5Ty + QZTi,
i—1
Ja =TT, T b + {121 T2, T}y + {12, Ts}y + {12, Th }4,
Js =TT TRTST + 11315 + T ToTy + Ty + T + 1.

The element js is a central element in H4(g). Therefore, the longest element
in Hy(q): j = TWTxT5ThToTy = (55 — j1)(j1 — A) — j4 commutes with the
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Hamiltonian H4 = j1—(3/2)\ (12.1). This Hamiltonian satisfies the characteristic
identity

e 3) - 35) ) () )
(o) (b)) i) e

Thus, the spectrum of H, consists of the eigenvalues:

((3/2)g, —(3/2)q) for the two dual one-dimensional irreps (4), (1%) of the
Hecke algebra Hy(q);

((1/2)g, (1/2)G+/2) and (—(1/2)g, —(1/2)G =+ \/2) for the two dual three-
dimensional irreps (3,1), (2,1?);

(£(1/2)\/@* + 8) for the two-dimensional irrep (22) of Hy(q).

12.1.4. The Case n = 5. For the Hamiltonian Hs = Z T; — 2 the character-
i=1
istic polynomial is an odd function of order 25, and the characteristic identity is

(1°) - (5) : (Hs +2q)(Hs — 2q)x

(3,1%): XM (HE — 1)(HZ - 5)x

(2,1%): X <(H5 +7)° - @) ((H5 +7q)° - @#) X
(4,1) X <(H5 -7’ - @) ((H5 —-7q)° — @#) X
(2%,1):  x(H2+qHs — 1) (M3 +qHE — 5Hs — 27) x

(3:2): x(H3 —qHs — 1) (M3 — gHZ — 5H5 + 29) = 0. (12.7)

The last two lines give the eigenvalues of Hs, which correspond to the five-
dimensional representations labeled by two dual Young diagrams (22,1), (3,2).
The sum of the dimensions of the irreps for H5(q) is equal to 26. We obtain the
25th order of the characteristic identity since the eigenvalue 0 has multiplicity 2.
This eigenvalue appears in the self-dual irrep (3, 12).

12.1.5. The Case n = 6. For the Hamiltonian H¢ = E T, — —/\ the char-

acteristic polynomial is an even function of Hg of order 72 The characterlstlc
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polynomial is much more complicated:

(1% - (6) -

(3,1%)

5 5
(Hﬁ + 56) (Hﬁ - 55) X

[(3g° — 20 + (24 — 14¢%)He + 20qHg — 8Hg) x
x{9g° — 2287" + 512g° — 256 — (14087 — 12807° + 843" ) He+
+(768 — 25287° + 316" )HZ + (20487 — 6087° ) Ha+
+(624g° — 576)Hg — 320gHg + 64HG } x
x (37" + 163> — 64 + (87> + 1609)He+
+(—87" + 128)Hg — 32qH; — 16H) x
x (g® + 16" — 256g° — 256 + (2560 + 10243° + 647" ) He—
—(5120 + 11523° + 1925 + 167°)H2 — (2048 + 512¢°)Hi+
+(8448 + 1536G° + 967" Y Hg + 1024H3—
—(3072 + 256" )HS + 256Mg) | [He — —Hs), (12.9)
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where in the left-hand side we indicate the corresponding representations which
have dimensions

dim (6) = dim (1°) =1, dim (3,1%) = dim (4, 1?) = 10,
dim (5,1) = dim (2,1*) = 5.

The factors in (12.9) correspond to the representation (23) with dim = 5, the
representation (3,2, 1) with dim = 16, the representation (4, 2) with dim = 9 and
their dual irreps which can be obtained from the previous ones by substitution
He — —Hg. The sum of the dimensions (12.3) for all these representations
of Hg is equal to 76. Since the order of the characteristic polynomial is equal
to 72, we conclude that some of these eigenvalues are degenerated. Two of such
eigenvalues appear in the dual hook-type irreps (3,1%), (4,12) and other two
appear in the dual nontrivial irreps (3,3), (2%) (see below). It is clear that the
degenerated eigenvalues are 4(1/2)g (with the multiplicities 3). The important
problem is to find an additional operator j; which commutes with the Hamiltonian
‘Hs and removes this degeneracy.

Remark. The factor, which corresponds to the self-dual representation
(3,2,1) with dim = 8 presented in (12.9), can also be written in the concise
form (we remove the common factor 28)

{v8 + ot —40% — 14 10z + 1620% + 4dav* — 2022 — 182202 — 122%0* —
— 42208 — 823 — 8230% + 332 + 242%0? + 62 vt + 42® — 1225 — 42502 + xs} =
=7V — Z°Y?(62 4+ 1)(2z — 1) + [4ZY + (42® 4 62 — 1)](2z — 1)?,
(12.10)

where ¢ = Hg, v =79¢/2, Z=x+v, Y =z — .
12.2. Characteristic Polynomials for 7,, in the Representations (n — 2, 2).

Now we impose additional relations on the generators 7} of the Hecke alge-
bra (1.1), (1.2):

T1(q%) Ti-1(¢") Te(¢*) = 0,  Ti(q®) Thsr(q*) T(q?) = 0, (12.11)

where T}, (x) are the baxterized elements (1.3). The factor of the Hecke algebra
over the relations (12.11) is called the Temperley—Lieb algebra T'L,,. It is known
that all irreps of the algebra T'L,, coincide with irreps p(,_g,x) (here n > 2k)
of the Hecke algebra numerated by the Young diagrams (n — k, k) with only
two rows. The spectrum of all Hamiltonians p(,, s 1) (Hn) (k= 0,1,...,[n/2])
gives the energy spectrum of the XXZ Heisenbegr spin chain of the length n
(see, e.g., [34] and references therein). In this subsection, we present the char-
acteristic polynomials for the Hamiltonians p(,,_2 2)(H,). The dimensions of
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M. Our method of the
calculation is the following. We construct explicitly matrix representations of
P(n—rk,k) (Hn) (see the next subsection) and then use the Mathematica to evaluate
the characteristic polynomials of p,_p i) (Hn).

12.2.1. The Case n = 4 and Representation (2,2) with dim = 2. The
Hamiltonian H4 = x (see (12.1)) has the characteristic polynomial (see (12.6))

the representations (n — 2,2) are dim p(,_9) =

(22 —0v*-2)=YZ -2, (12.12)

where Z =z +v,Y =2 — 0.

12.2.2. The Case n = 5 and Representation (3,2) with dim = 5. The
Hamiltonian Hs = x has the characteristic polynomial as a product of two factors
of orders 2 and 3 (see (12.7))

(2% —qr —1)(2® —G2® =52 +29) = (YZ - 1){YZ? - (2Y +32)}, (12.13)

where Z =z, Y = x — 2v.

12.2.3. The Case n = 6 and Representation (4,2) with dim = 9. The
Hamiltonian Hg = x has the characteristic polynomial (see (12.9)) which is
factorized into two factors of the 3rd and 6th orders

{—30° + 50 + (Tv* — 3)z — 5va® + 2%} x
x {908 — 570 + 3207 — 4 + (—44v + 160v° — 420%)2 + (12 — 158v% + 79v*)2? +
+ (64v — 76v°)2” + (39v® — 9)z* — 10vz® + 2%}, (12.14)

In terms of the new variables Z = x — v, Y = x — 3v the factors in (12.14) are
simplified to be

{YZ% — (Y +22){Y?Z* — (5Y +4Z)Y Z* + 2(5Y + Z)Z — 4}.

12.2.4. The Case n = T and the Representation (5,2) with dim = 14. For
the Hamiltonian H7 = x, the characteristic polynomial in this representation is
factorized into two factors of the 6th and 8th orders. In terms of the new variables
Z =z —2v,Y =x — 4o it reads

{(Z%Y? -3Z*Y (Y + Z2) + Z(Z +4Y) — 1} x
x {Z5Y? — (OY +52)Z*Y + Z*(Z +6Y)(5Z +2Y) — (5Z + 2Y)?}.

12.2.5. The Case n = 8 and the Representation (6,2) with dim = 20. For
the Hamiltonian Hg = x the characteristic polynomial in this representation is
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factorized into two factors of the 8th and 12th orders

{Z%V? 22V (3Y +22)+ Z*(Z +5Y)(3Z+Y) — (3Z +Y)?*}x
x {Y329 — ZTY?(14Y 4+ 6Z) + Z°Y (922 + 68ZY + 49Y?)—
— 7322 +85Z%Y +1682Y? +49Y3) +22%(92% + 68ZY + 49Y?)—
—8Z(7Y +3Z) + 8},

where Z =x —3vand Y = x — bv.

12.2.6. The Case n = 9 and the Representation (7,2) with dim = 27. For
the Hamiltonian Ho = x, the characteristic polynomial in this representation is
factorized into two factors of the 12th and 15th orders

(Y329 —5Y2Z7(2Y + Z) + 3Y Z°(8Y? + 13ZY +22%)—

— Z3(16Y° 4 642Y? 4 382%Y + Z%) + 3Z%(8Y? + 13ZY +22%)—
—5ZQ2Y+2)+1HY3Z12 Y2 Z0(20Y +72)+Y Z8(126Y 2 +1212Y +142%)—
— Z5(304Y2 + 6202Y?% + 2122%Y + 72%) + Z*(2Y + 7Z) x
x (126Y% 4 1212Y + 14Z%) — Z*(2Y +72)*(20Y +7Z) + (2Y + 72)%},

where Z =z —4v, Y = x — 6.

12.2.7. The Case n = 10 and the Representation (8,2) with dim = 35. The
characteristic polynomial in this representation is factorized into two factors of
the 15th and 20th orders

Pgoy = {Z"Y? - 32°Y?(5Y +22) + Z8Y (69Y? + 762Y + 102%)—
—Z%(119Y? +2782Y 2 4+10922Y +42°%)+ Z*(Y +42)(69Y >+ 76 ZY +1022%)—
—3Z%(5Y +22)(Y +42)* + (Y +42)*}x
x {71yt — Z1Y3(27Y +8Z) + ZM2Y2(261Y2 + 1942Y +202%)—

— 7Y (1143Y3 +16322Y? 4 4392%Y + 162°)+
+ Z8(2349Y* 4 59827V + 321622V % 4 326Z3Y + 22*)—

— Z5(2187Y* + 97202V 4 98122%Y 2 + 2124 723Y + 40Z*)+
+32%(243Y* 4 22142Y3 + 4098 2%Y? + 1816 Z3Y + 842%)—
—273(729Y + 30332Y 2 + 2584 Z°Y + 304Z°)+

+3622(27Y? + 54ZY +142%) — 80Z(3Y + 2Z) + 16}, (12.15)

where x = Hig, Z =x —5v,Y =x — To.
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12.2.8. The Case n = 11 and the Representation (9,2) with dim = 44. The
characteristic polynomial in this representation is factorized into two factors of
the 20th and 24th order

Pooy ={Z2"Y* —72""Y3(3Y + Z) + 5Z"*Y?(31Y? + 26 ZY + 32%)—
— 710V (51072 4 8222Y? 4 2497%Y + 10Z3)+
+ Z83(775Y* + 2228 7Y3 4+ 135122Y2 +15323Y + Z*)—
— 7Z5(525Y* +26352Y3 +30022°%Y? 4 73023Y + 15Z%)+
+ Z4(125Y* +12902Y3 4 2697Z2Y? + 1346 Z%Y + 692%)—
— Z3(200Y? + 9412Y?% 4+ 9042%Y + 1192%)+
+32%(35Y2 + 79ZY +23Z%) — 5Z(4Y +37) + 1} x
x {Z2V* — Z8Y3(35Y +92) + Z'6Y2(475Y2 + 2902Y +272%)—
— 7MY (3230Y2 + 3558 2Y2 + 8052%Y + 3023)+
+ Z12(11875Y* 4 214042Y3 4 89497%Y? + 8392%Y + 92*)—
— 719(23883Y* 4- 67T17ZY? + 4759022Y 2 + 8550Z3Y + 2437*)+
+ Z8(25365Y* + 113066 Z2Y + 12882522V % 4 40518 2%Y + 23492*)—
— Z5(2Y +92)(6650Y> + 173452Y?% + 10194Z%Y + 1143Z3)+
+ Z4(2Y +92)*(855Y2 + 11832Y + 26127%)—
— Z2(2Y +92)3(50Y +272Z) + (2Y +92)*}, (12.16)
where x = Hy1, Z =x —6v, Y = x — 8u.
12.2.9. The Case n = 12 and the Representation (10, 2) with dim = 54. The

characteristic polynomial in this representation is factorized into two factors of
the 24th and 30th order

Puogy = {Z2%°Y* —4Z"8Y3(TY +22) + 3Z'°Y?(100Y? + 682Y + 727%)—
—ZMY (15913 +19542ZY? + 491 2°Y + 202%)+
+Z12(4508Y* +90642Y3 + 4218Z°%Y? + 436 Z3Y + 52%)—
—Z10(6907Y* 4+ 218502Y3 + 171122%Y? + 3406 Z3Y + 105Z4)+
+Z8(5527Y* 4 27480ZY 4 34909Z°Y? 4 1220023Y + 7752%)—
—2Z%(Y +52)(1082Y3 + 3150ZY? + 2061 2%Y + 2552%)+
+ZHY +52)%(411Y? + 634ZY + 1552%)—

—T7Z25Y +3Z)(Y +52)* + (Y +52)*} x
x{ZPY® - 2273y *4(22Y +57) + Z*'Y3(792Y2 + 4122V + 352%)—
—ZY9Y2(7623Y + 6866 Z2Y? + 13552%Y + 5023)+
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+ Z'TY (43076Y* 4 603902Y? 4 2095422V 4 183423Y + 257%)—
— Z"(147983Y° +307010ZY* +168558 Z2Y > +265102°Y 2 +883Z1Y +22°) +
+ Z'3(310123Y° +9309742Y* 4 77009122Y 3 + 19617223Y?+
+ 121392V +702°) — 22" (194326Y° + 8405872Y* + 102699322 3+
+4042112Z3Y2 + 42041 Z*Y + 47525) + Z°(278179Y° + 1759824 ZY* +
+ 3173478Z°%Y3 4- 1898244 Z3Y? 4 317599Z*Y + 64607°)—
— Z7(102487Y° + 1011560ZY* + 2742586 Z2Y > + 2500438 Z°Y >+
+ 665275Z1Y + 237502°) + Z°(14641Y° 4 284834ZY™* + 1251866 Z°2Y 3+
+17692402%Y? 4 753437Z1Y + 477662°)—
—27%(14641Y* + 13552023 4 32047422Y 2 + 219128 Z3Y + 2536524)+
+873(2662Y3 + 136732Y? + 1610622 + 33252°)—
— 8Z2(847Y? 4 2222ZY + 8557%) + 80Z(11Y +10Z) — 32}, (12.17)
where * = His, Z =x—T7vand Y = x — 9v.
12.2.10. The Case n = 13 and the Representation (11,2) with dim = 65.

The characteristic polynomial in this representation is factorized into two factors
of the 30th and 35th order

YPZ2 — oY (AY + Z2)Z% + 1Y3(T5Y? +432ZY + 422 7% —
— Y?(4056Y " + 40312Y? + 8742%Y + 352%) 2"+
+ Y (18231Y* 4 282227V + 1078122Y? +10302%Y + 1524217 -
—(49380Y° +1131632Y* + 68496 2Y 3 +118052°Y? + 424Z*Y + Z°) 7'+
+(80891Y° 42682572 44244835 22Y 3 +68531 Z°Y 2 +460521Y +28 2°) 713 —
— (78576Y° + 3754292Y* 4 50627022Y 3 + 21933423Y 2+
+249052*Y + 3002°) 2 +
+ (43200Y° +301984ZY* 4 60109022Y 3 + 396150Z3Y? +-
+ 726342 + 15912°) 79—
— 2(6048Y° + 66096 ZY* + 1979202%Y3 + 1988812°Y %+
+ 581222%Y + 22542577+
+ (1296Y° + 280802Y* + 136554Z2Y3 + 212848 73V %+
+996442Z*Y + 69072°) 25—
— (2160Y* 4 22176 ZY> 4 57906 Z%Y? + 43570Z3Y + 552724 Z*+
+ (1296Y? + 73602Y? + 9551 2°Y + 21642°) 73—
—3(112Y2% +3242Y +1372*) 2> + 35(Y + Z2)Z — 1; (12.18)
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Vo730 — Y4(54Y +112)Z%° + Y3(1239Y? + 5632Y + 442%) 70—
— Y?(15894Y3 +121532Y? + 21402°%Y + 7723 2% +
+ Y (126279Y* + 145446 ZY + 43545Z°Y 2 + 3578 Z%Y + 5524 2% —
— (650946Y° 4 10677492Y* 4 48679822V 3 + 6896723y 2+
+24662%Y +1125)2%° + (2219569Y° + 50288632Y* + 330318122V 3+
+72322123Y2 + 45485Z1Y + 4842°) 2% — (5017266Y° + 15459111 2Y* +
+ 1420313022Y 3 + 45508702°Y % 4 451913Z1Y + 87122°) 7'+
+ (7433784Y° + 30999936 2Y* 4 392762782V 4 17901642Z3Y >+
+266200021Y 4 838532°) Z'* — 2(3523048Y° + 19967988 2Y* +
+ 3479055022Y 3 + 2227509923Y2 + 4830078 Z1Y + 236918 2°) Z'2 +
+ (4121784Y + 320575602Y* + 77399690Z°Y 3 + 695955927°Y 2+
+ 21779274 ZYY +16278132°) 2" — (2Y +112)(715128Y*+
+ 3714176 ZY® + 5556166 2%Y2 + 42682086 Z°Y 4 3101232*) 75+
+ (2Y 4 112)%(71532Y + 2337002Y?2 + 191279Z°Y + 353322°)Z°—
— (2Y +112)3(3924Y2 4 7128ZY + 22997%) x
x ZY+7(2Y + 112)*(15Y + 112) 2% — (2Y + 112)°,

where xt = Hi3, Z =z —8vand Y =z — 10w.

In all examples considered above, the characteristic polynomials for
P(n—2,2)(Hy,) are factorized into two factors with integer coefficients. So we
formulate the following Conjecture.

Conjecture. Let n > 4. For irrep of the Hecke algebra H,(q) with Young

-3
diagram (n — 2,2) and dimension % = Pn—1 + Pn, the characteristic
polynomial for the Hamiltonian p,_s 2y(H,) = x is represented as the product
of two polynomial factors: the short factor short,, of the order p,_1 and the long
factor long,, of the order p,, with integer coefficients, where

1 n(n —2) for evenn,
pn=g(=1)" =1)3 —4n+ 2n?) =

L

(n+1)(n—3)n for oddn,

that is,

p3:O7 p4:27 p5:37 p6:6a p7:85 p8:125 p9:15a
p10:20, p11:24, p12:30, p13:35, p14:42,...
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These polynomial factors are (p, = kn + k)

(n—4)(n—15)
2

_ _ _ 2 _ .
n (n 5)2(n G)Z’QY’Q n (n 6)(n2 n + 8)273}/,71_’_

n (n—6)(n— 7;(712 —5n —4) 74 _ _ (n—6)(n g 7)(n —8)

_ (0" = 200% 1+ 137n% —338n 1 116) 4o 5 _ (. )ZSY1}+

short,, = ZF»-1ykn—1 {1 —(n—4)z7 'y 1 - Z72+

Z3y 3

long,, =
(n—1)(n—4)
2
(A B0Y) | (00 D0 8 sy,
n (n—6)(n— 1)8(712 —3n—12) -4 _ (n—2)(n g 6)(n—17)
(n* — 12n3 4+ 37n? + 18n — 124) P
4

_ (o2 — 1207 + 2307 +8128”2 S22 sy }+

_ N (n—
— ZFnykn {1 —(n-2)Z"'v ! - z-2 4 (1=2)(n-5) )2(" 5) y-2y-2,

Z73y 3

+ o= DY po gy oy

2

/g L+ (1)) o,
2 )
where [x] is the integer part of x (e.g., [n/4] — integer part of n/4),

+(-1) (12.20)

-1

Z=xz—(n->5v, Y=x—(n-23)u, vz%,
1
—(n—2) evenn,
n
b= 3] -1=

1
5(71—3) odd n
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and

(n—2)2=k2 evenn,

— 1
ky = g((—1)"+7—8n+2n2) =9 1
Z(n— )(n—3)=k2+k, oddn.

For n-odd, one can write (12.19) and (12.20) as the series

long,, ~ shortyq ~

~zEyR (122 ( o o) + 274 C Z—2+C Z 4 Cio)-
21y 2,0 4273 41y 4,0

- 73 VA A - zZ\’
-Z 6(06,3W+0672W+Cﬁ,1?+cﬁ,0>+Z 8;Cs,j (?) —> =

Tﬂ m 7
% ~2ym 4
ZEyt | N (=277) ;_chm,j(},)

m=0

For n-even, Egs. (12.19) and (12.20) also can be written as the series over Z/Y.
But we do not present it explicitly here.

Remark 1. For the hook-type representations (n—1, 1) we have the following
n—1

spectrum for the Hamiltonian (see [35,36]) H, = > (Tx — q):
k=1
n—1 m
= — e _ ] — -1 e —
Spec (H,,) = Spec <,§1(Tk q)) 2(:05( - ) (g+q¢ ), m=1,...,n—1.

If, as usual (cf. (11.4)), we substitute 2 cos (mm/n) = X'/ + X~1/2, then for
X we will have the characteristic identity X™ — 1 = 0, X # 1. We see that
the spectrum of the open XXZ spin chain (for even m) contains the spectrum
of one-magnon states (except for the case X = 1) for closed XXZ spin chain
(see (11.10)).

Remark 2. We have calculated the characteristic polynomials P, _3 3) for
the Hamiltonian (12.1) in the irreps (n — 3,3) (n = 6,7,8,9) and observed the
same factorization of P,_3 3) into two factors, which are the polynomials with
the integer coefficients.

Remark 3. The quantum inverse scattering (R-matrix) method and the al-
gebraic Bethe ansatz method for the open XXZ spin chain were elaborated by
Sklyanin in [37] (about analytical Bethe ansatz approach see [38,39] and refer-
ences therein). The quantum group symmetry in the open XXZ spin chain was
discovered in [40].
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12.3. Method of Calculation. In this subsection, we explain the method of
construction of the explicit matrix irreps for the Hecke algebra Hps41(q), related
to the fixed Young diagram A. A similar method was also considered in [36,41]).

First of all, we define the affine extension H Mm+1(q) of the Hecke algebra
Hpr41(q). The affine Hecke algebra ﬁA4+1(q) (see, e.g., Ch.12.3 in [1]) is an
extension of the Hecke algebra Hjs11(g) by the additional affine elements yj
(k=1,...,M +1) subjected to the relations:

Y1 = TeyeTr,  Yryj = yiun, yiLi =Tiy; (J #4,i1+1). (12.21)

The elements {y, } form a commutative subalgebra in H M+1, while the symmetric
functions in y, form the center in Hjs1;. Let us introduce the intertwining
elements [29] (presented in another form in [27])

Un+1 - (Jnyn - yngn) € I;[MJrl(q) (]. < n < M), (1222)

f(ym Yn+1)

where f(yn,Yn+1) is an arbitrary function of the two variables y,, ynt1. The
elements U, satisfy the relations

U, Un+1Un = n+1UnUn+17 (12.23)
o o
vz, - (Y = 4" Yn1)(@Yni1 = 4 "Yn) (12.24)
f(yn; yn+1)f(yn+1, yn)
Un+1Yn = Yn+1Uns1,  Unt1¥nt1 = YnUnsa, (12.25)

[UnJrla yk] =0 (k # n,n+ 1)
As is seen from (12.25), the operators Uy, 1 “permute” the elements y,, and yn41,
and this confirms the statement that the center of the Hecke algebra Hps41(q) is
generated by the symmetric functions in {y;} (i =2,...,M +1).
One may check that the Hamiltonian (12.1) satisfies

(Har+1, Ykl = Ugs1 fro1 — Us fr,

B B (12.26)
(Har1s Y 1= Uksr frorr — Uk frta,

where frt1 = f(Yk, Ykt1)s Ukt1 = Ups1(yryrs1) "t and Uy = Upryo = 0.
From (12.26) follows that

k
lHA4+1a >
i=1

Further, it is convenient to fix

= Ukt frogp1.  (12.27)

k
= Uk+1fk+1, lHM+17 >yt
i=1

J(Wrs Y1) = Yk — Yk
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Now we have

2 (qyn-i-l - qilyn)(qilyn+l - qyn)
U =
(Yn+1 = Yn)? ’
(12.28)
AYn+1 < >\> A (Yn + Ynt1)
Upsr = o + —2L (g = 2) 4 2 T Init),
i (yn - yn+1) 2 2 (yn - yn-i-l)
and, therefore,
Sn = Un+1 + U1, (12.29)
where
>\ n n
Upy1 = _M. (12.30)
2 (Yn+1 — Yn)
Due to the relations s2 = G2/4, we conclude that
+¢-1)2
Un+1 + Un+1 %7 Un+1vn+1 + 'Un-i—lUnJ,-l =0.
Finally, for the Hamiltonian (12.1) we obtain
M M
>\ yn+1 + yn)
Hyr = Sn = nt1 + Ung1) ( ntl +Fmo———= | =
nzl nzl z:: 2 (Yn+1 = Yn)
-y <\/ O + 5 U2t “’")) . (1231
n=1 yn+1 yn)

where the operators [7n+1 permute indices in the Young diagram A, or put A
equal to zero.

Example 1. Consider the basis for the representation (2, 1), which is related
to the Young diagram:

1 q?

Y (12.32)

We have 2 standard tableaux

Yo =| 3 , Y1 =Usg =] o . (12.33)
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Using (12.29), we obtain the action of s; on the vectors 1,11 (12.33)

1_ 1_
s1%o = —Q¢07 5191 = —§Q¢1,

—2 2 -2
sotho = Y1 + é%wo, sat1 = Uit + Ale+q7)

2 (q 2 (¢? - q‘Q)wl’

(@ —a*)a—q")
(¢® —q7?)?
Example 2. Consider the basis for the representation (32) which is related

to the Young diagram

where U2 = Yp.

1| ¢ ¢

(12.34)

T2 1]q

We have 5 standard tableaux (the operators Uj4; permute numbers & and k£ + 1
in the standard tableaux)

1]2]3 124 1125
o = , Y1 =Ustpg = » Y2 = UsUstpo = ;
4 5 6 3 5 6 3 4 6
(12.35)
1134 1135
g = UsUstpg = , Y4 = UsUsUytpg =
205 |6 24 |6

Using (12.29), we find the action of the operators s,, to the basis vectors ; (12.35)

8111)0:%61/)0, 811/11:%@/)1, 5112 :lﬁwz, 8111)3:—%61/}3, 8111)4:—%61/}4,
1 2 A 2 -2
s210 =500, 291 =13 — EZ e §¢1, S92 =thy — %%,
2 L 2 A(a2 + 2
sot = U = 300, s = Ui = 5
by 4+ -2 A 72_*_ 4
830 =11 — 3 234 Z 2;2/1 0, s3t1 =Uito — 5%%7

1 1 1
531 :5@/}2, 5313 2561/)3, S3ty = — 561/)47
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1 A(g*+1 A (14¢*
841&0 = ano, 84¢1 = wQ - 5%%, 84% = U52¢1 - 5 E1t34§w27
Mgt +1 A(+4qY)
a3 = Ya — 5 (¢ = 1%%’, saths = Utps — 5 El — q4)¢47

1 1 1 1 1
8510 2551/)0, S5 =56w1, 8512 = — 5@#2, 8513 = 551/)37 8514 = — 551/)47

where
3 3 o 5 —3\(,3_ —1
U:’?wi = (q (qz _)q(q2)2q )wi (Z = 1’2)7 Uflpo = (q (;]4 _)gq2)2q )wo’
U2 — (¢ —q (g - q)wi(i _1.3).

(¢* —1)2

Then the equation for eigenvalues v of Hg and eigenvectors in the space of the
irreducible representation (12.34) is given as follows:

5
<Z i — V) (Yo + a1 + a2the + azihs + asths) = 0,
i=1
which is equivalent to the characteristic identity v = Hg:

(1/ - 2) {37* +16G° — 64— (83> +160q) v+ (—87> +128)* +32q° — 160} = 0.

2
(12.36)
Note that eigenvalue Hg = 1/2g has multiplicity 2 since it has already been
presented in (4,12) (12.8). The second factor in the characteristic identity (12.36)
is related to the Young diagram (32) and dual to the factor presented in (12.9).
Acknowledgements. We thank N.Slavnov for valuable discussions of the
details of the algebraic Bethe ansatz and especially for the explanations of the
two-component model for the XXZ Heisenberg chain. The work of S.0.K.
was supported by RSCF grant 14-11-00598. The work of A.P.I. was partially
supported by the RFBR grant 14-01-00474.

Appendix A
DETAILS IN XXX

Equations (7.11) and (7.12) result in the following useful identities:

Pio i1 Y = Y1 — Y1 Ni + Y Niy1, (A.D)
R it (N1 = Y1 + Mo + M1 Ny, — D N, (A.2)
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where N, = &kwk, again. We can see that

Py k+105|0) = 1r110), (A.3)
R o1 (1) 0r11]0) = Pp1]0) + puafi|0) (A4)
and
Ry k1 (1)|0) = (1 +1)]0), (A5)
Pk,k+1|0> = 10). (A.6)

For higher magnons we will also need
Rkt Vit = A+ 1)hpthp i (A7)
and

Rl,lJrl()‘) e 'kal,k(A)J’Hm =
k—1

. ARl A1) -
— k-l .
=\ wz|o>+A+1j§=1( 3 ) Pi4510), (A.8)

Rl,l-i—l(/\) s Rk,k+1 (/\)@k|0> =
= Riaea(N) - Rim1 k(NG [0) + A+ 1) 4 [0). (A9)

It is obvious that the second term in (7.15) annihilates vacuum state. Then,
using (A.8), we get for the 1-magnon state

1) = B()|0) = (n+1— pN1)Raa(p) - Ri1 () Pro1,n -+ Prath1[0) =

= (41— pN)Rio(p) - R -1 £(1)¥r]0) =
L—1

= (p+1—phNy) [ML%I(D + 5+ : i(uzl) %H] 0) =

L

L L
= # (”“) D10y = n(w) S [
= £l0) (A.10)
u+1; ;

I

if we use the notation (8.4).
Using (A.8) and (A.9), we obtain

k—2
BN)¢k|0) = (A +1)AF2 Z N P10/ 0) +

)\LQkQLk

L—k
Z D T 1 k410) + /\+1 EE I Pntde10).
j=1

m=0 j=1

(A.11)
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We get for the 2-magnon state using (A.11)
L

I\ 1) = BOB()[0) = n(u) Y [u]* B(N)v|0) =

k=1

L k—
m 1
lz z:: N 21908 + 7/\(/\ ey X

L—1k—2 L—k . B B L—1L—k ) o
X [l P g + > [ P\]kﬂllﬁwkﬂ] 0) =
k=2 m=0 j=1 k=1 j=1

L s—2 s—1

N /\(/\1+1) >0 > [M]’“[A]”’“’%/?ru?slo>} -

s=3r=1k=r+1

=n(pn() Y [[u]s[/\]”le[u]’“[/\]s_lJr

1<r<s<L

1 - k s+r—k|,7. .7
+mk§1[u] [A] ]wrwsm (A.12)

The finite sum in (A.12) can be calculated explicitly by means of geometric
progression

= e r— H r+1 s—1 [M] ! _
A+1 2 W = S <<W> _1>

k r41
= [ ([M]SP\]T _ [u]rJrl[)\]sfl) ) (A.13)

Substitution of (A.13) into (A.12) gives

BB(w)]0) = n(p)n(x) Y l[M]S[A]’"“Jr[M]”"[A]S_lﬂL

1<r<s<L

e (W )]wrwm

AN —p)
= n(n() Y [{Amxﬁ:lw} A ).

(A.14)



REMARKS TOWARDS THE SPECTRUM OF THE HEISENBERG SPIN CHAIN 559

For the 3-magnon, we need at first

B)ihrhs|0) = (v + 1 — vN1 )Xo, L (v)h11pribs =

= l/—|— ]. Z 1/_1m+11[)r1/_15|0>+

s—r—1 r—2

vl=3 Z Z l+m"ﬁm+1&r+l'&s|0>+

=1 m=0
-2

Z ]+mql_)m+11/_}r1/_)s+j|0>+

j=1m=0

s—r—1r—2
+EBw+1)” Z Z Z[V]j+l+m1/;m+11/3r+zl/35+j|0>+
j=1 1=1 m=0

L—s r—2

T )T Y Y P i atsthe10)+

7=1 m=0

+vlTr w13 W hthe 1ths 4 50).  (AL15)

The 3-magnon state is obtained from the 2-magnon state (A.14)

v p, A) = B(V)B(H)B()\)|0> -
) D Ka(s,1)B(@)tri)s|0), (A.16)

1<7‘<€<L
where we denote for more comfort
A—p+1 w—A+1
K = [u]’\]" —— "I\ ——. A.17
2(s,7) = [u]*[Al - + [W"[A] P (A.17)
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Using (A.15), we get

v, A) = n(@)n(pn(y) Y V]2 K(s, 1)+

1<g<r<s<L
1 r—q—1 1 s—r—1 )
b 2 W D6 D s )
1 s—r—1r—g—1
j+1+
+V2(V+12 Z Z PTTEKy (s — gy — 1)+
Jj=1 =1
1 r—1
s 1+ 5—2 r
P 2 TR D) + P K () + B Ka(s, )+
l=q+1
1 s—1
+r—l
e (v+1)2 lzr—:i-l T K (1 ) [ 0qrtds |0) = n(v)n(p)n(X) x
V—u+1y—A+1u A+1
< ¥y (e a0
v—pu v—A "w—
1<g<r<s<LTES3
(A.18)
Appendix B
DETAILS IN XXZ
It is convenient to introduce the following notation:
d(A) =1-A b(>‘) :q_qila a’()‘) :q_>‘q71~ (B.1)

We see that coefficient (10.3) resp. normalization (10.4) can be written as

Ny = % ng() =

The R-matrix Ry j11()\) is of the form (9.2) and the operator B()) is of the
form (9.8). For computing of Bethe vectors, the following set of identities seems
to be very useful:

Rie i1 (N Pr41[0) = d(N)Yr|0) + b(A\)r410), (B.3)
Rio it (\)1]0) = Ab(A) ¥k |0) + d(A) g1 |0), (B.4)
Rp i1 (N = a(Np; for j ¢ {k,k+1} (B.5)

d(N)"b(N)

oy (B.2)
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and

Rl,l-i-l()‘) s Rk—l,k(/\)qzk'()) =

E

-1

= d(N)""]0) +b(N) Y AN T a(\ T s0),  (B.6)
1

<.
I

Riis1(N) -+ Ry 1 (N |0) =
= NN R (N) - R 1 (V) Pr]0) + d(N)a(N) i1 [0).  (B.7)

Using (B.6), we can straightforwardly calculate the g-deformed 1-magnon
state for B(u) defined in (9.8)

d() b() 5~ (o) \" -
1) = B(u)[0) = Bil0) = n w5 Gn]0) (B8)
a(p) ; d(p) ol kz::l
recalling (10.3) and (10.4).
Using the formulas mentioned (B.3)—(B7.7), we can calculate the ¢-deformed
2-magnon state. First of all, we need B(\)v|0)

B(A\)¥k|0) = b(A NE? Z o 14i¥k|0)+

b(/\) (/\ k 2d L k+12 wkwk-{-]m

k—2L—k

+ (AN TN ETD S T N itk 10). (B9)

i=0 j=1

Hence, we get the g-deformed 2-magnon state

I\ 1) = BO)B()[0) = ng(p) Y (1] BOV)Uk|0) =

:"Q(“)"Q(A)KKXE@{ o (1 ?b)“() o)) Wil

+(d(>\) a(p) Ab(A)?a(A) ! Elﬁ(‘))>[x]§[u];}u3rzﬁslo>—

a(A)  d(p) a(p)d(X) — a(X)
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