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We present an effective model for the generic behavior of hadron masses and phase
shifts at ˇnite temperature which shares basic features with recent developments within
the PNJL model for correlations in quark matter. On this basis, we obtain the transition
between a hadron resonance gas phase and the quarkÄgluon plasma in the spirit of the
generalized BethÄUhlenbeck approach where the Mott dissociation of hadrons is encoded
in the hadronic phase shifts. Here we restrict ourselves to low-lying hadronic channels and
perform a discussion of recent lattice QCD thermodynamics results from this perspective.
We ˇnd agreement in the asymptotic regions, while for the description of the transition
itself the inclusion of further hadronic channels, as well as a self-consistent determination
of the continuum thresholds, are required.

PACS: 12.38.Mh

INTRODUCTION

Simulations of lattice QCD (LQCD) are in practice the only reliable approach
to QCD thermodynamics which covers the broad region of strongly interacting
matter properties from the hadron gas at low temperatures to a deconˇned quarkÄ
gluon plasma phase at high temperatures. Recently, ˇnite temperature LQCD
simulations have overcome the difˇculties of reaching the low-physical light-
quark masses and approaching the continuum limit which makes this theoretical
laboratory now a benchmark for modelling QCD under extreme conditions [1,2].
In spite of this, effective models as such prove valuable for interpreting LQCD
results, as well as for extensions of QCD based ab-initio knowledge to the regions
of the QCD phase diagram which are inaccessible to LQCD and high-energy
heavy-ion collision experiments. These are the regions of high net baryon number
and isospin densities at very low temperatures as probed by observations of
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astrophysical objects like compact stars, as well as in neutron star mergers and
supernovae collisions.

The aim of this paper is to construct a combined effective model repro-
ducing the two known asymptotics of the ˇnite temperature equation of state:
the hadron resonance gas at low temperatures and the free quarkÄgluon plasma
with perturbative corrections in accordance with the recent LQCD simulations.
This endeavor started about ten years ago with an ansatz for temperature- and
mass-dependent width in a hadron spectral function [3, 4]. As was then demon-
strated in [5], a nice description of LQCD data at that time stemmed from the
fact that low-lying meson states below a mass threshold of ∼ 1 GeV were
not subject to spectral broadening. At high temperatures where the majority of
states of the hadron resonance gas disappeared, nevertheless, a StefanÄBoltzmann
limit was attained, which accidentally coincided with the LQCD one, because
the number of low-lying hadronic degrees of freedom matches that of quarks
and gluons. Note that the idea to use a spectral function approach to de-
scribe the dissociation of the hadrons in a resonance gas with increasing tem-
perature has been recently formulated in [6], but due to a lacking dynamical
model of hadrons as bound states of quarks and gluons, the thermodynamics
of the latter had to be added there by construction from a comparison with
LQCD data.

The next step [5] was to lift the lower mass threshold and let all hadrons be
subject to spectral broadening leading to a decrease of their contribution to the
total pressure and to add the pressure of the quarkÄgluon system according to
the mean-ˇeld treatment of the Polyakov-loop generalized NJL model [7]. Some
of the arbitrariness of the choice of the temperature and mass dependence of the
spectral width Γ(T, M) was removed in [8] where the latter was taken from a
recently developed approach to chemical freeze-out [9]. This model could also
make very nice predictions for the parton fractions in the temperature region
of the crossover transition from hadronic to quarkÄgluon matter, in accordance
with, e.g., [10]. However, this model still did not provide a microscopic de-
scription of the temperature- and state-dependent spectral broadening of hadrons
in the medium.

In the present contribution, we want to join these ideas for the description
of a Mott-hadron resonance gas (MHRG) with a BethÄUhlenbeck approach [11]
to pion and sigma meson dissociation [12] in its recent generalization from the
NJL model [13] to the PNJL model case [14Ä16]. The latter approach is based
on the in-medium modiˇcation of (quarkÄantiquark) scattering phase shifts which
encode the spectral properties of the complex-valued meson propagators. For
an alternative but equivalent formulation, see [17]. In order to join the BethÄ
Uhlenbeck formulation of Mott dissociation with the hadron resonance gas, we
will postulate a generic behavior of the phase shifts in selected hadronic channels
which are temperature-dependent and embody the main consequence of chiral
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symmetry restoration in the quark sector: the lowering of the thresholds for
the two- and three-quark scattering state continuous spectrum which triggers
the transformation of hadronic bound states to resonances in the scattering con-
tinuum. The phase shift model is in accordance with the Levinson theorem (see,
e.g., [18, 19]) which results in the vanishing of hadronic contributions to the
thermodynamics at high temperatures [14]. While in this work we will restrict
ourselves to a few states only, the model is, of course, applicable to the whole
spectrum of hadronic states in the particle data book, which is presently under
way [20].

1. QUARK AND HADRON MASS SPECTRUM

The underlying quark and gluon thermodynamics is described within a Nf =
2 + 1 PNJL model at the mean-ˇeld level

PPNJL(T ) = Pcond(T ) + PFG(T ) + U(T ), (1)

with the Nf = 2 + 1 parameters determined analoguosly to [21]∗ resulting in a
dynamically generated vacuum light quark mass of m(0) = 394.7 MeV and a
strange quark mass of ms(0) = 604.745 MeV for the parameters Λ = 600 MeV,
GsΛ2 = 2.403, m0 = 5.4285 MeV, and ms = 136.459 MeV. One obtains the
temperature dependence of both the light quark mass m(T ) and the strange quark
mass ms(T ) as a solution of the corresponding gap equations.

We make the simplifying ansatz that the hadron masses are constant and
temperature-independent up to their Mott temperature, where they hit the two-
quark threshold mthr,M (T ) (three-quark threshold mthr,B(T )) for mesons (bary-
ons), respectively. After that temperature, we assume a linear rise of the resonance
mass with temperature, being identiˇed with the resonance width Γi(T ), unique
for all hadrons

Mi(T ) = Mi(0) + Γi(T ), Γi(T ) = (T − TMott,i)θ(T − TMott,i), (2)

where for the constant slope we choose a = 2.5. The Mott temperatures TMott,i

can be determined as soon as the temperature dependence of the light quark mass
m(T ) is known. They are determined from the condition

Mi(TMott,i) = mthr,i(TMott,i), (3)

mthr,M (T ) = (2 − Ns)m(T ) + Nsms(T ), (4)

mthr,B(T ) = (3 − Ns)m(T ) + Nsms(T ), (5)

∗The ms values in [21] are to be corrected, see http://3fcs.pendicular.net/psolver.
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Fig. 1. Temperature-dependent hadron mass spectrum used in the model

where Ns = 0, 1, 2 for mesons (i = M ) and Ns = 0, . . . , 3 for baryons (i = B).
The mass spectrum (3) determines the corresponding Mott dissociation temper-
atures as TMott,i[MeV] = 303, 338, 196, 252 (for hadrons i = π, K, ρ, N ,
respectively) after which the hadrons became unbound state, see Fig. 1.

2. MOTT EFFECT AND TEMPERATURE-DEPENDENT
HADRON PHASE SHIFTS

We deˇne temperature-dependent phase shifts δi(s; T ) for each hadronic
channel (species) i as functions of the Mandelstam variable s = M2 by a generic
behavior which holds for both types of hadrons, mesons, and baryons and encodes
the following characteristic features:

• a bound state with mass Mi is recognized by a jump of the phase shift by
+π at s = M2

i ;
• above the continuum threshold sthr,i = m2

thr,i the phase shift drops to zero
which is reached at smax,i = sthr,i+N2

i Λ2, where Ni = 2 for mesons and Ni = 3
for baryons;

• for T > TMott,i the step function of the true bound state gets smeared out
over a width Γi(T ) resembling a resonance in the continuum.

Our ansatz is given by

δi(s; T ) = F (s)
[
π

2
+ arctan

(
s − M2

i (T )
Mi(T )Γi(T )

)] {
θ(m2

thr,i − s)+

+ θ(s − m2
thr,i)θ(m

2
thr,i + N2

i Λ2 − s)

[
m2

thr,i + N2
i Λ2 − s

N2
i Λ2

]}
, (6)
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where the auxiliary function F (s) = sin (s/Γ2)Θ(Γ2π/2 − s) + Θ(s − Γ2π/2)
has been introduced in order to ensure that the phase shift at s = 0 will always be
zero, even at higher temperatures, where large values of the width parameter in the
BreitÄWigner like ansatz would otherwise spoil this constraint. A microscopic
calculation of the ˇnite temperature pion phase shift which shows the correct
behavior has been performed in [13]. It has been used to constrain the ansatz
given above for F (s).

Fig. 2. Generic meson phase shift as deˇned by this model, here for the pion (Ni = 2,
i = π) at six temperatures between 150 and 400 MeV

The behavior of the phase shift (6) as a function of the squared mass
variable s is shown for the example of the pion in Fig. 2. The chosen val-
ues of six temperatures in steps of 50 MeV, T = 150 . . . (50) . . . 400 MeV
cover the region of the Mott transition temperature TMott,π, where the pion
bound state (jump of δπ(s) from zero to π at s = M2

π) merges with the
edge of the continuum of scattering states at s = m2

thr,π. At this tempera-
ture the mass gap (binding energy) vanishes, which in Fig. 2 is recognizable
as the plateau at δπ = π and, consequently, for higher temperatures T >
TMott,π the pion phase shift starts at zero without reaching the value π again.
For higher temperatures the �attening of the hadron phase shift describes the
vanishing of the hadronic correlation from the thermodynamics of the
MHRG system.
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3. MOTT-HADRON RESONANCE GAS (MHRG)

For the thermodynamic potential, i.e., the pressure, of two-particle correla-
tions in quark matter, we have derived [13] the formula

Pi(T ) = di

∫
d3p

(2π)3

∞∫
0

dω

π
fi(ω)δi(ω; T ) =

= di

∞∫
0

dp p2

2π2

∞∫
0

ds

2π

1√
p2 + s

fi(
√

p2 + s)δi(s; T ), (7)

which we apply here to mesons and baryons, with di being the degeneracy of the
state i and in the distribution function fi(ω) = 1/[exp (ω/T )∓1], where the upper
(lower) sign holds for mesons (baryons). One can use s = M2 and integrate over
the mass variable M instead of s and changing the order of integrations to obtain

Pi(T ) = di

∞∫
0

dp p2

2π2

∞∫
0

dM

π

M√
p2 + M2

fi(
√

p2 + M2)δi(M2; T ). (8)

By partial integration over M , we obtain

Pi(T ) = ∓di

∞∫
0

dp p2

2π2

∞∫
0

dM T ln
(
1 ∓ e−

√
p2+M2/T

) 1
π

dδi(M2; T )
dM

, (9)

the generalized BethÄUhlenbeck formula for the partial pressure of species i
in the MHRG. When the phase shifts degenerate to a step function, i.e., when
m(T ) → ∞, Γi(T ) → 0, so that δi(M2; T ) = πθ(M − Mi), we have

1
π

dδi(M2; T )
dM

= δ(M − Mi), (10)

so that the M -integration becomes trivial and gives

Pi(T ) = ∓di

∞∫
0

dp p2

2π2
T ln

(
1 ∓ e−

√
p2+M2

i /T

)
, (11)

the relativistic ideal quantum gas for a particle species i with mass Mi. For the
total pressure of the model, we have

P (T ) =
∑

i=M,B

Pi(T ) + PPNJL(T ) + Ppert(T ), (12)
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where the pressure of the quarks and gluons (1) and a perturbative pressure cor-
rection have been added. The latter results from O(αs) interactions of quarks and
gluons in a plasma for momenta exceeding the cutoff Λ to which the nonperturba-
tive interactions in the PNJL model are restricted. Details are described in [5,8].
Note that at variance with these references, we use here a temperature-dependent,
regularized running coupling [22,23]

α(T ) =
12π

11Nc − 2Nf

(
1

ln (r2/c2)
− c2

r2 − c2

)
, (13)

where r = 3.2T , c = 350 MeV, and Nc = Nf = 3.
In Fig. 3, we compare the total pressure of the MHRG model (black solid line)

with LQCD data from [1] (star symbols) and show also the partial pressure con-
tributions from all components in the linear (plot a) and logarithmic scale (plot b).

Fig. 3 (color online). Temperature dependence of the pressure for linear scale (a) and
logarithmic scale (b) [1]
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With the present schematic model, we can quantify both asymptotic limits, the
pion gas limit at low temperatures T < 100 MeV and the quarkÄgluon plasma
limit at high temperatures T > 300 MeV. In the region between these temper-
atures, we observe a discrepancy between the model and LQCD data which is
attributed to mainly two missing aspects: i) the inclusion of higher lying hadronic
resonances and ii) the back reaction of the MHRG on the temperature dependence
of the quark masses and thus on the continuum thresholds which trigger the onset
of the Mott dissociation of hadrons.

CONCLUSIONS

In this work an effective model is constructed, which is capable of reproduc-
ing basic physical characteristics of the hadron resonance gas at low temperatures
and embody the crucial effect of hadron dissociation by the Mott effect. The
generalized BethÄUhlenbeck form of the partial pressures is constructed for each
hadronic channel. Numerical results show that the simplifying ansatz for the tem-
perature dependence of both the mass spectrum and the phase shifts of hadronic
channels give results in qualitative agreement with recent ones from LQCD [1].
The differences at the present level of sophistication of our effective model
are well understood and basically two conclusions for its further development
can be drawn.

First, one can include higher lying hadronic states into the model. Second,
and most importantly, the back reaction of the hadron resonance gas on the
chiral condensate and thus to the quark masses and the continuum thresholds
which derive from it must be taken into account. This latter point will lower the
onset of chiral restoration and hadron dissociation towards the result from lattice
QCD. It will further pronounce the character of a smooth crossover transition
between MHRG and QGP by quantifying the relative contributions of hadronic
and partonic degrees of freedom (partial fractions) to the QCD thermodynamics.
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