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CLUSTERS IN NUCLEAR MATTER
AND MOTT POINTS

G.Réopke∗

Institut f éur Physik, Universitéat Rostock, Rostock, Germany

Light clusters (mass number A � 4) in nuclear matter at subsaturation densities are de-
scribed using a quantum statistical approach. In addition to self-energy and Pauli-blocking,
effects of continuum correlations are taken into account to calculate the quasiparticle prop-
erties and abundances of light elements. Medium-modiˇed quasiparticle properties are
important ingredients to derive a nuclear matter equation of state applicable in the entire
region of warm dense matter below saturation density. The in�uence of the nucleonÄ
nucleon interaction on the quasiparticle shift is discussed.

PACS: 21.65.-f

INTRODUCTION

The nuclear matter equation of state (EOS) is an important ingredient to
understand the properties of nuclear systems, for instance, for heavy-ion collisions
(HIC), see [1], and for astrophysical applications, such as the formation of neutron
stars in core-collapse supernovae, see [2]. In both cases, matter is considered
at subsaturation density (baryon density nB � nsat ≈ 0.16 fm−3), moderate
temperatures T � 20 MeV, and proton fraction Yp = ntot

p /nB between 0 and
1, where ntot

p denotes the total proton number density (including ©boundª and
©freeª protons).

In this warm dense matter (WDM) region, correlations and bound state for-
mation are relevant. We are considering the in�uence of the formation of light
clusters (deuteron d = 2H, triton t = 3H, helion h = 3He, and α = 4He) on
the EOS. Whereas at low densities the nuclear statistical equilibrium (NSE) is a
reasonable approximation, where noninteracting bound states in chemical equi-
librium are considered so that the composition is given by a mass-action law
(continuum contributions are neglected), with increasing density the bound states
are dissolved due to Pauli blocking and do not contribute to the EOS near to the
saturation density.
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Fig. 1. Phase diagram of symmetric nuclear matter (schematic), showing the so-called
Mott line, as well as the liquid-gas-like phase transition and the transition to the super�uid
state [5]

About thirty years ago [3, 4] a quantum statistical (QS) approach to the
EOS has been given, which allows for a systematic description of correlations in
nuclear matter. There, the dissolution of bound states because of Pauli blocking
has been denoted as Mott effect, and the phase diagram shown in Fig. 1 has been
proposed. Meanwhile, various theoretical investigations have been performed, as
well as ˇrst experimental evidences [1].

It is a challenge to nuclear theory to describe the modiˇcation of the light-
cluster properties caused by the surrounding nuclear matter. The energies Ei(P)
of the light clusters are considered as quasiparticles with energies depending not
only on the c.o.m. momentum P, but also on the densities of neutrons ntot

n ,
protons ntot

p , and on T . The single-nucleon states n, p are treated the same way.
In principle, one has to start from a many-body Hamiltonian. One has to

calculate the spectral function for the different channels, and sharp peaks can
be interpreted as the corresponding quasiparticles. Because we have no ˇrst-
principle nucleonÄnucleon forces such as the Coulomb force, the choice of the
interaction potential in the nuclear Hamiltonian remains a problem. Different
parameterizations are obtained analyzing two-nucleon properties. We discuss
some simple approximations in the following section. However, to describe also
three or four-nucleon systems, the pair potential is no longer sufˇcient, and, for
instance, density-dependent forces are introduced.

Therefore, it is advantageous to use directly the measured properties, such
as binding energies, rms radii, and scattering phase shifts, avoiding the introduc-
tion of a potential. This way, the NSE can be formulated and the second virial
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coefˇcient can be expressed by measured scattering phase shifts. The properties
of nuclear matter near saturation density are well reproduced by effective en-
ergy density functionals, such as the Skyrme force or the relativistic mean-ˇeld
(RMF) approach with empirical parameter values. These single-nucleon quasipar-
ticle energies already contain correlations beyond the HartreeÄFock (mean ˇeld)
approximation.

To reproduce the EOS, quasiparticle energies for the light clusters can be
introduced which depend on the thermodynamic variables T , ntot

n , ntot
p . Such ex-

pressions have been introduced in [6,7] and are comprehensively discussed in [8].
They can be related to microscopic approaches for the single-nucleon self-energy
and Pauli blocking discussed below. As an alternative, the excluded volume
concept is also used to mock the Pauli blocking term, see [9] and references
therein. This empirical approach is not directly connected with the microscopic
QS approach.

1. BOUND-STATE QUASIPARTICLE SHIFTS

Within a quantum statistical (QS) approach, the EOS ntot
τ (T, μn, μp) is ex-

pressed in terms of the single-nucleon spectral function which is related to the
self-energy, see [10, 11]. Performing a cluster decomposition of the self-energy,
the relations

ntot
n (T, μn, μp) =

1
Ω

∑
A,ν,P

NfA,Z[EA,ν(P ; T, μn, μp)],

(1)

ntot
p (T, μn, μp) =

1
Ω

∑
A,ν,P

ZfA,Z[EA,ν(P ; T, μn, μp)]

are obtained, where P denotes the center-of-mass (c.o.m.) momentum of the
cluster (or, for A = 1, the momentum of the nucleon). The internal quantum
state ν contains the proton number Z and neutron number N = A − Z of the
cluster,

fA,Z(ω; T, μn, μp) =
1

exp [(ω − Nμn − Zμp)/T ]− (−1)A
(2)

is the Bose or Fermi distribution function for even or odd A, respectively, that
is, depending on {T, μn, μp}.

For the A-nucleon cluster, the in-medium Schréodinger equation

[Eτ1(p1) + . . . + EτA(pA) − EA,ν(P )]ψAνP (1 · · ·A)+

+
∑

1′...A′

∑
i<j

[1 − n(i) − n(j)]V (ij, i′j′)
∏

k �=i,j

δkk′ψAνP (1′ · · ·A′) = 0 (3)
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is derived from the Green function approach. This equation contains the effects of
the medium in the single-nucleon quasiparticle shift which is given, for instance,
by the RMF expression [12] (nB = ntot

n + ntot
p , Yp = ntot

p /nB)

Eτ (p; T, nB, Yp) =

=
√

[mτc2 − S(T, nB, Yp)]
2 + �2c2p2 + Vτ (T, nB, Yp) − mτ c2. (4)

Approximation formulae for the RMF potentials S, V are found, e.g., in [13].
As well, the effects of the medium are obtained from the Pauli blocking terms

given by the occupation numbers n(1; T, μn, μp) in the phase space of single-
nucleon states |1〉 ≡ |p1, σ1, τ1〉. The occupation numbers can be approximated
by the Fermi distribution with effective parameter values for temperature and
chemical potentials, see [13]. Thus, two effects have to be considered: the
quasiparticle energy shift and the Pauli blocking.

We obtain the cluster quasiparticle shifts

EA,ν(P ) − E0
A,ν(P ) = ΔESE

A,ν(P ) + ΔEPauli
A,ν (P ) + ΔECoulomb

A,ν (P ), (5)

with the free contribution E0
A,ν(P ) = E0

A,ν + �
2P 2/(2Am). Expressions for the

in-medium self-energy shift ΔESE
A,ν(P ; T, nB, Yp) and Pauli blocking

ΔEPauli
A,ν (P ; Teff , nB, Yp) are given in [13]. The Coulomb shifts for the light

elements with Z � 2 considered here are small compared with the other contri-
butions and are omitted.

The Pauli blocking contains the nucleonÄnucleon interaction potential
V (ij, i′j′) which has been taken in different approximations. The main fea-
ture is the overlap of the cluster wave function in momentum space with the
Fermi sphere so that an approximate form of the wave function can be used,
reproducing characteristic parameters such as the rms radii. Simple expressions
for the interaction potential have been considered in [10,11] and will be discussed
in the following section.

2. INTERACTION POTENTIALS AND MOTT LINE

As the ˇrst step, we consider only A � 2. The generalized BethÄUhlenbeck
approach has been investigated by Schmidt et al. [14]. Results for the separable
Paris (PEST) interaction potential, rank= 4, are given. The result for the composi-
tion of symmetric matter at T = 10 MeV is shown in Fig. 2. The sharp kink in the
bound state contribution to the density at baryon density nMott

d,Schmidt = 0.013 fm−3

indicates the Mott line, where the bound states at P = 0 merge with the contin-
uum. The total correlated density ncorr (containing also the contribution of the
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Fig. 2. Two-particle correlations. Fraction of correlations as function of the baryon density
n for T = 10. Results without in-medium corrections (dashed lines) are compared with
results obtained from the generalized BethÄUhlenbeck formula. Bound state contribution
and the continuum contribution are also given. From [14]

continuum) is increasing up to densities of about 0.02 fm−3 and then decreasing,
vanishing at nB ≈ 0.1 fm−3.

Calculations for a more extended parameter range in the TÄnB plane have
been performed by Stein et al. [15]. For simplicity, a rank= 1 Yamaguchi
potential was used which is separable and attractive only. It takes into account
S-wave scattering (c = 1S0,

3S1) and depends on the relative momenta of the
incoming and outgoing two particles and the coupling strength in the respective
channel,

V Y,L
c (p, p′) = −λc

1
p2 + β2

1
p′2 + β2

, (6)

where β = 1.4488 fm−1 is the inverse potential range; λ1S0 = 2994 MeV · fm−1

and λ3S1 = 4264 MeV · fm−1 is the coupling strength in the spin-singlet and
triplet channel, respectively. The parameters are ˇtted to the empirical nucleonÄ
nucleon scattering phase shifts and the vacuum bound state energy of the deuteron
(Ed = −2.225 MeV) which occurs in the spin-triplet channel. The coupling of
the 3S1 to the 3D1 channel is neglected.
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Fig. 3. Phase diagram of symmetric matter with only two-particle correlations. Fraction of
correlations (bound state and continuum) to the density are given, as well as the Mott line
and the transition temperature Tc for super�uidity. From [15]

Results are shown in Fig. 3. For T = 10 MeV, the Mott line has the
value nMott

d,Stein (T = 10 MeV) = 0.02 fm−3 and the maximum contribution of

correlated density occurs at 0.04 fm−3, but a contribution of about 20% remains
at saturation density.

We performed calculations within the generalized BethÄUhlenbeck
approach [14] for the simple separable Gaussian potential,

V Y,G
c (12, 1′2′) = −λc exp

[
− (p1 − p2)2

4γ2

]
exp

[
− (p′

1 − p′
2)

2

4γ2

]
, δσ,σ′δτ,τ ′ , (7)

with λd = 1287.37 MeV for the deuteron (isospin 0) channel, γ = 1.474 fm−1,
see [10, 11], adapted to binding energy and point rms radius of the deuteron.
The Pauli blocking term for this potential has been evaluated and parameterized
in [11]. For instance, for T = 10 MeV the ˇrst-order Pauli blocking shift is [10]
352.5 MeV · fm3×nB, so that the Mott line nMott

d,(1)(T = 10 MeV) = 0.0063 fm−3

follows. The exact solution gives nMott
d,Y,G(T = 10 MeV) = 0.009585 fm−3.

3. DIFFERENT NUCLEONÄNUCLEON POTENTIALS

To investigate the role of the hard-core repulsion in the nucleonÄnucleon
interaction, we considered the force of the Mongan type [16]:

V M
c (12, 1′2′) = −λc,a exp

[
− (p1 − p2)2

4γ2
a

]
exp

[
− (p′

1 − p′
2)

2

4γ2
a

]
+

+ λc,r exp
[
− (p1 − p2)2

4γ2
r

]
exp

[
− (p′

1 − p′
2)

2

4γ2
r

]
δσ,σ′δτ,τ ′ , (8)
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with λd,a = 1645.89 MeV and γa = 1.749 fm−1 for the attractive part and
λd,r = 445.843 MeV and γr = 2.49 fm−1 for the repulsive part. Only a small
decrease nMott

d,M (T = 10 MeV) = 0.0094967 fm−3 was obtained.
The use of the Yamaguchi nucleonÄnucleon force with Lorentzian form fac-

tors (6) gives nearly the same result for the Mott line, nMott
d,Y,L(T = 10 MeV) =

0.0095542 fm−3.
We conclude that Pauli blocking and the Mott line (nMott

d,Y,L, nMott
d,Y,G, nMott

d,M )
are not very sensitive to the details of the nucleonÄnucleon interaction potential.
Global features, such as the binding energy, the rms radius of the bound states,
as well as the scattering length and the low-k expansion of the phase shifts are
characteristics for the extension of the wave function in momentum space. The
overlap with the single-particle distribution of the nuclear medium is relevant for
the Pauli blocking effect.

The main reason for the different results obtained above for the Mott line
(nMott

d,Schmidt, nMott
d,Stein) is due to the treatment of correlations evaluating the self-

energy and Pauli blocking terms. If in Eq. (3) the single-nucleon occupation
n(i) is replaced by the single-nucleon distribution f1,τ [Eτ (pi, T, μn, μp)] with
the chemical potentials and temperature consistent with Eq. (1), only the free
nucleons are taken into account for the phase occupation. The total baryon
density nB is larger than the free-nucleon density because of the contribution of
the correlated density.

It is necessary to take the contribution of correlations into account when
calculating the mean-ˇeld and Pauli blocking shifts. The occupation number
distribution n(i) can be approximated by the Fermi distribution with parameter
values T ∗, μ∗

n, μ∗
p describing the phase space occupation by free as well as corre-

lated nucleons [13]. The Mott line obtained this way is nMott
d (T = 10 MeV) =

0.0087987 fm−3.

4. EFFECTIVE MEDIUM CORRECTION TERMS

We give two examples for effective descriptions of the medium modiˇca-
tion of the contributions of correlations. We can introduce effective binding
energies Beff

i (T, ntot
n , ntot

p ) depending only on the temperature T and the total
neutron/proton densities ntot

n , ntot
p , not on the c.o.m. momentum P, and includ-

ing excited states and the continuum of the channel i, using the deˇnition

∑
ν,P

fA,Z[Ec,ν(P ; T, μn, μp)] = gi

∑
P

fA,Z

[
−Beff

i (T, ntot
n , ntot

p ) +
�

2

2Am
P 2

]
.

(9)
In the nondegenerate case, the sum over P is easily performed; gi is the degen-
eration factor of the ground state.
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Similar to the RMF expressions for the single-nucleon quasiparticle shifts,
after an appropriate parameterization of Beff

i (T, ntot
n , ntot

p ) a simple evaluation

of the EOS (1) is possible. The Mott point Beff
i (T, ntot

n , ntot
p ) = 0 is a signa-

ture of medium effects and has been recently observed from measured yields in
HIC [1]. Theoretical approximations [6Ä8] are in reasonable agreement with the
experimental data.

The other semiempirical approach is the introduction of an excluded volume,
see [9]. This parameterization of the medium effects is not very speciˇc for the
various constituents of the nuclear matter and demands some improvements when
it is related to the microscopic QS approach. However, it is rather efˇcient for
exploratory calculations.

CONCLUSIONS

The quasiparticle energies Ei(P ; T, ntot
n , ntot

p ) of the element i depend
on the c.o.m. momentum P and on the thermodynamic parameter values for
T, ntot

n , ntot
p . The Pauli blocking leads to the dissolution of bound states. In par-

ticular, Ei(0; T, ntot
n , ntot

p ) = 0 gives the so-called Mott line TMott(nB). The
correlated part of the density, however, besides the contribution of bound states,
contains the contribution of scattering states. Altogether, the correlated density
ni(T, ntot

n , ntot
p ) is a smooth function of T, ntot

n , ntot
p .

Calculations for the composition of nuclear matter have been performed for
the contribution of two-nucleon correlations. We found no strong dependence on
the chosen nucleonÄnucleon potential. Neglecting the details, one can introduce
an effective shift of the quasiparticle energies (effective binding energy Beff

i )
which reproduces the contribution of two-nucleon correlations. This is a simple
concept to introduce the effect of cluster formation into the EOS. For this effective
shift, the Mott point can also be introduced, where the effective shift compensates
the binding energy of the cluster.

Experimental values have been obtained recently [1] and have been compared
with theories that use effective shifts [6Ä8]. Good coincidence has been found.
However, one should not identify the Mott point obtained there with the Mott
line describing the dissolution of bound states at P = 0.

The dependence on temperature cannot be described by a simple excluded
volume concept. According to [10], the deuteron Mott line nMott

d (T ) for symmet-
ric matter derived from the ˇrst-order Pauli blocking shift has the following values
(in MeV, fm−3): nMott

d,(1)(10) = 0.0063, nMott
d,(1)(20) = 0.0128, nMott

d,(1)(50) = 0.0385,
nMott

d,(1)(100) = 0.0968, nMott
d,(1)(140) = 0.154. At very high temperatures deuterons

can survive up to saturation densities, as also recently observed in the LHC
experiments.
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Similar approaches are also possible for other clusters with A = 3, 4 [13]. Be-
cause the clusters are more bound, the continuum contributions are less relevant.
The use of the effective shift instead of the momentum-dependent quasiparticle
shift (Mott line) is better founded than in the deuteron case.
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