IMucem B DYAS. 2004. Ne 1[118] Particles and Nuclei, Letters. 2004. No. 1[118]

YAK 539.12.01

NONLOCAL CHIRAL QUARK MODEL
WITH CONFINEMENT
A. E. Radzhabov ', M. K. Volkov?

Joint Institute for Nuclear Research, Dubna

The nonlocal version of the SU(2) x SU(2) symmetric four-quark interaction of the NJL type is
considered. Each of quark lines contains the form factors. These form factors remove the ultraviolet
divergences in quark loops. The additional condition for constituent quark mass function m(p) ensures
the absence of the poles in the quark propagator (quark confinement). The model contains minimal
numbers of the arbitrary parameters because the constituent quark mass m(0) is equal to the cut-off
parameter A = 340 MeV in the chiral limit. These parameters are fixed by the experimental value of
the weak pion decay constant Fir = 93 MeV and allow us to describe the mass of the light scalar meson
and decays p — 7 and a1 — pm in the qualitative agreement with experimental data.

P ccmotpen Henmok sibH 1 Beperst SU (2) X SU (2)-cHMMETPHYHOTO YETHIPEXKB PKOBOTO B3 MMOJIEH-
ctBus. K X1 9 KB pKOB £ JIUHUA cOllepKUT opM KTop. DopMd KTOpBI yCTp HAIOT YIbTp (PUONIETO-
BBIE P CXOIMMOCTHU B KB PKOBBIX NET/IAX. JIONOMHHUTENPHOE YCIOBUE H M CCOBYIO (DYHKIHIO KOHCTHTY-
EHTHOrO KB pK 00ecHedyHB eT OTCYTCTBHE ITOJIOCOB B IPOII T TOpe KB pK (KB PKOBBIH KOH() HHMEHT).
Mogenb cogepXUT MHHUM JIBHOE YHCIIO MPOU3BOJIBHBIX I P METPOB, T K K K KOHCTHTYEHTH 51 KB PKO-
BsaMcc m(0) pBa mp Merpy oOpes Hus A = 340 MaB B Kup JbHOM mpejiesie. DTH 11 p METPbI
(pukcHpyIOTCS O ®KCTIEPUMEHT JIBHOMY 3H YEHHIO KOHCT HTHI Cl1 6oro p cm n muoH Fir =93 MsB u
MIO3BOJISIIOT OMHUC Th M CCY JIETKOTO CK JIIPHOTO ME30H U P CI bl p — MM U @1 — PT B K YECTBEHHOM
COINI CUU C 3KCTIEPUMEHT JIbHBIMU 1 HHBIMU.

INTRODUCTION

Recently it has been proposed that the nonlocal SU(2) x SU(2) chiral quark model allows
us to describe the intrinsic properties and strong interaction of the scalar, pseudoscalar, vector
and axial-vector mesons [1]. Unlike the local Nambu—Jona-Lasinio (NJL) model [2], in this
model ultraviolet (UV) divergences are absent and the quark confinement takes place. These
properties of the model are provided by the form factors which are connected with each of the
quark fields. The existence of these form factors is motivated by the instanton model [3-6].
It has been shown that the main low-energy theorems are fulfilled in the framework of this
model. The model [1] is the development of a number of similar models [5-8].

This work is devoted to further development of these models. Before describing our
approach let us shortly recall the basic method used in [1]. There the special condition,
Eq. (8), for the form of the quark mass function was proposed which provided the absence of
the poles in the quark propagator (quark confinement) (see Sect. 3). This method was close to
the works [9]. Eq. (8) can be motivated by the existence of the nonlocal quark condensate [8].
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As a result, several solutions to the quark mass function m(p) appeared. Of these solutions
only one satisfies the general requirement of the form-factor behaviour in the whole domain
of the p? and leads to satisfactory physical predictions. It is self-consistent only at definite
values of the model parameters.

In the present work we propose the new representation for the quark propagator which
leads to a simpler solution to the dynamical quark mass. This representation can also be
connected with the nonlocal quark condensate which appeared in the gap equation. As a
result, we obtain a simple expression for the dynamical quark mass that contains only one
arbitrary parameter. The value of the quark mass at p?> = 0 is equal in the chiral limit to
the cut-off parameter A, m(0) = A = 340 MeV. This value corresponds to the experimental
value of the pion weak decay constant F; = 93 MeV. The mass of the scalar meson and
decays p — 7m and a; — pm are described in qualitative agreement with experimental data.
The 7—a; transitions in this model, like in other models of this kind, are very small and can
be omitted [1,7].

The paper is organized as follows. In Sect. 1, we consider a nonlocal four-quark interaction
and after bosonization derive the gap equation for dynamical quark mass. The quark mass
function m(p) is defined in Sect.2. In Sect.3, the masses and couplings of the scalar and
pseudoscalar mesons are obtained and the main parameters of the model are fixed. In Sect. 4,
calculations of the four-quark coupling constant G, G4,, a1, p-meson coupling constant, and
the decays p — 7w, a1 — pm are given. The m—a; transitions are considered. The last section
is devoted to the discussion of our results.

1. SU(2) x SU(2) QUARK MODEL WITH NONLOCAL INTERACTION

The SU(2) x SU(2) symmetric action with the nonlocal four-quark interaction has the
form

S@q) = [ dz {a@)0, —ma(@) + Z o (@) o (@) + T22) J2(2) -
2
GP na pna _ Ga1 na na
- 2 Jp (x)Jp ((E) ) Ja1 (x)‘]al (IE)}, (H

where G(z) = (u(z),d(z)) are the u and d quark fields; m, is the diagonal matrix of the
current quark masses. The nonlocal quark currents Jy(x) are expressed as

Ji(z) = //d4a:1d4x2 fz1) f(x2) Gz — 21) T1 gz + 22), 2)

where the nonlocal function f(x) is normalized by f(0) = 1. In (2) the matrices I'; are
defined as

— a _ ;.5 _a a _ A Mp.a va _ A5 a
Lo =1, It =iy"t THY=9tr" Th* =079

where 7% are the Pauli matrices and y*,~> are the Dirac matrices.
In this article, we mainly consider the strong interactions. The electroweak fields may be
introduced by gauging the quark field by the Schwinger phase factors (see, cf. [6,7]).
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After bosonization the action becomes

S(q,q,0,m, p,a) = /d4a: {—22;” (5(x)% + 7n%(x)?)+
1

+ 5= (0 (2))? + ai"(2))* + q(x)(i0; — me)g(w)+

G, 2Ga,

+//dmdmf@—mﬁwrﬂﬁwﬂﬂ@+
4T @ 4 PO a0 o) | )

where o, 7, p,a are the o, m, p, a; meson fields, respectively. The field & has a nonzero
vacuum expectation value (5)g = oo # 0. In order to obtain a physical scalar field with zero
vacuum expectation value, it is necessary to shift the scalar field as ¢ = o + 0g. This leads
to the appearance of the nonlocal quark mass m(p) instead of the current quark mass m..:
m(p) = M¢ + Mdyn (P)a “4)

where mayn(p) = —00 f?(p) is dynamical quark mass. From the action, Eq. (3), by using

6S
(),

one can obtain the gap equation for dynamical quark mass
8N, o / 4 .0 m(k)
n = Gﬂ' dpk k)————+——.
maqy (p) (271_)4 f (p) E f ( )kg ¥ mQ(k)

The right-hand side of this equation is the tadpole of the quark propagator taken in the
Euclidean domain. Egs. (4), (6) have the following solution:

m(p) = me + (mq —me) f2(p), (7)

(6)

where m, = m(0).

2. DYNAMICAL QUARK MASS

Let us recall the representation for the quark propagator in the chiral limit used in our
last work [1]. We demand the absence of pole singularities in the scalar part of the quark
propagator:

m(p®)

1
W 5@(272)7 (8)

where Q(p?) is considered as an entire function in the complex p? plane decreasing in the
Euclidean domain as p?> — oo. Note that the Gaussian function was used for Q(p?):

2
Q(p®) = L (——) : )
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where p and A are arbitrary parameters. Eq. (8) has the following solutions:
me(p?) = Q710 (1£VI-PQ0) - (10)

Then three different situations occur at various values of the parameters p and A:

1. There is some region of real p?> where p?Q?(p?) > 1. This situation leads to the
appearance of complex values of the quark mass. This case was not considered in [1].

2. The relation p>Q?(p?) < 1 is fulfilled in the whole domain of real p?. Then, from
two possible solutions only the solution m_(p) can be used which decreases as p?> — oo.
However, this solution predicts the o-meson mass and decays ¢ — 7w, p — 7w that are in
disagreement with the experiment.

3. The function p>Q?(p?) equals 1 at a single real point po. In this case the continuous
mass function is

m(p?) = Q7' (") (1 - sen (0* —P)VI-PQ@(?)) - (an
The last case is defined by the conditions
pQQQ(pQ)LDQ:pg = 1, (pQQQ(pQ))I|p2=p8 =0. (12)

As a result, we come to a complicated form of solution that exists only under a special
choice of model parameters.

Here we propose a somewhat different representation for the quark propagator that leads
to a simpler solution to the quark mass function

m = Q(p?), (13)
where

~ p2

Q(p*) = exp (—p> : (14)

Note that the left-hand side of Eq. (13) corresponds to the integrand in the gap equation (6)
taking into account Eq. (7). In contrast to Eq. (8), Eq. (13) leads to a simpler solution to the

mass function’
2 2 2
m(p?) = \/m = \/% (Cth (%) — 1). (15)

Note that we also have only one free parameter A; m(p?) does not have any singularities
in the whole real axis and exponentially drops as p?> — oo in the Euclidean domain. From
Eq. (10) it follows that the form factors that provide the absence of UV divergences in our
model behave similarly. At p?> = 0 the mass function is equal to the cut-off parameter A,

IWe use only the solution with positive sign.
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m(0) = A. The pole part of the quark propagator also does not contain singularities that
provide quark confinement!

m?(p?) + p? o
When taking into account current quark mass, Eq. (13) is modified as follows:
m?(p?) —m3 3 (2
= Q.(p?), 17
where
2 2
~ +m
Qc(p®) = exp <—%) : (18)

Here m? is introduced in the form that conserves the analytical properties of the mass function
m(p). Then the mass function takes the form

2 20 . (2
m(pQ)—\/—m;f%%jip 3 (19)

3. PSEUDOSCALAR AND SCALAR MESONS
Let us consider the scalar and pseudoscalar mesons. The meson propagators are given by

1 9.7

Daﬂ— 2 - - ’
5 (p ) _G7?1+Ho',7'r(p2) p2 _Mg,ﬂ'

(20)

where M, . are the meson masses; gaﬂr(pQ) are the functions kg
describing renormalization of the meson fields, and II, ,(p?) r; r,
are the polarization operators (see Fig. 1) defined by

Ha,ﬂ' (pQ) = k_

. 2N,
/d4kf2 (k%)fQ(ki) Sp [S(k:_)FUJS(k:_,_)FUJ] ) Fig. 1. Meson polarization

=1

(2m)* -
1) operator. The thick lines
are mesons. All loops in
where ki = k &+ p/2. The meson masses M, . are found from Figs.1, 3-5 consist of con-
the position of the pole in the meson propagator stituent quarks (thin lines)

Mo r (Mg ) = G, (22)
and the constants gam(Mgm) are given on meson mass shell by (see also Fig. 2)

_ A, (p?
Gox(Ms ) = — ) : (23)
p p?=Mg .

I'Note that similar functions were used in [10, 11] in order to describe the quark confinement.
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0.0 0.4 0.8 1.2 1.6
p, GeV

Fig. 2. Momentum dependence of the mesons strong coupling constants

In the chiral limit the pion constant g,(0) is given by [4]

~2(0) = 47TZ;7;n(2] /duum (u) —um(uw)m'(u) + u?m’ (u)
0

24
The gap equation in the chiral limit takes the simple form
272
GrA? = —. 25
N (25)
The quark condensate in the chiral limit is
N, 7 m(u)
=— duu————. 26
() = =5 [ dwui = s (26)
0

As is shown in [1,6,7], in model of this kind the Goldberger—Treiman relation holds:
P
Ir

From Egs. (24), (27) the value of the parameter A = m, = 340 MeV in the chiral limit can
be obtained. Then, from Egs. (25)-(27) we obtain

27)

9x(0) =3.67, Gr=056.6GeV, (Gg)o=—(188 MeV)?>. (28)

In the description of pion mass it is necessary to introduce the nonzero current quark
mass m.. In our model Mﬁ < A?. Therefore, we can consider only the lowest order of the
expansion in small p2. Then, one gets from Eq. (20)

2 _ 2 1 Ne i flu)?!
M7r - gﬂ'(o) Gﬂ— 27T2 uuu + mg(u) . (29)
0
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By using the expression for G, from the gap equation qQ
(6), the Gell-Mann—Oakes—Renner relation can be repro- p
. kE+aq
duced:
me(qq
M?= —27022 o, O(m?). 30) P = |

From Eq.(30) with M, = 140 MeV we obtain k—q
the value of the current quark mass m. = 13 MeV. T Q2
The other model parameters in this case change very

little: Fig. 3. Decays ¢ — 7w, p — 7w

A =343 MeV, g.(M,) =3.57, G.=56.5GeV, (Gq)o=—(189 MeV)®.  (31)

Thus, in calculations of the amplitudes of various processes we can use the values of para-
meters taken in the chiral limit.

With the help of the parameters (28) we get for sigma meson M, = 420 MeV and
9o (M,) = 3.85. The amplitude of the decay o — 7w, described by the diagram in Fig. 3, is
equal to A, +,-) = 1.67 GeV. Then, the total decay width is

r —7T) —
(g—mm) 327 M,,

o

3A? - oM, \ 2
TloomtaT) 1—( ”) — 150 MeV. (32)

Comparing these results with experimental data, one finds that M, is in satisfactory agreement
with experiment; however, the decay width is very small.

4. VECTOR AND AXIAL-VECTOR MESONS

The propagators of the vector and axial-vector mesons have the transversal and longitudinal
parts:

phr =Tw DT+ LMDk (33)

p,a1 p,a1?

where THY = g — ptp¥ [p?, LM = pFp” /p* and

2 2
DT _ 1 — g/),(ll (p ) DL _ 1 . (34)
P G A1, (07) Mie, —p*T P Gl + 11K, (97)
Here, H;{,a , and Hia , are the transversal and longitudinal parts of the polarization operator
70, (0%):

e, (07) = % [ R0 20 80 S0 S ).
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The constants G\, 4, are fixed by physical meson masses:

Gil :_HT (MP;M)

pa1 pra1

and numerically equal G, = 6.5 GeV~2, G,, = 0.67 GeV~2. Note that there is no pole in
the longitudinal part of the vector meson propagators.
The constants g, q, (M?2,,) are equal to

piai
- dily ., (p?)
Gpir Mpa,) = ——"5— - (35)
p p2=M2

pray

From Eq. (35) we obtain g,(M,) = 1.23, go(M,,) = 0.43. At p? = 0 we have g,(0) = 2,
9a(0) =1 (see Fig.2).

The decay p — mm is described by the triangle diagram similar to the diagram in Fig. 3.
The amplitude for the process is

Al(lp*)ﬂ.ﬂ_) = a(p—»TrTr)(ql - QQ)M; (36)

where g; are momenta of the pions. We obtain a,—r») = 5.72 and the decay width

a? M IMN 2 8/2
Ty = =22 <1 - ( ’T> =135 MeV, (37)

481 M,

which is in qualitative agreement with the experimental value (149.2 £ 0.7) MeV [12].
The decay a; — pm is described in a similar manner. The

ke amplitude for the process a; — pm is
-5 5
vy
Rt Al(j:l_,pﬂ-) = a‘(alﬁpﬂ")gluj + b(alﬂpﬂ)pyquv (38)
T ai
k. where p,q are momenta of a;, p mesons, respectively. We

obtain a4, —pr) = —1.26 GeV, b(q, —pr) = 26.8 GeV™l. Asa
Fig. 4. Transition loop describ-  pegy]t, the decay width is equal to I'(q, _,,r) = 170 MeV. This
ing 7—ay mixing value has the same order as experimental data 250-600 MeV.
Note that the width of the decay a; — pm strongly depends on
mass of the a; meson. Indeed, for M,, = 1.3 GeV we have F(alﬁm) = 260 MeV.
The longitudinal component of the a;-meson field is mixed with the pion, as is illustrated
in Fig.4. The amplitude describing this mixing has the form

Al oy (07) = 8 gay (995 (D7) Cnma) (D)D" = id(p?)p", (39)

where Cr_.q, )(p2) at the point p? = 0 in the chiral limit is

2
N, du m?(u)

T 4r2A3 / (u+m2(u))

Clr—a)(0) 5 (2m(u) —um’(u)) = 0.061. (40)

As a result, d(0) is equal to 80 MeV.
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T ai T

Fig. 5. Diagram describing additional renormalization of the pion field

2
The diagram (see Fig.5) gives the additional pion kinetic term ALy, = A - %wa(p)Q.
Let us estimate this term in the chiral limit:

(Agm(O)QW(O)C(Wﬁal)(O))Q 2 9 2
A= ~ A2g2(0)C 0)Ga, ~ 0.004. 41
20 1 ) ) “

As one can see, A is very small and the effect of the m—a; mixing can be neglected.

DISCUSSION AND CONCLUSION

In this work we have considered one more possibility of constructing the nonlocal chiral
quark model providing the absence of UV divergences and quark confinement. These features
of the model are specified by the nonlocal kernel which appears in the four-quark interaction.
Such a structure of the four-quark interaction can be motivated by the instanton model [4-6].

Similar models were considered in [1,5-8]. Thus, in [7] nonlocal form factor was chosen
in the Gaussian form that exponentially decreases in the Euclidean domain of momenta.
In [1,8] it was proposed to relate the functions defining the nonlocal kernel with the nonlocal
quark condensate. This relation provides quark confinement. However, Eq. (8), which was
used in [1], leads to complicated solutions for the mass function at different values of model
parameters. Therefore, in the present work we have changed conditions for quark mass
function, Eq. (13), in order to obtain a simpler solution for it. We preserve all requirements
providing the absence of UV divergences and the confinement quarks in our model. It is
worth noting that, though the quark mass and the cut-off parameter are connected by the
condition m(0) = A, we can satisfactorily describe the scalar meson mass and strong decays
p — T, a1 — PT.

Note that in our model, like in all models of this kind, 7—a; transitions can be neglected.
Actually, in local models additional renormalization of pion field with allowance made for
the m—a; mixing is about 40 %, whereas in model of this kind it is almost one order smaller.
In particular, in our model this correction does not exceed 1 %.

The worst prediction of our model is the decay ¢ — 7wm. The failure of the model to
describe the o meson is expectable. Similar problems appeared in the QCD sum rule method.
In the scalar channel with vacuum quantum numbers the corrections from different sources
may be valuable. Indeed, it has recently been shown that the 1/N, corrections in this channel
are rather big [13], and the Hartree—Fock approximation may be inadequate in this case.
Moreover, for correct description of the scalar meson it is necessary to take into account the
mixing with the four-quark state [14] and the scalar glueball [15].

In conclusion, let us summarize the main results of the present work. The pseudoscalar,
scalar, vector and axial-vector sectors of the model have been considered. The masses and
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strong coupling constants of the mesons were calculated. The strong coupling constants of
the mesons were shown to noticeably decrease with increasing p? in the physical domain (see
Fig.2). Among satisfactory predictions of the model are the decays widths p — 77, a3 — pm
and the mass of the sigma meson.

In the future, we plan to describe electromagnetic interactions in the framework of this
model, calculate the e.m. pion radius, polarizability of the pion and consider the processes
7% — 45, v* — 7 (here v* is a virtual photon). We also plan to generalize this model
to the U(3) x U(3) chiral group by introducing new parameters: mass of strange quark
and cut-off A, which allows us to describe intrinsic properties and interactions of strange
mesons.
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