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CHARGED PION POLARIZABILITY
IN THE NONLOCAL QUARK MODEL

OF NAMBUÄJONA-LASINIO TYPE
A. E. Radzhabov1, M. K. Volkov2

Joint Institute for Nuclear Research, Dubna

The polarizability of a charged pion is estimated in the framework of the nonlocal chiral quark
model of the NambuÄJona-Lasinio type. Nonlocality is described by quark form factors of the Gaussian
type. It is shown that the polarizability in this model is very sensitive to the form of nonlocality and
choice of the model parameters.
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Recently, interest in direct determination of the pion polarizability in Primakoff scattering
has been renewed. Now a new experiment is being prepared at CERN by the COMPASS
collaboration where it is expected to obtain the statistics factor 6000 higher than in the
previous experiment performed by the IHEP and JINR group in Protvino [1] at the beginning
of the 1980s. However, the technical possibilities of this experiment allow one to obtain only
very rough estimations of the pion polarizability with large error bars

απ = −βπ = 8.54 ± 1.76 ± 1.51, (1)

where απ and βπ are electric and magnetic polarizabilities of the charged pion. Hereafter we
express the polarizability in the units of 10−42 cm3. The new experiment gives an opportunity
to obtain a value of the pion polarizability with good accuracy [2].

As regards the theoretical aspect of this problem for the past years, there are a lot of
estimations of this quantity made by many authors in different theoretical models; in particular,
one of the authors of this article (M. K. V.) together with V. N. Pervushin obtained estimations
of the pion polarizability in the framework of the nonlinear chiral model in 1975 [3]. After
that, analogous calculations were performed by him in the quark linear sigma model of
NambuÄJona-Lasinio (NJL) type [4, 5]. The estimation obtained in the above-mentioned
works corresponds to the experimental result (1).

In this short note, we want to return to this question and estimate the pion polarizability in
the nonlocal model of the NJL type [6], where nonlocality is described by quark form factors
of the Gaussian type.
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Fig. 1. Diagrams describing charge pion polarizability: a) box diagrams; b) σ pole diagrams

As is shown in [5], in the local NJL model the main contribution to the pion polarizability
in the leading order of 1/Nc expansion stems from two types of diagrams: the diagrams with
light intermediate σ meson and the box diagrams (see Fig. 1). The contribution from the
diagrams with other resonances (heavier scalars, vectors and axial vectors) is smaller than 3%
and can be neglected in the present consideration.

The contribution of the box diagrams to the structure part of the Compton effect takes the
form

Aµν
(a) = − α

9πf2
π

(gµν(q1 · q2) − qµ
2 qν

1 ),

where q1, q2 are the momenta of the incoming (outgoing) photons; α = 1/137 is the ˇne
structure constant; fπ = 93 MeV is the weak pion decay constant. The contribution of the σ
pole diagram can be factorized into three parts:

Aµν
(b) =AσππDσAµν

σγγ ,

where the σππ vertex is Aσππ = 4mgZ = 4m2Z1/2/fπ; the σ-meson propagator is Dσ ≈
1/M2

σ , and the σγγ vertex is [7]

Aµν
σγγ =αCσγγ(gµν(q1 · q2) − qµ

2 qν
1 ),

Cσγγ =
10Z−1/2

9πfπ
.

Here m = 280 MeV is the constituent quark mass after taking into account the
π − a1 mixing [5]; g = mZ−1/2/fπ is the σ-meson coupling constant; factor Z is Z =
(1 − 6m2/M2

a1
)−1 ≈ 1.4 (Ma1 = 1.26 GeV is the mass of the a1 meson); Mσ is the

σ-meson mass Mσ =
√

4m2 + M2
π ≈ 2m, and Mπ is the pion mass. One can express the

amplitude of the process as

Aµν = Aµν
(a) + Aµν

(b) = C(gµν(q1 · q2) − qµ
2 qν

1 ). (2)

As a result, the pion polarizability takes the form [7,8]

απ = −βπ =
C

2Mπ
=

5α

9πMπf2
π

(
1 − 1

10

)
= 7.3. (3)

One can see that the polarizability does not depend on the model parameters.
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Let us emphasize that the contribution of the box diagrams makes up only 10% of the
contribution of the σ pole diagrams1.

Our calculation shows that in the nonlocal model the choice of the form factor f(p) and
the model parameters have a greater in�uence on the pion polarizability than taking into
account the box diagrams. Therefore, in this note we restrict ourselves to only the estimations
of the contribution of the σ pole diagrams.

In the nonlocal model, the quark mass depends on momentum. In [6], the following
representation for the quark propagator is proposed:

m2(p)
m2(p) + p2

= exp
(
−p2/Λ2

)
, (4)

where Λ is the parameter of nonlocality. As a result, the pole part of the quark propagator
has no singularities on the whole real axis, which leads to the quark conˇnement. The quark
mass function takes the form [6]

m2(p) =
(

p2

exp (p2/Λ2) − 1

)
. (5)

From this equation one can see that m(0) = Λ. Then, from the condition that the weak pion
decay constant equals 93 MeV, it follows that m(0) = Λ = 340 MeV. For the σππ vertex
and the σ-meson mass we have Aσππ = 1.57 GeV, Mσ = 420 MeV [6].

Fig. 2. Diagrams describing vertex σγγ

The vertex σγγ is more complicated. Due to the P exp factor in the action [6,9], there are
additional nonlocal photon vertices. The reason for appearing of these vertices is the momen-
tum dependence of the quark mass and the meson-quark vertices. The technique of obtaining
these vertices can be found in [9,10]. As a result, there are four types of diagrams describing
the process σγγ (Fig. 2), only the sum of them is gauge-invariant. As a concequence, we have2

Cσγγ = 0.86 GeV−1,

and pion polarizability is

απ = 1.5. (6)

1It is worth noting that a similar situation with relative contributions from the σ pole and box diagrams takes
place in nonlocal model (see, e.g., [8]).

2It is easy to see that Aσππ , Cσγγ noticeably decrease in comparison with the local NJL model (see also Table 1).
We would like to emphasize that a similar situation takes place in another nonlocal model with form factors of the
Gaussian type [12].
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Table 1. Theoretical values of pion polarizability

Model m(0), Λ, Mσ , Aσππ, Cσγγ , απ , sigma pole, απ , sum rules,
MeV MeV MeV GeV GeV −1 10−42 cm3 10−42 cm3

[6] 340 340 420 1.57 0.86 1.5 2.0
[11] 340 920 421 1.57 1.16 2.0 2.7
[11] 300 1085 398 1.47 1.75 3.3 3.6
[11] 280 1187 384 1.39 2.1 3.9 5.0
[5] 280 1250 577 4 3.2 8.1

Let us notice that the calculations of the pion polarizability in a similar nonlocal model
of the NJL type with quark form factors of the Gaussian type is performed in [11] by using
the chiral sum rule method. Those form factors lead to the following momenta dependence
of quark mass function:

m(p) = m0 exp
(
−2p2/Λ2

)
.

In contrast to the previous model, here the only one condition is used fπ = 93 MeV for ˇxing
two main model parameters m0, Λ. This keeps some freedom in choosing model parameters.
Particularly, in [11] the model parameters m0 = 300 MeV, Λ = 1.085 GeV are used. As
a result, the values of the pion polarizability obtained by the sum rule method is απ = 3.6.
On the other hand, we can carry out calculations of the pion polarizability using the σ pole
diagrams. We have

Aσππ = 1.47 GeV,

Mσ = 398 MeV, (7)

Cσγγ = 1.75 GeV−1,

and, as a result, we obtain απ = 3.3. It is worth noting that if m0 is equal to 340 MeV, as
in model [6] (see Eq. (5)), the model quantities equal

Λ = 0.92 GeV,

Aσππ = 1.57 GeV,
(8)

Mσ = 421 MeV,

Cσγγ = 1.16 GeV−1,

the polarizability of the pion is απ = 2.0 (sum rule estimation is απ = 2.7). Taking
m0 = 280 MeV, as in the local NJL model, one can obtain1

Λ = 1.187 GeV,

Aσππ = 1.39 GeV,

Mσ = 384 MeV, (9)

Cσγγ = 2.1 GeV−1,

απ = 3.9 (απ = 5.0 from the sum rules).

1Note that in the local NJL model, Λ equals 1.25 GeV [5].
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As we can see, in the nonlocal model there is a strong dependence of the pion polarizability
on the form of nonlocality. We summarize theoretical results in Table 1.

Table 2. Experimental values of the pion
polarizability: [1] Å measurement via Pri-
makoff scattering; [13] Å deduced from the
processes γγ → ππ; [14, 15] Å obtained
from the sum rules for vector and axial-
vector correlation functions in τ decays

αexp
π Experiment

8.54 ± 1.76 ± 1.51 [1]
3.3 ± 0.6 [13]

3.31 ± 0.45 [14]
3.4 ± 1.11 [15]

The experimental values of pion polarizability
are given in Table 2.

To conclude, we consider the estimation of
the pion polarizability in the framework of the
local and nonlocal models of the NJL type. It is
shown that the pion polarizability in the nonlocal
model is noticeably smaller than that in the local
NJL model, and is very sensitive to the form of
nonlocality and choice of the model parameters.
Planned experiments must give more accurate val-
ues of the pion polarizability. We hope that these
data will allow us to choose a more realistic ver-
sion of the nonlocal model.
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