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ON FREE FALL OF A RELATIVISTIC PARTICLE
N. A. Cherhikov, N. N. Paramonova, N. S. Shavokhina

Joint Institute for Nuclear Research, Dubna

In the present work the free fall of a relativistic particle is considered: the well-known fact of the
light velocity constancy is taken into account in the Galilean problem about the movement of a particle
free from nongravitational forces and its fall onto the ground. The velocity hodograph and the world
line of the particle are found.
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The question about taking into account the light velocity constancy in the Galilean problem
has been raised by Einstein in his ˇrst attempt [1] to construct a relativistic gravity theory.

In the Galilean problem the earth surface looks like a ˇxed Euclidean plane, the gravitation
ˇeld intensity above the earth surface is characterized by a positive constant, called the free
fall acceleration, usually denoted by g. lt is the simplest gravitational ˇeld.

As in each problem, the consideration of the light velocity constancy in the Galilean
problem is reduced to the replacement of the Euclidean geometry in the velocity space with
the Lobachevsky geometry, since the light vlocity c, entering the Lorentz transformations,
turns out to be the Lobachevsky parameter in the geometry of the velocity space.

The notion of velocity space for the case of Euclidean geometry in this space was intro-
duced by Hamilton in [2].

The notion of velocity space for the case of Lobachevsky geometry in this space was
introduced by Kotelnikov in [3].

Poincare found in [4] that the Lobachevsky geometry is realized on a hyperboloid. From
the last result it follows that in the velocity space the Lobachevsky geometry is realized.

Indeed, the end of 4-vector (U1, U2, U3, U4) of a particle velocity lies upon the upper
half of the hyperboloid

cU4 =
√

c2 + U1U1 + U2U2 + U3U3. (1)

The interior geometry of the hypersurface (1) in the Minkowski space is given by the metric

dS2 = dU1dU1 + dU2dU2 + dU3dU3 − c2dU4dU4, (2)

where

c2dU4dU4 =
(U1dU1 + U2dU2 + U3dU3)2

c2 + U1U1 + U2U2 + U3U3
. (3)

It is the khown metric in the Lobachevsky space. Equation (3) follows from Eq. (1).
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The equation U1 = 0 determines on the upper half of the hyperboloid (1) the Lobachevsky
plane, and the couple of equations U1 = 0, U2 = 0 determines the Lobachevsky straight line.
The transition from the Galilean to the Loretnz transformations leads to the transition from
Euclidean to Lobachevsky geometry in the velocity space. For more information on this
subjet, see [5].

In the considered problem the space of events M in regard to the background connection
Γ̌a

mn is the 4-dimensional afˇne space with map (x1, x2, x3, x4), in which Γ̌a
mn is equal to zero.

The notion of a ˇxed plane (let us denote it by E2) demands the introduction in the space
of events of the structure of a direct multiplication M = P × T of the 3-dimensional afˇne
space P with the afˇne time line T . The numbers x1 = x, x2 = y, x3 = z are the afˇne
coordinates in P , the number x4 = t is the afˇne coordinate in T .

The history of the ˇxed plane E2 is represented in M by the hyperplane z = 0 with the
following metric:

c2dτ̀2 = c2dt2 − dx2 − dy2. (4)

The gravitational ˇeld is considered in the domain z > 0, where the ˇeld metric equals

c2dτ2 = c2
(
1 +

gz

c2

)2

dt2 − dx2 − dy2 − dz2. (5)

The ˇeld connection Γa
mn is the Christoffell connection for this metric. The particle's equa-

tions of motion are the geodesic equations for this connection. In the considered case they
can be transformed to the following form:

d

dτ

(dx

dτ

)
= 0,

d

dτ

(dy

dτ

)
= 0, (6)

d

dτ

(dz

dτ

)
+ g

(
1 +

gz

c2

)( dt

dτ

) dt

dτ
= 0, (7)

d

dτ

[(
1 +

gz

c2

) dt

dτ

]
+

g

c2

(dz

dτ

) dt

dτ
= 0. (8)

On the particle's world line the equation

c
(
1 +

gz

c2

)( dt

dτ

)
=

√
c2 +

(dx

dτ

)2

+
(dy

dτ

)2

+
(dz

dτ

)2

(9)

is fulˇlled. As a consequence of (8), the energy

E =
[(

1 +
gz

c2

)2 dt

dτ
− 1

]
c2 (10)

of the particle, divided by its rest mass, is conserved.
The solution of Eqs. (6)Ä(8) was obtained in [6] in the following way. The system of

these equations splits up into the following couple of systems:

du1

dt
= 0,

du2

dt
= 0,

du3

dt
= −gu4,

du4

dt
= − g

c2
u3, (11)

u1 =
(dx

dτ

)
, u2 =

(dy

dτ

)
, u3 =

(dz

dτ

)
, u4 =

(
1 +

gz

c2

)( dt

dτ

)
. (12)



On Free Fall of a Relativistic Particle 15

From (11) follows the Lorentz transformation

u1 = U1, u2 = U2,

u3 = U3 cosh
s

c
− cU4 sinh

s

c
, (13)

cu4 = cU4 cosh
s

c
− U3 sinh

s

c
,

where Ua is the value of ua at t = 0, and s = gt is rapidity of the particle. It is important
that the rapidity s is proportional to the time t with a coefˇcient of proportionality equal to g.
Values U1, U2, U3 may be chosen arbitrarily. As to U4, from (9) and (12) it follows that
equality (1) is correct.

From (12) and (13) it follows that

x = X + U1τ, y = Y + U2τ, (14)

(c2

g
+ z

)
cosh

s

c
=

c2

g
+ Z + U3τ,

(c2

g
+ z

)
sinh

s

c
= cU4τ. (15)

Here we assume that at τ = 0 the coordinate t of the particle takes zero value, and also the
coordinates x, y, z take values X, Y, Z. Values X, Y may be chosen arbitrarily, but Z > 0.

According to (10), the energy c2 + E of the particle is equal to

c2 + E = (c2 + gZ)U4. (16)

From (15) it follows that

tanh
gt

c
=

cU4gτ

c2 + gZ + U3gτ
, (17)

c2 + gz =
√

(c2 + gZ + gτU3)2 − (gτcU4)2. (18)

From the condition z � 0 it follows that the time τ of the particle's �ight above the
ground is restricted by the roots of the quadratic equation

g(c2 + U1U1 + U2U2)τ2 = 2U3(c2 + gZ)τ + 2c2Z + gZ2. (19)

At any energy E and from any height Z the particle falls to the ground, �ying from the
point (X, Y, Z) over a distance less than

√
2Z in a time t less than (−U4/U3)Z if

U3 < 0 and U1U1 + U2U2 < U3U3. (20)

Under these conditions the world line of the falling particle lies in the domain

0 < z < Z −
√

(x − X)2 + (y − Y )2, 0 < t/Z < −U4/U3. (21)

The gravitational ˇeld of the Earth may be thought to be constant under these conditions if
the height Z is small enough.

Therefore, the results obtained can be applied to neutral decay produts falling from a
small height and neutral particles being constituents of cosmic rays which are registered at the
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same height and continuing their fall after registration. For instance, gZ/c2 = 6.95 · 10−14,
if Z = 10−4R = 638 m, where R is the radius of the Earth. This height is small enough.

Now consider the movement of this particle in the uniformly accelerated reference frame

x̂ = x, ŷ = y,

ẑ =
(c2

g
+ z

)
cosh

gt

c
− c2

g
,

ct̂ =
(c2

g
+ z

)
sinh

gt

c
.

(22)

For such a frame, see [6] and [7].
According to (14) and (15) we have

x̂ = X + U1τ, ŷ = Y + U2τ, ẑ = Z + U3τ, t̂ = U4τ. (23)

So in the reference frame (22) the particle is moving on straight line without acceleration
with a velocity equal to

û1 =
dx̂

dτ
= U1, û2 =

dŷ

dτ
= U2, û3 =

dẑ

dτ
= U3, û4 =

dt̂

dτ
= U4. (24)
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