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A QUEER REDUCTION OF DEGREES OF FREEDOM

L. V. Avdeev, M. V. Chizhov1

Joint Institute for Nuclear Research, Dubna

The classical dynamics of antisymmetric second-rank tensor matter ˇelds is analyzed. The confor-
mally invariant action for the tensor ˇeld leads to a positive-deˇnite Hamiltonian on the class of the
solutions that are bounded at the time inˇnity (plane waves). Only the longitudinal waves contribute to
the energy and momentum. The helicity proves to be equal to zero.
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µ¶·¥¤¥²¥´´µ³Ê £ ³¨²ÓÉµ´¨ ´Ê ´  ±² ¸¸¥ ·¥Ï¥´¨°, ±µÉµ·Ò¥ µ£· ´¨Î¥´Ò ´  ¢·¥³¥´´µ° ¡¥¸±µ´¥Î´µ-
¸É¨ (¶²µ¸±¨¥ ¢µ²´Ò). ‚ Ô´¥·£¨Õ ¨ ¨³¶Ê²Ó¸ ¤ ÕÉ ¢±² ¤ Éµ²Ó±µ ¶·µ¤µ²Ó´Ò¥ ¢µ²´Ò. �µ± § ´µ, ÎÉµ
¸¶¨· ²Ó´µ¸ÉÓ · ¢´  ´Ê²Õ.

In the ˇeld theory an elementary particle with an integer (a half integer) spin s is usually
described by a totally symmetric tensor ˇeld Φµ1...µs (a tensor spinor ˇeld ψµ1...µs−1/2 ) [1].
The tensors (spinor-tensors) symmetrized by other Young tableaux were also considered in
the literature. Two forms of the action are known for the antisymmetric second-rank tensor
ˇelds. In the ˇrst case the action possesses the gauge symmetry [2]:

SA = −
∫

d4x
[ 1

4
(∂λAµν)∂λAµν − 1

2
(∂µAµλ)∂νAνλ

]
, δAµν = ∂µΛν − ∂νΛµ. (1)

The gauge ˇelds (1) appear in supergravity theories in diverse dimensions [3] and in the
effective low-energy ˇeld theory derived from relativistic strings [4]. These ˇelds have been
well studied, and eventually, a unitary S-matrix was constructed even in the non-Abelian
case [5]. The gauge invariance leaves only one (longitudinal) polarization state for the tensor
gauge ˇeld, in contrast to the ordinary vector gauge ˇelds.

Another possibility is the conformally invariant action for the antisymmetric tensor matter
ˇelds Tµν :

ST =
∫

d4x
[ 1

4
(∂λTµν)∂λT µν − (∂µT µλ)∂νTνλ

]
. (2)

Such an action naturally arises in the conformal ˇeld theory [6] and in conformal supergrav-
ity [7]. However, the dynamics of such ˇelds has not been completely investigated. There is
an assertion that, in the Euclidean space, Tµν describe three physical and three ghost degrees
of freedom [8]. We are going to study the classical dynamics of the antisymmetric tensor
matter ˇelds in the Minkowski space. If we limit ourselves to the solutions that are bounded
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at the time inˇnity, then the Hamiltonian proves to be positive-deˇnite; just two degrees of
freedom contribute to the energy and momentum.

Six independent components of the real tensor ˇeld Tµν can be parameterized by a three-

dimensional vector Ai = T0i and a pseudovector Bi =
1
2
εijk Tjk, where the Latin indices

take on values 1, 2, 3, and are summed over when repeated. Following the standard formalism
for free classical ˇelds [9], let us work in the momentum representation

A(x) =
∫

d4k

(2π)3/2
exp (ikx)A(k), B(x) =

∫
d4k

(2π)3/2
exp (ikx)B(k). (3)

Choose a special reference frame ei: ei · ej = δij , [ei × ej ] = εijkek, e3 = k/|k|. Let the
decomposition of the ˇelds over the basis be A(k) = ai(k)ei, B(k) = bi(k)ei. Then the
action, Eq. (2), can be expressed as

ST = π

∫
d4k

{ 2∑
i=1

[
a∗

i (k)
(
k2
0 + k2

)
ai(k) + b∗i (k)

(
k2
0 + k2

)
bi(k)

]
+

+ 2k0 |k|
[
a∗
1(k)b2(k) + b∗2(k)a1(k) − a∗

2(k)b1(k) − b∗1(k)a2(k)
]
+

+ a∗
3(k)

(
k2
0 − k2

)
a3(k) + b∗3(k)

(
k2
0 − k2

)
b3(k)

}
. (4)

An additional rotation

a1(k) =
1√
2

[
c1(k) + d2(k)

]
, a2(k) =

1√
2

[
c2(k) + d1(k)

]
, a3(k) = c3(k);

b1(k) =
1√
2

[
d1(k) − c2(k)

]
, b2(k) =

1√
2

[
d2(k) − c1(k)

]
, b3(k) = d3(k)

diagonalizes action (4)

ST = π

∫
d4k

[
c∗1(k)

(
k0 − |k|

)2
c1(k) + c∗2(k)

(
k0 + |k|

)2
c2(k)+

+ c∗3(k)
(
k0 − |k|

)(
k0 + |k|

)
c3(k) + (c → d)

]
. (5)

The principle of extreme action leads to the following ˇeld equations:

(
k0 − |k|

)2
c1(k0,k) = 0,

(
k0 + |k|

)2
c2(k0,k) = 0,(

k0 − |k|
)(

k0 + |k|
)

c3(k0,k) = 0.
(6)

The same equations hold for di(k). The general solutions to Eqs. (6) are of the form

c1(k0,k) = δ
(
k0 − |k|

)
c1(k) + δ′

(
k0 − |k|

)
c̃1(k),

c2(k0,k) = δ
(
k0 + |k|

)
c2(k) + δ′

(
k0 + |k|

)
c̃2(k), (7)

c3(k0,k) = δ
(
k0 − |k|

)
c3(k) + δ

(
k0 + |k|

)
c3(k).
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We want to note here that the transverse components c1(k0,k) and d1(k0,k) involve only
positive frequencies k0 = |k|. Other transverse components c2(k0,k) and d2(k0,k) involve
only negative frequencies k0 = −|k|.

The fact that A(x) and B(x) are real leads to the relations

c2(k) = sc∗1(−k) − cd∗1(−k),

c̃2(k) = −sc̃1
∗(−k) + cd̃1

∗(−k), c3(k) = −c∗3(−k),

d2(k) = cc∗1(−k) + sd∗1(−k),

d̃2(k) = −cc̃1
∗(−k) − sd̃1

∗(−k), d3(k) = −d∗3(−k),

(8)

where c = e1(k) · e1(−k) = −e2(k) · e2(−k), s = e1(k) · e2(−k) = e2(k) · e1(−k),
c2 + s2 = 1. Thus, c3, d3, and all the amplitudes with index 2 are not independent and can
be eliminated.

The energy-momentum 4-vector for the tensor matter ˇeld is deˇned as

Pµ =
∫

d3x
[
(∂µTαβ)

∂LT

∂(∂0Tαβ)
− gµ0LT

]
.

By a direct calculation we ˇnd

P0 =
∫

d3x
[1
2
(∂0A)2 − 1

2
(∂iA)2 + (∂iAi)2 + (A → B)

]
=

=
∫

d3k
{
c̃1

∗(k)c̃1(k) − |k|
[
c̃1

∗(k)c1(k) + c∗1(k)c̃1(k)
]
+

+ 2k2c∗3(k)c3(k) + (c → d)
}

, (9)

Pi =
∫

d3x
{
(∂iA) · (∂0A) + (∂iB) · (∂0B) + 2(∂iA) · [∂ × B]

}
=

=
∫

d3kki

{
c̃1

∗(k)c1(k) + c∗1(k)c̃1(k) + 2|k|c∗3(k)c3(k) + (c → d)
}
. (10)

The obtained energy and momentum cannot be made simultaneously diagonal. The
straightforward diagonalization of Eq. (9) reveals two positive- and two negative-energy trans-
verse modes which cannot be interpreted as relativistic particles. These facts are due to the
presence of δ′-type solutions in Eqs. (7). In the co-ordinate representation (3) such solutions
do not correspond to ordinary plane waves, but rather grow linearly with the time and are
unbounded at the inˇnity. If we set their amplitudes to zero, that is, choose to restrict our-
selves to the plane-wave sector, then the transverse plane-wave amplitudes drop out of the
energy-momentum. Everything is reduced to the longitudinal waves. Both energy (9) and
momentum (10) can be written uniformly:

Pµ =
∫

d3kkµ

[
c+
3 (k)c−3 (k) + d+

3 (k)d−3 (k)
]
, (11)

where, as usual [9], c+
3 (k) = c∗3(k)/

√
2k0, c−3 (k) = c3(k)/

√
2k0, k0 = |k|. The Hamiltonian

P0 becomes positive-deˇnite on the plane-wave solutions. This important property would not
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take place, if one introduced a mass term like T µνTµν in Eq. (2). Thus, the free tensor ˇeld
describes massless relativistic particles.

The helicity Å the projection of the spin onto the direction of motion Å proves to be
equal to zero. In fact, even without the restriction to plane waves, the 3-vector of spin

S =
∫

d3x
(
[A × ∂0A] + [B× ∂0B] +

[
A× [∂ × B]

]
−

[
B × [∂ × A]

])
(12)

vanishes on solutions (7).
There are global transformations of the vector and pseudovector ˇelds(

A′

B′

)
=

(
cos α sin α
− sin α cos α

) (
A
B

)
, δTµν =

1
2

εµνκλ T κλ δα (13)

that leave action (2) invariant. They induce a conserved axial charge

Q =
∫

d3x
(
A · ∂0B− B · ∂0A− A · [∂ × A] − B · [∂ × B]

)
=

= −i

∫
d3k

[
c∗1d̃1 − d̃1

∗c1 + d∗1c̃1 − c̃1
∗d1 + 2|k|(c∗3d3 − d∗3c3)

]
, (14)

which in the plane-wave sector is reduced to

Q = −i

∫
d3k

[
c+
3 (k)d−3 (k) − d+

3 (k)c−3 (k)
]
. (15)

Again, the transverse components fall out. The axial (chiral) symmetry (13) Å as well as the
positive deˇniteness of the energy Å forbids the mass term for Tµν .

As the dynamical invariants for bounded solutions do not depend on the transverse com-
ponents of the tensor ˇeld, it is natural to suppose that only the longitudinal excitations are
physical. In contrast to the tensor gauge ˇeld (which has only one degree of freedom on
shell [2]), two physical states (the longitudinal components of the vector A and pseudovector
B) are left for the tensor matter ˇeld. On the mass shell the transverse components play
no role. They become important as interactions with other ˇelds and a self-interaction are
added [10].

It is also worth comparing the tensor matter ˇeld with the vector gauge ˇeld. The
transverse plane-wave components of the tensor ˇeld are similar to the time and longitudinal
polarizations of the photon. However, in the latter case there is a gauge symmetry which
is responsible for the cancellation of unphysical degrees of freedom. Introducing the scalar
(anti)ghost ˇelds with unusual commutation rules, one can write the more general BRST
transformations [11] which leave the action invariant even after gauge ˇxing. The ghost
degrees of freedom are subtracted from the total number, thus leaving only physical degrees
of freedom.

In the case of the tensor matter ˇeld there is no gauge invariance. However, like for the
tensor gauge ˇelds, we can add a pyramid of ghost ˇelds (ghosts for ghosts): anticommuting
Cµ, Cµ with the ghost numbers ±1, commuting D, D with the zero ghost number, and E, E
with the ghost numbers ±2. Then, naively counting the degrees of freedom, 6−2×4+2×2,
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we get just two longitudinal physical degrees of freedom for the tensor matter ˇeld. The
action for the ghosts is of the form

Sghost =
∫

d4x
[
(∂µCν)∂µCν + (∂µD)∂µD + (∂µE)∂µE

]
. (16)

The total action ST + Sghost is left invariant under the following nilpotent transformations
with the anticommuting constant parameter Λ whose ghost number equals 1:

δTµν = −(∂µCν − ∂νCµ)Λ, δCν = (∂µTµν + ∂νD)Λ,

δD = ∂νCνΛ, δCν = ∂νEΛ, δE = −∂νCνΛ, δD = δE = 0.
(17)

These transformations are valid for the theory of the free ˇelds. In case of an interaction,
Eqs. (17) should be generalized to involve the coupling constants.
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