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TRANSVERSE EMITTANCE BLOW-UP FROM BEAM
INJECTION ERRORS IN SYNCHROTRONS WITH

NONLINEAR FEEDBACK SYSTEMS
V. M. Zhabitsky1

Joint Institute for Nuclear Research, Dubna

The problem of transverse emittance blow-up from beam injection errors in synchrotrons with
nonlinear feedback systems is considered. The relative emittance growth is calculated for linear and
nonlinear feedback transfer functions. Effects of an increase of the damping decrement of the beam
coherent oscillations and of a decrease of the coherent transverse amplitude spread of different bunches
in case of the damper with a positive cubic term in the feedback transfer function are discussed.
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INTRODUCTION

Emittance preservation is an important issue during injection of a beam into a circular
accelerator. An initial position or angular error can lead to an increase in the transverse beam
size due to decoherence or ˇlamentation. It is well known [1] that the emittance blow-up due
to the decoherence in presence of the injection error is

ε =
(

1 +
ā2

ε

2σ2
x0

)
ε0, (1)

where ε0 = σ2
x0/β is an initial transverse emittance with an initial RMS beam size σx0. The

amplitude āε of the beam deviation due to the injection error is

āε = Δr̄0 =
√

(Δx̄0)2 + (βΔx̄′
0 + αΔx̄0)2,
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where Δx̄0 is an initial displacement injection error; Δx̄′
0 is an initial angular injection error;

β and α are the optic Twiss parameters at the injection point. It is assumed in (1) that all
particles of the injected beam with the emittance ε0 are being redistributed on the phase space
and ˇll out after a long time the larger phase space, which corresponds to emittance ε, due to
the decoherence only (Fig. 1). Other effects such as an active damping of coherent oscillations
or a transverse instability of a beam are not taken into account in Eq. (1).

Fig. 1. Injected emittance ε0 dilution to ε due to error Δr̄0

The damper kicker (DK) of a transverse feedback system (TFS) corrects the beam trans-
verse momentum in accordance with the beam displacement from the closed orbit at the
location of the beam position monitor (BPM). Hence, the feedback system leads to a steady
decrease of the coherent amplitude, and the emittance blow-up does not happen without the
decoherence. However, with the presence of the decoherence, the coherent amplitude de-
creases in time, and the displacement of the centre of gravity which is measured by the BPM
at every turn has a smaller magnitude than without the decoherence. Therefore, the effect of
the decoherence can produce the emittance blow-up despite the active damping of the coherent
oscillations by the transverse damper.

The emittance blow-up in case of a classical linear transverse damping system was dis-
cussed in [2]. A more general approach that includes effects of transverse coherent instabilities
and nonlinear damping of coherent transverse oscillations is described below.

1. BASIC EQUATIONS AND DEFINITIONS

The amplitude ā(t) of transverse coherent oscillations of a beam decreases in time due to
decoherence with the time constant τdec and satisˇes the differential equation

dā(t)
dt

= − ā(t)
τdec

(2)

with the starting condition ā(t = 0) = Δr0. The term ā(t) describes the dependence of the
amplitude of the oscillations of the beam centre of gravity on time due to the ˇlamentation that
leads to redistribution of particles on phase space. At BPM it looks like a damped coherent
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oscillation. Hence, in presence of the decoherence effect only, the impact of the injection error
Δr̄0 to the emittance growth in time can be described by the function āε(t) = Δr̄0 − ā(t).
Therefore, the part āε(t) of the amplitude of transverse coherent oscillations ā(t) that goes to
the emittance blow-up due to decoherence satisˇes the differential equation

dāε(t)
dt

=
ā(t)
τdec

(3)

with the starting condition āε(t = 0) = 0. The differential Eq. (3) can be used for obtaining
a new dependence of āε(t) on time after including the active damping and instability effects
in dependence of ā(t) on time in the differential Eq. (2).

An action of a transverse feedback system can be taken into account in (2) by including an
additional term dād(t)/dt, which corresponds to the decrease in the amplitude of oscillation
of the beam centre of gravity. A transverse instability with the time constant of growth τinst

leads to an additional positive term ā(t)/τinst. Therefore, the differential equation for the
amplitude ā(t) is given by

dā(t)
dt

= − ā(t)
τdec

+
dād(t)

dt
+

ā(t)
τinst

. (4)

Let us assume that the dependences ā(t) and āε(t) have been obtained from Eqs. (4) and
(3). The total amplitude not corrected by the active feedback in presence of the transverse
instability is the following:

lim
t→∞

āε(t) = FεΔr̄0, (5)

where Fε is the form factor. Its value determines the part of the initial error Δr0 that leads
to the emittance blow-up. So, Fε = 1 in presence of decoherence effect only and Fε < 1 in
case of an active damping. Therefore, the relative emittance blow-up can be expressed by the
formula

Δε

ε0
=

ε − ε0

ε0
=

(Δr̄0)2

2σ2
x0

F 2
ε . (6)

2. TRANSVERSE EMITTANCE BLOW-UP IN PRESENCE
OF FEEDBACK SYSTEMS

The term dād(t)/dt in (4) depends on the type of a feedback transfer function f(x̄):

g · f(x̄[n, sP ]) =
√

βP βKΔx̄′[n, sK ],

where g is the gain of the feedback loop; βP and βK are the transverse betatron amplitude
functions at the BPM and DK locations; x̄[n, sP ] is the displacement of the beam centre of
gravity at the BPM location sP , and Δx̄′[n, sK ] is the correction kick at the DK location sK

at the nth turn. So, the transfer function for the linear feedback system is given by

g · f(x̄) = gx̄,

and the derivative dād(t)/dt is expressed by the formula

dād(t)
dt

= − ā(t)
τd

. (7)
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Here the time constant of damping is given by

τd = 2Trev/g, (8)

where Trev is the revolution period of a particle in a synchrotron. Formula (8) corresponds
to the classical ideal transverse feedback system if the phase advance from BPM to DK is
equal to an odd number of π/2 rad. In that case, the best damping can be ensured by the
TFS, and the coherent transverse oscillations as well as the injection errors are damped if the
decrement of the oscillations exceeds the increment of the instability [3].

Several analytical expressions for dād(t)/dt in case of nonlinear feedback systems were
presented in [4]. So, for the feedback transfer function with a cubic term

g · f(x̄) = gx̄ + gg3x̄
3

the derivative dād(t)/dt in accordance with [4] for |g3|ā2 < 1 and g � 1 is

dād(t)
dt

= − ā(t)
τd

− 3g3

4
ā3(t)
τd

, (9)

where τd coincides with its deˇnition in (8).
2.1. Linear Feedback Systems. By substituting (7) in (4), the differential equation for the

amplitude ā(t) can be written as follows:

dā(t)
dt

= − ā(t)
τdec

− ā(t)
τd

+
ā(t)
τinst

= − ā(t)
τ

, (10)

where the time constant of decay τ

1
τ

=
1

τdec
+

1
τd

− 1
τinst

(11)

corresponds to the damped oscillation if τd < τinst � τdec. The solution of (10) is given by

ā(t) = Δr̄0 exp (−t/τ) , (12)

and the solution of Eq. (3) with ā(t) from (12) is

āε(t) =
τ

τdec

(
1 − exp

(
− t

τ

))
Δr0. (13)

Therefore, in accordance with (5), the form factor Fε for the total amplitude not corrected by
the active linear feedback in presence of the transverse instability is

Fε =
1

Δr0
lim

t→∞
āε(t) =

τ

τdec
=

(
1 +

τdec

τd
− τdec

τinst

)−1

. (14)

The emittance blow-up is given by

ε =

(
1 +

(Δr̄0)2

2σ2
x0

(
1 +

τdec

τd
− τdec

τinst

)−2
)

ε0. (15)
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If τinst = τd or τinst > τd → ∞, then (15) coincides with (1). If τinst → ∞, then (15)
coincides with the formula for the emittance blow-up presented in [2]:

ε =

(
1 +

(Δr̄0)2

2σ2
x0

(
1 +

τdec

τd

)−2
)

ε0. (16)

It is clear from (15) that a faster decoherence (a smaller magnitude of τdec) for the ˇxed
parameters τd and τinst leads to a larger emittance blow-up.

2.2. Nonlinear Feedback Systems. The differential equation for ā(t) in case of nonlinear
feedback systems with a cubic term, after substituting (9) in (4), takes the form

dā(t)
dt

= − ā(t)
τdec

− ā(t)
τd

− 3g3

4
ā3(t)
τd

+
ā(t)
τinst

= − ā(t)
τ

− 3g3

4
ā3(t)
τd

, (17)

where τ was already deˇned in (11). The solution of (17) is given by

ā(t) =
Δr0 exp (−t/τ)√

1 + ξ(1 − exp (−2t/τ))
, (18)

where

ξ =
3g3

4
τ

τd
(Δr0)2. (19)

After solving Eq. (3) for āε(t) with ā(t) from (18) and substituting āε(t) in (5), the form
factor Fε for the total amplitude not corrected by the active nonlinear feedback with cubic
term in presence of the transverse instability can be expressed by the formula

Fε =
1

Δr0
lim

t→∞
āε(t) =

τ

τdec

√
|ξ|

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin
(√

|ξ|
1 + ξ

)
, if g3 > 0;

ln
∣∣∣∣
√

|ξ|
1 + ξ

+
√

1 +
|ξ|

1 + ξ

∣∣∣∣ , if g3 < 0.

(20)

Dependences of the form factor Fε on instability increments for linear and nonlinear feedback
systems are shown in Fig. 2 in case of the LHC speciˇcations [5]. So, the emittance blow-up
is smaller for the nonlinear feedback system with a positive magnitude of g3 in the cubic term
than for the linear feedback system. It should be emphasized that the form factor Fε depends
strongly on the time damping constant τd. So, if excess of τd above τinst is a small value
(τd → τinst), then Fε → 1 and the initial injection error Δr0 leads to the emittance magnitude
as in presence of the decoherence process only with small in	uence of the transverse damper.
Therefore, the magnitude of Fε can be used as criteria for choosing the time damping constant
τd > τinst and the correction force in the damper kicker.

If |ξ| � 1, then Fε in (20) takes the simple form:

Fε =
τ

τdec

√
1 + ξ

.

Therefore, the form factor Fε depends on the magnitude of the injection error in case of
nonlinear feedback systems. Let us assume that coherent transverse amplitude distribution of
bunches after injection into a synchrotron is given by

āi(t = 0) =
(

1 + 0.05 sin
(

2π(i − 1)
Kb

))
ā1(t = 0), (21)
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Fig. 2. Dependence of Fε on τinst/Trev for τd/Trev = 40, τdec/Trev = 750, |g3|(Δr0)
2 = 0.2; g3 = 0

(solid curve), g3 > 0 (dotted curve), g3 < 0 (dashed curve)

Fig. 3. Relative emittance blow-up Δεi for different bunches i normalized to its magnitude Δε1 for
the ˇrst bunch. Drawing symbols and parameters of decay process are the same as in Fig. 2

where Kb is the number of bunches (1 � i � Kb). Due to the decoherence process, the
transformation from the initial coherent amplitudes āi to the incoherent oscillations is ob-
served. Data on relative emittance blow-up for the distribution function (21) with linear and
nonlinear transverse feedback systems are shown in Fig. 3. Dependences of Δεi/Δε1 on the
bunch's number i were calculated in accordance with (6) for Fε from (20) and (14). It is
clear from data in Fig. 2 that the ˇnal distribution of diameter growth of the bunch's cross
section after damping coincides with the initial distribution of injection errors in case of the
linear feedback. It should be noted that this rule is the global property of a linear system.
However, nonlinear damping changes the transverse distribution function of bunches. So, the
®smoothing¯ effect is observed in nonlinear regime with the positive cubic term g3 > 0 in
the feedback transfer function. In the other case of g3 < 0 the ®blow-up¯ effect is observed
for distribution of bunches.
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CONCLUSION

The description presented above for the emittance blow-up from beam injection errors
in synchrotrons with transverse feedback systems demonstrates the increase of the damping
decrement of the beam coherent oscillations and the decrease of the coherent transverse
amplitude spread of different bunches in case of the damper with a positive cubic term in the
feedback transfer function. It should be emphasized that this nonlinear regime is ensured by
the nonlinear transfer function in the feedback loop only. The TFS corrects the transverse
momentum of the bunch in the kicker in accordance with the bunch's displacement in the
beam position monitor at the previous moment of time. This resonance condition is provided
by electronics in the feedback loop. The beam position monitor and the damper kicker
operate as devices with linear characteristics. So, BPM measures the position of the centre
gravity of the bunch. Because of the linear characteristic of the BPM sensitivity, the position
measurement does not depend on the transverse size of the bunch. The electromagnetic ˇeld
in the damper kicker is the uniform one, and DK changes the transverse momentum of all
particles in the bunch's cross section independently of their magnitude. Therefore, BPM
and DK operate with a bunch like with a point particle. Digital electronics in feedback
loop of TFS allows modifying its linear characteristic by means of changing algorithms in
the digital signal processing unit. If the nonlinear transfer function in the feedback loop is
employed, then the coherent transverse amplitude distribution of bunches can be changed as
time proceeds. Therefore, experiments with nonlinear TFS give the unique opportunity for
studying nonlinear phenomena with macroobjects (bunches): the current value of the kicker's
force corresponds to the nonlinear phenomenon, but the in	uence on the particles of the bunch
in the kicker is the linear phenomenon because the electromagnetic ˇeld in the kicker is the
uniform ˇeld.

It should be noted that high order modes are excited in the nonlinear regime of TFS. So,
the cubic kick excites the third harmonic of oscillations whose magnitude is proportional to
ā3 [4]. It is clear from (18) that the nonlinear term g3 has no effect on the exponent terms
in ā at the ˇrst level of approximation. Hence, the third mode decreases faster than the ˇrst
one. However, the stability of a beam with a nonlinear feedback transfer function should be
further studied.

Concluding, it is necessary to emphasize that integration of traditional approaches for
devices with linear characteristics and digital computer technologies in feedback loops of
transverse dampers for obtaining nonlinear regimes opens new opportunities for research in
the ˇeld of accelerator physics.
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