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FACTORIZATION AND TRANSVERSE MOMENTUM
FOR TWO-HADRON PRODUCTION
IN INCLUSIVE e+e− ANNIHILATION

I. V. Anikin, O. V. Teryaev
Joint Institute for Nuclear Research, Dubna

We study factorization of processes involving two fragmentation functions in the case of very
small transverse momenta. We consider two-hadron production in inclusive e+e− annihilation and
demonstrate a new simple and illustrative method of factorization for such processes including leading-
order αS corrections.
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INTRODUCTION

The electronÄpositron annihilation process is one of the basic hard scattering processes
where the composite structure of hadrons is investigated. Especially, the two-hadron pro-
duction in inclusive e+e− annihilation (THPIA), i.e., the process in which two hadrons are
detected in the ˇnal state, attracts a lot of attention due to the possibility for both the experi-
mental and theoretical studies of several fragmentation functions, in particular, the chiral-odd
Collins functions [1Ä5]. Since available experimental data [2Ä4] correspond to substantially
different values of Q2, taking into account the evolution of fragmentation (in particular,
Collins) functions becomes an important theoretical task. In turn, the studies of evolution are
intimately correlated to the investigation of QCD factorization. However, it is well known
that the factorization theorems do not hold for an arbitrary kinematic regime. Indeed, if a
transverse momentum of the produced hadron is of the same order of magnitude as the large
photon virtuality, pT ∼ Q, the corresponding hadronic tensor can be factorized and expressed
in terms of the integrated fragmentation functions (see, for instance, a detailed analysis of
e+e− annihilation in [6]). Even if pT is much smaller than the large photon virtuality, but
on the other hand, is much bigger than the characteristic hadronic size, ΛQCD, factorization
of the e+e− annihilation cross section can still be proven with methods similar to those used
for semi-inclusive DIS or DrellÄYan processes [7Ä9]. However, the regime for which the
transverse momentum of produced hadron is of the order of ΛQCD faces a conceptual problem
how to identify the hard subprocess. Therefore, factorization becomes vague and requires a
special care [9].
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Factorization in THPIA, starting from the seminal paper [10], was only studied in the
collinear approximation (see also [11]). Besides, the procedure of integration over the trans-
verse virtual photon momentum (see [12]) was restricted to Born approximation.

Since the transverse momentum is of crucial importance for the Collins function, we
perform a detailed analysis of its role in THPIA. We use ideas of [13,14] where it was shown
that integration over the transverse momentum of a produced μ+μ− pair or a hadron in the
DrellÄYan process provides an effective propagator of a highly virtual photon and generates
the hard subprocess structure. This approach was recently generalized [15] to include the case
of the (weighted) transverse momentum average of semi-inclusive deep-inelastic scattering
(SIDIS) with transverse momentum dependent fragmentation functions.

In this paper, we develop these ideas further and present a new method of factorization
which may be applied for any two-current process. In particular, we demonstrate the applica-
tion of the method in the case of e+e− annihilation when two hadrons, belonging to different
back-to-back jets, are produced.

To demonstrate the method we are proposing, we consider, at the ˇrst stage, the simplest
case of the spin-independent k⊥-integrated fragmentation functions. We analyze contributions
up to leading-order αS corrections to the hard part to obtain the evolutions of the correspond-
ing fragmentation functions. Also, we brie	y outline a way to extend our approach for the
study of the Collins effects.

1. KINEMATICS

We consider the process e+(l1) + e−(l2) → H(P1) + H(P2) + X(PX) where positron
and electron carrying momenta l1 and l2, respectively, annihilate into a time-like photon with
momentum q = l1 + l2 for which q2 = Q2 is large. This time-like photon creates then two
outgoing hadrons with momenta Pi (i = 1, 2) (these hadrons belong to two distinct jets) and
an undetected bunch of hadrons with total momentum PX . For such kind of a process, it is
convenient to introduce two invariants

zi =
2Pi · q

Q2
(1)

which are analogous to the Bjorken variable. Note that the variables z1 and z2 are the energy
fractions of the detected hadrons in the e+e− center-of-mass system. They obey the following
constraint due to the energy conservation:

z1 + z2

2
< 1. (2)

Moreover, due to the momentum conservation there is a stronger constraint on z1 and z2:

z1 < 1, z2 < 1. (3)

Within this region, these variables can vary independently.
To perform the Sudakov decomposition, we choose two dimensionless light-cone basis

vectors:

n∗
μ =

(
1√
2
, 0T ,

1√
2

)
, nμ =

(
1√
2
, 0T , − 1√

2

)
, n∗ · n = 1. (4)
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In this paper, we choose the kinematics such that the photon and one of the hadrons have
purely longitudinal momenta, while the other hadron has both longitudinal and perpendicular
momenta:

P2μ =
z2Q√

2
n∗

μ +
M2

2

z2Q
√

2
nμ, qμ =

Q√
2
n∗

μ +
Q√
2
nμ,

(5)

P1μ =
z1Q√

2
nμ +

M2
1 + P⊥ 2

1

z1Q
√

2
n∗

μ + P⊥
1μ.

The leptonic momenta are

l1μ =
Q[1 − cos θ2]

2
√

2
n∗

μ +
Q[1 + cos θ2]

2
√

2
nμ + l⊥1μ, l⊥1μ =

(
Q

2
sin θ2, 0

)
;

(6)

l2μ =
Q[1 + cos θ2]

2
√

2
n∗

μ +
Q[1 − cos θ2]

2
√

2
nμ + l⊥2μ, l⊥2μ =

(
−Q

2
sin θ2, 0

)
,

where θ2 is the angle between P2 and l1. This frame is called the ®⊥¯-frame (or the
perpendicular frame) [12,16]. Below, we will omit terms of order M2/Q2. Such a kinematics
has advantage for analysis of the experimental situation, where the momentum of one of the
produced hadrons is measured.

In order to ensure that the two hadrons are in different jets, we introduce two different
variables [10]:

Z =
2P1 · q

Q2
≡ z1, U =

P1 · P2

P1 · q
. (7)

However, using Eq. (5), the difference between U and z2 is of the order of 1/Q2:

U = z2

[
1 + P⊥ 2

1 /(z2
1 Q2)

]−1
, (8)

and can be neglected in the leading-order approximation which we are considering in this
paper.

The perpendicular projection tensor is deˇned as usual:

g⊥μν = gμν − q̂μq̂ν + T̂μT̂ν , (9)

where the two normalized vectors q̂ and T̂ are constructed as

T̂μ =
Tμ

T
, Tμ = P2 μ − P2 · q

Q2
qμ, q̂μ =

qμ

Q
. (10)

For simplicity, we consider the unpolarized case. The differential cross section of the corre-
sponding e+e− annihilation is given by

dσ(e+e−) =
1

2 Q2

d3 P1

(2π)3 2E1

d3 P2

(2π)3 2E2
×

×
∑
X

∫
d3 PX

(2π)32EX
(2π)4 δ(4)(q − P1 − P2 − PX)

∣∣M(e+e−)
∣∣2 . (11)
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In terms of leptonic and hadronic tensors, we have

dσ(e+e−) =
α2

4Q6

d3P1

E1

d3P2

E2
LμνWμν , (12)

where the hadronic tensor Wμν is deˇned as

Wμν =
∑
X

∫
d3 PX

(2π)32EX
δ(4)(q − P1 − P2 − PX)×

× 〈0|Jμ(0)|P1, P2, PX〉〈P1, P2, PX |Jν(0)|0〉. (13)

We can rewrite the part of the phase space corresponding to the detected hadron with
momentum P1 as

d3P1

(2π)3 2E1
=

dz1

(2π)3 2z1
d2P1⊥. (14)

Because the leptonic tensor Lμν is independent of the hadronic momentum P1, it is useful to

introduce the averaged hadronic tensor, W(⊥)

μν ,

W(⊥)

μν =
∫

d2P1⊥ W(⊥)
μν . (15)

Finally, using (14) and (15), the cross section (12) can be presented as

E2
dσ(e+e−)

d3P2
=

α2

4Q6

dz1

z1
LμνW(⊥)

μν . (16)

Note that this averaging procedure produces the hard subprocess in the Born approximation.

2. FACTORIZATION PROCEDURE: BORN DIAGRAM

Let us now discuss factorization of hadronic tensors corresponding to the hadron produc-
tion in e+e− annihilation at low pT . In this case, as pointed out before, a serious conceptual
problem is known to be associated with the difˇculty to identify (or, in other words, to sep-
arate out) the hard subprocess. In [14], it was shown that in the case of DrellÄYan process
a suitable integration over the transverse momentum provides effectively the separation of
the hard subprocess. We extend this approach to the factorization of the e+e−-annihilation
hadronic tensor including leading-order αS corrections. Furthermore, the reproduction of
the well-known DGLAP evolution kernel for both the quark and anti-quark fragmentation
functions can be considered as a proof of longitudinal factorization.

First, we consider a simple Born diagram depicted in Fig. 1, a. The corresponding hadronic
tensor reads

Wμν =
∫

d4k1 d4k2 δ(4) (k1 + k2 − q) tr
[
γν Θ(k2) γμ Θ̄(k1)

]
+ (1 ↔ 2), (17)
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Fig. 1. Non-factorized (a) and factorized (b) Born diagrams

where the four-dimension δ function, representing the momentum conservation at the quark-
photon vertex, will be treated as the ®hard¯ part. The non-perturbative quark and anti-quark
correlation functions Θ(k2) and Θ̄(k1) are given by

Θα β(k2) =
∫

d4 ξ

(2π)4
eik2·ξ 〈0|ψα(ξ)|P2, PX2〉〈P2, PX2 |ψ̄β(0)|0〉,

(18)

Θ̄α β(k1) = −
∫

d4 η

(2π)4
e−ik1·η 〈0|ψ̄β(0)|P1, PX1〉〈P1, PX1 |ψα(η)|0〉,

where the underlined indices are the Dirac indices. The summation and integration over the
intermediate undetected states are implied. Note that owing to the delta function in (17)
the hadronic tensor cannot be expressed through the factorized k⊥-integrated fragmentation
functions. To express the corresponding correlation functions through the fragmentation
functions, we suggest a factorization scheme inspired by the EllisÄFurmanskiÄPetronzio (EFP)
approach [17]. We ˇrst consider the formal identical transformation:

d4k1 → d4k1 dz′1 δ

(
P−

1

k−
1

− z′1

)
= d4k1

dz′1
(z′1)2

δ

(
k1 · ñ∗ − 1

z′1

)
,

(19)

d4k2 → d4k2 dz′2 δ

(
P+

2

k+
2

− z′2

)
= d4k2

dz′2
(z′2)2

δ

(
k2 · ñ − 1

z′2

)
,

where the two vectors

ñ∗
μ =

n∗
μ

P1 · n∗ , ñμ =
nμ

P2 · n
(20)

have been introduced. Variables z′i may be interpreted as partonic fractions of the correspond-
ing momenta of produced hadrons.

As mentioned above, we treat the four-dimensional δ function as the hard part of the
corresponding tensor. This assumption will be justiˇed below. Our analysis is limited by the
study of the leading twist contributions. It means that we keep only the ˇrst terms of the
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expansion:

δ(4) (k1 + k2 − q) = δ(4)

(
P1 μ

z′1
+

P2 μ

z′2
− q

)
+ O(k⊥) 



 δ

(
P+

2

z′2
− q+

)
δ

(
P−

1

z′1
− q−

)
δ(2)

(
P⊥

1

z′1

)
. (21)

The hadronic tensor is now rewritten as

W(⊥)
μν =

∫
dz′1

(z′1)2
×

×
∫

dz′2
(z′2)2

δ

(
P+

2

z′2
− q+

)
δ

(
P−

1

z′1
− q−

)
δ(2)

(
P⊥

1

z′1

)
tr

[
γν Θ(z′2) γμΘ̄(z′1)

]
, (22)

where

Θ(z′2)
def=

∫
d4k2 δ

(
k2 · ñ − 1

z′2

)
Θ(k2), (23)

Θ̄(z′1)
def=

∫
d4k1 δ

(
k1 · ñ∗ − 1

z′1

)
Θ̄(k1). (24)

Since we study spin-independent fragmentation functions, we ˇrst have to project the correla-
tion functions (23) and (24) onto the corresponding Lorentz vector structures. Starting from
the quark correlator function, we write

Θ(z′2) =⇒ 1
4
tr [γαΘ(z′2)] γα. (25)

Using (18) and the integral representation of the δ function in (23), the vector projection of
the quark correlation function (see (25)) can be represented in terms of the spin-independent
fragmentation function as

1
4

∫
dλ2

2π
eiλ2/z′

2

∫
dξ+ dξ−d2ξ⊥ δ(λñ− − ξ−) δ(ξ+) δ(2)(ξ⊥)×

× tr [γα 〈0|ψ(ξ+, ξ−, ξ⊥)|P2, PX2〉〈P2, PX2 |ψ̄(0)|0〉] γα =
D(z′2)

z′2
P̂2. (26)

Here, the fragmentation function D(z′2) can also be written as

D(z′2) =
z′2

4(2π)

∫
dξ− eiP+

2 ξ−/z′
2 tr [γ+ 〈0|ψ(0, ξ−,0⊥)|P2, PX2〉〈P2, PX2 |ψ̄(0)|0〉], (27)

provided that the minus coordinate component ξ− is equal to λ2ñ
−. Note that this fragmen-

tation function obeys the momentum conservation sum rules [6, 16,18]:

∑
h, s

∫
dz z D(z) = 1. (28)
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In a similar manner, we project the anti-quark correlation function:

1
4
tr

[
γαΘ̄(z′1)

]
γα =

1
4

∫
dλ1

2π
e−iλ1/z′

1

∫
dη+ dη− d2η⊥ δ(λñ∗+ − η+) δ(η−) δ(2)(η⊥)×

× tr [γα 〈0|ψ̄(0)|P1, PX1 〉〈P1, PX1 |ψ(η+, η−, η⊥)|0〉] γα =
D̄(z′1)

z′1
P̂1. (29)

Taking into account Eqs. (25)Ä(29), we bring the hadronic tensor in the following form:

W(⊥)
μν =

∫
dz′1

(z′1)3
D̄(z′1)

∫
dz′2

(z′2)3
D(z′2)×

× δ

(
P−

1

z′1
− q−

)
δ

(
P+

2

z′2
− q+

)
δ(2)

(
P⊥

1

z′1

)
tr

[
γν P̂2γμP̂1

]
. (30)

Now, inserting P+
2 and P−

1 deˇned via the kinematical variables z2 and z1 (see (5)) and
calculating the trace in (30), we get

W(⊥)
μν = −4g⊥μν δ(2)(P⊥

1 )
[
z1

∫
dz′1 D̄(z′1)δ(z1 − z′1)

][
z2

∫
dz′2

(z′2)2
D(z′2)δ(z2 − z′2)

]
,

(31)

= −4g⊥μν δ(2)(P⊥
1 )

[
z1D̄(z1)

] [
D(z2)

z2

]
.

From (31), one can see that, though the hadronic tensor W(⊥)
μν has a formally factorized form,

it does not have much sense because of the two-dimensional δ function. To eliminate it,
we have to integrate over the perpendicular momentum or, in other words, to go over to the
averaged hadronic tensor (15),

W(⊥)

μν = −4g⊥μν

∫
d2P1⊥ δ(2)(P⊥

1 )
[
z1D̄(z1)

] [
D(z2)

z2

]
=

= −4g⊥μν

[
z1D̄(z1)

] [
D(z2)

z2

]
. (32)

On the other hand, as we will discuss below, integration over d2 P1⊥ will generate the
effective diagram depicted in Fig. 1, b. Indeed, after integration, one can represent the one-
dimensional δ function δ(z2 − z′2) as the imaginary part of the effective propagator:

δ(z2 − z′2) =⇒ �m
1

z2 − z′2
=⇒ �m

1
[q − P2/z′2]2

. (33)

The latter will reduce the diagram in Fig. 1, a to the diagram plotted in Fig. 1, b. Notice that the
appearance of this hard effective propagator justiˇes a posteriori the suggested generalization
of the EFP factorization scheme. Namely, the four-dimensional δ function should be treated
as the hard part, and the entering parton momenta should be replaced, at the leading twist
level, by their longitudinal parts.
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Let us now discuss the above-mentioned procedure from the viewpoint of the approach of
averaging given by

d2P1⊥ = 2z1

∫∫
d4P1δ(P 2

1 ) δ

(
2P1 · q

Q2
− z1

)
. (34)

Indeed, integrating over d4P1 with the four-dimensional δ functions (see (30)), one can
observe that the one-dimensional δ function which is responsible for the mass-shell condi-
tion goes to the δ function that can be understood as the imaginary part of some effective
®propagator¯ with large photon virtuality, i.e.,

δ(P 2
1 ) =⇒ δ([q − P2/z′2]

2) ∼ �m
1

[q − P2/z′2]2
. (35)

Diagrammatically, it corresponds to the case when the Born diagram transforms to the diagram
plotted in Fig. 1, b. The dashed line implies the effective propagator or the factorization link.
So, the averaged hadronic tensor can now be written in terms of the factorization link,

W(⊥)

μν =
∫

d2P1⊥W(⊥)
μν =

4g⊥μν

π

[
z1D̄(z1)

] [
z2

∫
dz′2

(z′2)2
D(z′2)�m

1
z2 − z′2

]
. (36)

The spuriously asymmetric form of (32) or (36) with respect to the interchanging of z1 and z2

emerges because of the integration over the momentum P1 of one of the produced hadrons.
Restoring the 	avour dependence omitted above and by inserting (32) into (16), we get

dσ(e+e−)
dz1dz2d cos θ2

=
3πα2

2Q2
(1 + cos2 θ2)

∑
a,ā

e2
aD̄a(z1)Da(z2), (37)

where the only remaining asymmetry is re	ected in the polar angle of the detected hadron.
After integration over θ2, the result becomes completely symmetric:∫

d cos θ2
dσ(e+e−)

dz1dz2d cos θ2
=

4πα2

Q4

∑
a,ā

e2
aD̄a(z1)Da(z2). (38)

Concluding this section, we would like to stress that the factorization of the Born diagram
can be implemented in a similar way as in the case of DrellÄYan process [12]. In this case,
we transform the two-dimensional integration d2P1⊥ in the phase space (see (14)) to the two-
dimensional integration over the photon transverse momentum d2qT using the well-known
relation: d2P1⊥ = z2

1d2qT [12]. However, the leptonic tensor Lμν depends not only on
Q2 but also on cos θ2. Therefore, factorization with the transformation to the integration
over d2qT does not allow for calculating the angular dependence of the corresponding cross
section.

3. FACTORIZATION PROCEDURE: LEADING-ORDER αS CORRECTIONS

Now we proceed with the analysis of leading αS corrections which are associated with
the diagrams that involve gluon emission. It is known that large logarithms appearing in this
case can be absorbed into the corresponding evolved fragmentation functions. We will pay a
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special attention to the terms with mass singularities which are extracted from the diagrams
with the emission of real gluons. The corresponding Feynman diagrams with αS corrections
are depicted in Fig. 2. The domain of integration over the loop momentum in each diagram is
in the region where the considered parton is collinear to either P1 or P2 momentum directions.
For the sake of deˇniteness, we assume that the hadron with momentum P2 belongs to the
quark jet, while the hadron with the momentum P1 to the anti-quark jet. The opposite situation
is trivially obtained by the interchange of the labels.

Fig. 2. Leading-order αS diagrams

3.1. Evolution of the Quark Fragmentation Function. To begin with, let us consider
evolution of the quark fragmentation function D(z). At the Born level, the quark which
decays into the detected hadron with the momentum P2 and a bunch of undetected hadrons
can emit a real gluon before and after interaction with the virtual photon. The diagram
depicted in Fig. 2, a corresponds to the interaction of quark with the virtual photon before
the emission of the real gluon. Choosing Feynman gauge for the gluon ˇelds, we write
the hadronic tensor corresponding to this diagram in the form resembling the Born diagram
tensor:

W(⊥), q
μν (Fig. 2, a) = g2CF

∫
d4k1 d4p δ(4) (k1 + p − q) tr

[
γνΘ̄(k1) γμΩ(p)

]
. (39)

However, instead of the quark correlator Θ(k2), we have here the modiˇed correlator Ω(p)
deˇned as

Ω(p) =
p̂

p2
γα

∫
d4k2

(2π)3
δ([p − k2]2)Θ(k2)γα

p̂

p2
. (40)
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In principle, factorization of (40) can be implemented in a similar way. However, in difference
with the Born diagram, the modiˇed tensor (40) in (39) is not completely soft because of the
p-dependence.

To factorize (39), let us ˇrst express the parton momenta in terms of the corresponding
fractions of the hadron momenta by means of the integral representation of unity. The
deˇnitions of the fractions for parton momenta k1 and k2 are the same as in (19), whereas
for the loop momentum p we write

d4p → d4p
d y′

(y′)2
δ

(
p · ñ − 1

y′

)
. (41)

The pure soft part of (40) is associated with the quark correlator function Θ(k2). At the
same time, the quark propagators and the δ function emerging from the imaginary part of the
gluon propagator have to be associated with the hard part of (40). Therefore, after expanding
the δ function in (40) about the momentum k2 around the direction deˇned by the hadron
momentum P2, we get for the correlator

Ω(p) =
p̂

p2
γα

∫
dz′2

(z′2)2
δ

(
p2 − 2p · P2

z′2

)
Θ(z′2)γα

p̂

p2
. (42)

From this tensor, which is the same as in the Born diagram, we single out the spin-independent
quark fragmentation function (see Eqs. (25) and (26)). Inserting the tensor (42) into the
hadronic tensor (39), we get

W(⊥), q
μν (Fig. 2, a) =

g2CF

4(2π)3

∫
dz′1

(z′1)2

∫
dy′

(y′)2
δ

(
P+

2

y′ − q+

)
δ

(
P−

1

z′1
− q−

)
×

× δ(2)

(
P1⊥
z′1

) ∫
dz′2

(z′2)2

∫
dp+

∫
d2 p⊥ δ

(
1
y′ −

p+

P+
2

)
p+ − P+

2 /z′2
p4
⊥(P+

2 /z′2)2
×

× tr
[
γνΘ̄(z′1) γμp̂ γαΘ(z′2) γα p̂

] ∣∣∣∣
p−∼1/Q

, (43)

where we decomposed again the four-dimensional δ function around the corresponding hadron
directions,

δ(4) (k1 + p − q) =⇒ δ

(
P+

2

y′ − q+

)
δ

(
P−

1

z′1
− q−

)
δ(2)

(
P1⊥
z′1

)
, (44)

and calculated the integral over dp− with the δ function coming from the imaginary part of
the gluon propagator which ˇxes the minus component of the loop momentum:

δ([p − k2]2) =⇒ 1
2[p+ − P+

2 /z′2]
δ

(
p− +

p2
⊥

2[p+ − P+
2 /z′2]

)
. (45)

We remind that p+ and P+
2 are large vectors. Therefore, as one can see from (45), the minus

component is thus suppressed as 1/Q and can be discarded in (43).
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In (43), we still have integration over the plus and perpendicular components of the
loop momentum. Just like in Fig. 2, a, the quark with momentum p emits a real gluon and
transforms into the quark with momentum k2. This means that

p+ = ξk+
2 , dp+ =

P+
2

z′2
dξ. (46)

Using (46) and calculating the corresponding integral and the trace in (39), we get the
following contribution of diagram 2, a to the hadronic tensor:

W(⊥), q
μν (Fig. 2, a) = −2g⊥μν

αS

π2
CF δ(2) (P1⊥)

[
z1D̄(z1)

]
×

×
[∫

dz′2
(z′2)2

D(z′2)
∫

dξ δ

(
ξ − z′2

z2

)
(1 − ξ)

∫
d2p⊥
p2
⊥

]
. (47)

As in the case of the Born diagram, one can show that the δ function δ(ξ − z′2/z2) in (47)
should be associated with the imaginary part of the hard effective propagator, see Fig. 3, a.
Note that similar arguments are valid for other diagrams needed for the study of the quark
fragmentation function evolution.

Fig. 3. Factorized leading-order αS diagrams

Integration over the two-component loop momentum pT should be implemented with the
lower limits deˇned by the infrared cut-off λ2 and the upper limit of Q2. Therefore, the
factor ln(Q2/λ2) which appears after this integration re	ects the collinear singularity.
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Turning back to the averaged hadronic tensor, we thus derive

W(⊥), q

μν (Fig. 2, a) =
∫

d2P1⊥ W(⊥)
μν =

= −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
z1D̄(z1)

] [∫
dz′2

(z′2)2
D(z′2)

(
1 − z′2

z2

)]
. (48)

The tensor (48) has a completely factorized form and corresponds to Fig. 3, a which plays a
role of a ladder diagram.

Diagram 2, b does not contribute to the terms containing the mass singularity. Indeed, the
hadronic tensor corresponding to such a diagram is given by

W(⊥), q
μν (Fig. 2, b) = g2CF

∫
d4k1 d4p δ(4) (k1 + p − q) tr

[
Θ̄(k1)Ωμν(k1, p)

]
, (49)

where

Ωμν(k1, p) = γα

∫
d4k2

(2π)3
δ([p − k2]2)

p̂ + k̂1 − k̂2

(p + k1 − k2)2
γμΘ(k2) γν

p̂ + k̂1 − k̂2

(p + k1 − k2)2
γα. (50)

In the same manner as before, one can see that, after integration over d p− with the δ function
originating from the gluon propagator, the denominator of (49) does not contain the term with
p2
⊥ that produces a mass singularity. As a result, this contribution can be discarded. It is

necessary to note that diagram 2, b effectively corresponds to diagram 3, b with the self-energy
insertion into the quark propagator.

Two diagrams presented in Fig. 2, c and d contribute to the hadronic tensor in the following
way:

W(⊥), q
μν (Fig. 2, c, d) = 2g2CF

∫
d4k1 d4p δ(4) (k1 + p − q) tr

[
γνΘ̄(k1)Ωμ(k1, p)

]
, (51)

where

Ωμ(k1, p) = γα

∫
d4k2

(2π)3
δ([p − k2]2)

p̂ + k̂1 − k̂2

(p + k1 − k2)2
γμΘ(k2) γα

p̂

p2
. (52)

In (51), the denominator contains the necessary power of p2
⊥ and we have to keep only

the zeroth order of p2
⊥ in the trace. Then, following the scheme outlined earlier for other

diagrams, we derive the following expressions for the hadronic tensor:

W(⊥), q
μν (Fig. 2, c, d) =

= −2g⊥μν

αS

π2
CF δ(2) (P1⊥)

[
z1D̄(z1)

] [∫
dz′2

(z′2)2
D(z′2)

2 z′2/z2

1 − z′2/z2

∫
d2 p⊥
p2
⊥

]
; (53)

and for the averaged hadronic tensor:

W(⊥), q

μν (Fig. 2, c, d) =

= −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
z1D̄(z1)

] [∫
dz′2

(z′2)2
D(z′2)

2 z′2/z2

1 − z′2/z2

]
. (54)
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Thus, we have all the ingredients for the derivation of the factorized hadronic tensor including
the αS corrections and mass singularities. Summing of Eqs. (47) and (53) together with the
contributions related to the virtual gluon emission gives

W(⊥), q

μν = −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
z1D̄(z1)

] [∫
dz′2

(z′2)2
D(z′2)

(
1 + (z′2/z2)2

1 − z′2/z2

)
+

]
. (55)

The factorization scale μF can be introduced by the standard decomposition: ln(Q2/λ2) =
ln(Q2/μ2

F ) + ln(μ2
F /λ2), where the ˇrst term should be combined with the hard part of the

corresponding hadronic tensor, whereas the second one with the soft part. If we choose
μ2

F = Q2, the sum of (55) with the contribution of the Born diagram (32) leads to the
following substitution for the quark fragmentation function:

D(z2) =⇒ D(z2) +
αS

2π
CF ln

(
Q2

λ2

) 1∫
z2

dy2

y2
D

(
z2

y2

) (
1 + y2

2

1 − y2

)
+

. (56)

As a result, the quark fragmentation function acquires Q2-dependence and satisˇes the DGLAP
evolution equation:

dD(z2)
d ln Q2

=

1∫
z2

dy2

y2
D

(
z2

y2

)
Vqq(y2), Vqq(y) =

αS

2π
CF

(
1 + y2

1 − y

)
+

. (57)

3.2. Evolution of the Anti-quark Fragmentation Function. We will now consider the
anti-quark fragmentation functions. The anti-quark sector in the fragmentation can be studied
similarly to the quark fragmentation function case. However, there are some minor differences
in comparison to the quark fragmentation function evolution. First of all, diagram 2, b will
now play a role of the ladder diagram. Let us write down the hadronic tensor corresponding
to this diagram:

W(⊥), q̄
μν (Fig. 2, b) = g2CF

∫
d4k2 d4m δ(4) (k2 + m − q) tr

[
γμΘ(k2) γνΩ̄(m)

]
, (58)

where

Ω̄(m) =
m̂

m2
γα

∫
d4k1

(2π)3
δ([m − k1]2) Θ̄(k1)γα

m̂

m2
. (59)

As in the case of the quark sector, we ˇrst introduce the deˇnition of the corresponding
parton fractions (see Eqs. (19) and (41)). Then, the corresponding δ functions have to be
decomposed in the directions deˇned by the hadron momenta. We obtain

δ(4) (k2 + m − q) =⇒ δ

(
m+ +

P+
2

z′2
− q+

)
δ

(
P−

1

y′ − q−
)

δ(2)

(
P⊥

1

y′

)
(60)

for the four-dimensional δ function which is responsible for the momentum conservation at
the local vertex:

δ([m − k1]2) =⇒ 1
2[m− − P−

1 /z′1]
δ

(
m+ +

m2
⊥

2[m− − P−
1 /z′1]

)
(61)
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for the δ function in the tensor (59). Integration over dm+ with δ function (61) ˇxes the plus
component of the loop momentum to be a small variable. As a result, m+ can be neglected
in the corresponding expressions.

Omitting the details, since all stages of calculations are exactly the same as for the quark
sector, below we write the expression for the averaged hadronic tensor corresponding to
Fig. 2, b:

W(⊥), q̄

μν (Fig. 2, b) =

= −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
D(z2)

z2

] [
z2
1

∫
dz′1

(z′1)2
D̄(z′1)

(
1 − z′1

z1

)]
. (62)

The next non-zero contribution comes from the diagrams presented in Fig. 2, c and d. These
diagrams give us the following expression:

W(⊥), q̄
μν (Fig. 2, c, d) = 2g2CF

∫
d4k2 d4m δ(4) (k2 + m − q) tr

[
Θ(k2) γνΩ̄μ(k2, m)

]
, (63)

where

Ω̄μ(k2, m) =
m̂

m2
γα

∫
d4k1

(2π)3
δ([m − k1]2) Θ̄(k1)γμ

m̂ − k̂1 + k̂2

(m − k1 + k2)2
γα. (64)

Calculating the tensor (63) in a way similar to the derivation of (51), we obtain the averaged
hadronic tensor:

W(⊥), q̄

μν (Fig. 2, c, d) =

= −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
D(z2)

z2

] [
z2
1

∫
dz′1

(z′1)2
D̄(z′1)

2z′1/z1

1 − z′1/z1

]
. (65)

Diagram 2, a in this case does not contribute to the evolution of the anti-quark fragmen-
tation function due to the same arguments as we presented for the quark sector discussing
diagram 2, b.

Thus, combining all the diagrams and adding the contributions from the virtual gluon
emissions, we get

W(⊥), q̄

μν = −2g⊥μν

αS

π
CF ln

(
Q2

λ2

) [
z2
1

∫
dz′1

(z′1)2
D̄(z′1)

(
1 + (z′1/z1)2

1 − z′1/z1

)
+

] [
D(z2)

z2

]
. (66)

Again, as for the quark case, the summation of the hadronic tensor (66) with the Born hadronic
tensor modiˇes the anti-quark fragmentation function:

D̄(z1) =⇒ D̄(z1) +
αS

2π
CF ln

(
Q2

λ2

) 1∫
z1

dy1

y1
D̄(z1/y1)

(
1 + y2

1

1 − y1

)
+

. (67)

As a result of this, the anti-quark fragmentation function becomes Q2-dependent and obeys the
DGLAP evolution equation (see (57)). Besides, the introduction of the hard effective propa-
gators as in the quark case leads to the factorized Feynman diagrams which are completely
analogous to the diagrams in Fig. 3.
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4. kT -DEPENDENT FUNCTIONS: BORN APPROXIMATION

In the preceding sections, we focused on the case of the spin-independent integrated
fragmentation functions which in a way was a test of our approach. Since we plan to extend
our approach to kT -unintegrated functions (in particular, Collins function) we discuss the Born
approximation of e+e− annihilation, involving both the Collins fragmentation function and
the spin-dependent fragmentation function. Namely, we consider the production of transverse
polarized quarkÄantiquark pair associated with σμν structures in the corresponding matrix
elements (see below).

More exactly, the nonperturbative blob (see, for example, Fig. 1), related to the detected
baryon, whose transverse polarization is correlated to the transverse polarization of the quark,
can be described by the spin-dependent fragmentation function. At the same time, in the
other blob, the transition of the transverse polarized antiquark with the intrinsic transverse
momentum into the unpolarized hadron is described by the Collins fragmentation function. In
the latter case, the mentioned transition is related to the azimuthal asymmetry distribution of
hadrons. Note that the symmetric case, with two similar fragmentation functions, has been well
studied from both the theoretical and experimental points of view [2,19Ä21]. The asymmetric
situation requires the simultaneous measurement of the meson azimuthal asymmetry in one
jet and baryon (say, Λ) polarization in another one. Such measurements may be performed
at BELLE1.

We use the coordinate (or the impact parameter) representation where the explicit deˇnition
of the transverse momentum is not necessary. In this case, the corresponding hadronic tensor
takes the form

ΔWμν =
∫

d4ξ

(2π)4
ei(q·ξ) tr

[
γμΘ̂(ξ)γν

ˆ̄Θ(ξ)
]
. (68)

Here, the spin-dependent fragmentation function has been deˇned in the coordinate space as

Θ̂1(ξ) ⇒ σαβγ5P
α
2 Sβ

1∫
0

dz′2
(z′2)2

e−i(P2·ξ)/z′
2H1 T (z′2), (69)

where S denotes the hadron transverse polarization, and the Collins function's analog in the
coordinate space is given [15] by

ˆ̄Θ2(ξ) ⇒ iMσαβPα
1 ξβ

1∫
0

dz′1
(z′1)2

e−i(P1·ξ)/z′
1H̄⊥

1 (z′1),

(70)

H̄⊥
1 (z′1) =

∫
dk2

T

k2
T

M2
H̄⊥

1 (z′1, k
2
T ),

where ξ is the (transverse) position in coordinate space; while M , introduced due to the
dimensional analysis, implies a parameter of the order of jet mass being the only dimensionful
parameter in the soft part.

1M. Grosse Perdekamp, private communication.
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The position in the coordinate space ξ (see, (70)) yields the derivative over P1 in momen-
tum space. Therefore, inserting (69) and (70) in (68), we get

ΔWμν =
∫

dz′1
z′1

∫
dz′2

(z′2)2

{
∂

∂P−
1

δ(q− − P−
1

z′1
)
}
×

× δ

(
q+ − P+

2

z′2

)
δ(2)

(
P⊥

1

z′1

)
H̄⊥

1 (z′1)H1 T (z′2)Tμν(P1, P2, ST ), (71)

where

Tμν(P1, P2, ST ) = tr
[
γμ(iMσ+−P−

1 )γν(σ−T γ5P
+
2 ST )

]
. (72)

Using the kinematics deˇned above, we derive

ΔWμν = Tμνδ(2)(P⊥
1 )

[∫
dz′1

(
z′1H̄

⊥
1 (z′1)

)
δ(1)(z′1 − z1)

][∫
dz′2
z′2

H1 T (z′2)δ(z
′
2 − z2)

]
. (73)

Then, calculating the averaged hadronic tensor, one has the following:

ΔWμν =
∫

d2 P1⊥ δ(2)(P⊥
1 )ΔWμν = Tμν

[
z1H̄

⊥
1 (z1)

]′[
H1 T (z2)

z2

]
. (74)

Note that the analogous asymmetric combination corresponding to SIDIS process related
to ours by crossing was also considered in [15]. In that case, the incoming quark in SIDIS is
described by the transversity distribution function:

ĥ(η) = σμνγ5P
μ
1 Sν

1∫
0

dx eix(P1·η)h(x), (75)

where Sμ is the target polarization. Using (4) and (75), the corresponding hadronic tensor
takes the form

ΔWμν =
∫

d4ξ

(2π)4
e−i(q·ξ) tr [ĥ(ξ)γμĤ(ξ)γν ]. (76)

To study the kT (or P2⊥) distributions in SIDIS and the related asymmetries, we should
consider the weighted hadronic tensor which projects out the corresponding moment of the
Collins function:

ΔnW
μν

=
∫

d4P2δ(P 2
2 )(P2 · n⊥)δ

(
P1 · P2

P1 · q
− z

)
ΔWμν , (77)

where n⊥ is the unit transverse 4-vector (n⊥ · P1 = n⊥ · q = 0, n2
⊥ = −1) which deˇnes the

transverse direction. Using (4), (75) and (77), one can see that the derivative ∂α ≡ ∂/∂Pα
2

in

ΔnW
μν

= iM

∫
d4P2 (P2 · n⊥) δ(P 2

2 ) δ

(
P1 · P2

P1 · q
− z

)
×

×
∫

dx dz′∂αδ

(
xP1 + q − P2

z′

)
h(x)(z′I(z′))tr [γ5P̂1Ŝγμ[P̂2γα]γν ] (78)
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should act only on (P2 ·n⊥), so that the result [15] is equal to the standard expression for the
contribution of Collins function, except that the role of the direction of intrinsic transverse
momentum is played by the auxiliary transverse vector n⊥:

tr [p̂1Ŝγ5γ
μp̂3n̂⊥γν ] =⇒ tr [p̂1Ŝγ5γ

μp̂3k̂T γν ]. (79)

This substitution does not change the azimuthal dependence, as the weighted integration
corresponds to azimuthal average:

〈dσ(φh) cos(φh − φn)〉 = cosφn〈dσ(φh) cos(φh)〉 + sin φn〈dσ(φh) sin(φh)〉. (80)

As a result, the azimuthal dependence of the cross section is transferred to the dependence on
the angle φn, and I(z) corresponds to the moment of the Collins function:

I(z) ∼
∫

dk2
T

k2
T

M2
H1(z, k2

T ). (81)

Thus, to describe the Collins effect we suggest the kT -dependent fragmentation function
to be written in the coordinate space, where no speciˇcation of intrinsic kT is required.
Therefore, the calculation of radiation corrections and evolution may be performed [?] in the
same way as in this paper.

Moreover, this approach may be applied [15] for the description of higher weighted mo-
ments in kT and pT . Say, choosing the term of order ξ2 in the expansion of unpolarized
fragmentation function in the coordinate space and taking the pT moment of the hadronic
tensor weighted with p2

T corresponds to the account of the width of the kT -dependent unpo-
larized fragmentation function. The exponential shape of the latter, in turn, corresponds to
partial resummation [15] of the inˇnite series of higher twists, analogous to that leading to the
appearance of non-local vacuum condensates, when vacuum rather than hadronic averages are
considered. The expansion in coordinate space accompanied by taking the respective weighted
moments of cross sections provides a complementary deˇnition of observables, accounting
for the shape of kT -dependent fragmentation (and distribution) functions.

CONCLUSIONS

We described a method which allows us to prove a factorization of the process with two
fragmentation functions. We would like to point out that the presented method can be applied
for any two-current process. The difˇculties of factorization for such kind of processes emerge
for the case when the kinematical transversalities inside the hadron are rather small. It leads
to the problem in the deˇnition of what is the hard subprocess for the process.

Following the idea of the paper [14], we showed that the corresponding δ functions in the
hadronic tensors should be treated as the hard parts. It is based on the observation that these
δ functions can be associated with the imaginary parts of the effective propagators related
to the well-deˇned hard subprocess. As a result, we ˇnally have the completely factorized
expression for the hadronic tensor with the evolved fragmentation functions.

In this paper, the proposed method has been tested in the simplest case when the differential
cross section of e+e− annihilation is related to the spin-independent integrated fragmentation
functions. In a future work, we will extend our approach to the study of the spin-dependent
structures and kT -dependent fragmentation functions (in particular, Collins function) [?]. This
will allow us to perform the leading-order QCD ˇts of relevant experimental data.
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