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Effective Lagrangian for Yang—Mills gauge fields invariant under the standard space-time and local
gauge SU(3) transformations is considered. It is demonstrated that a set of twelve degenerated minima
exists as soon as a nonzero gluon condensate is postulated. The minima are connected to each other by
the parity transformations and Weyl group transformations associated with the color su(3) algebra. The
presence of degenerated discrete minima in the effective potential leads to the solutions of the effective
Euclidean equations of motion in the form of the kink-like gauge field configurations interpolating
between different minima. Spectrum of charged scalar field in the kink background is discussed.

®DopMHpOB HHE KHHKOMOMOOHBIX K JMOPOBOYHBIX ITOJIEH P CCMOTPEHO B MOJIENH, OCHOB HHOH H
3(h(heKTUBHOM J1 TP HXH HE, UHB DU HTHOM OTHOCUTENIBHO CT HJ PTHBIX NMPOCTP HCTBEHHO-BPEMEHHBIX
1 SU(3) x mubpoBoYHBIX MPeobp 30B HUiA. [I0K 3 HO, YTO HEHYIEBOIH IIMIOOHHBIA KOHAEHC T BEIET K
MOSBJICHHIO H 60D U3 JIBEH ALl TH BBIPOXKICHHBIX MUHUMYMOB 3(heKTHBHOTO MOTEHLH 1 . MUHUMYyMBI
CBSI3 HBI MeXxay co0O0i mpeoOp 30B HHSIMH YETHOCTH W CCOLMHMPOB HHOM ¢ nreOpoil su(3) rpymmbl
Beiing. BripoxaeHHbIE TUCKpEeTHbIE 1100 JIbHbIE MUHAMYMBI TIOTEHIM JI O3H 4 0T CYLIECTBOB HHE pe-
HIeHUH yp BHEHUH IBUXEHHd B (hopMe KUHK , MHTEPHOJIUPYIOIETO MEXIYy P 3MHYHBIMU MUHHMYM MU
ahpeKTUBHOrO MOTEHIM JI . [l H OLEHK CIHEKTp 3 PAXKEHHOIO CK JIIPHOIO HOJI4 B MPUCYTCTBUU KHH-
KOMOZOOHOro K JTMOPOBOYHOIO ITOJIS.

PACS: 12.38.Aw; 12.38.Lg; 14.70.Dj

INTRODUCTION

The purpose of the paper is to expose potentially interesting relation of the Weyl group
associated with the color gauge SU(3) symmetry to the structure of QCD vacuum. At the
level of classical Yang—Mills Lagrangian the Weyl group symmetry is trivial. However, the
vacuum structure of QCD is determined by quantum effects. The standard way to discuss the
vacuum structure of the theory in terms of effective quantum action relates to the Landau—
Ginsburg type construction based on the symmetries of the theory.

We consider the Landau—Ginsburg Lagrangian for pure Yang—Mills gauge fields invariant
under the standard space-time and local gauge SU(3) transformations. It is demonstrated
that a set of twelve degenerated minima of the action density exists as soon as a nonzero
gluon condensate is postulated in the action. The minima are connected to each other by the
Weyl group transformations associated with the color su(3) algebra and parity transformation.
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The presence of degenerated discrete minima in the Lagrangian leads to the solutions of the
effective equations of motion in the form of the kink-like gauge field configurations interpo-
lating between different minima. As an example we write down the simplest solution which
interpolates between self-dual and anti-self-dual Abelian homogeneous fields and consider the
spectrum of covariant derivative squared D? in the presence of this kink background field.
The kink configuration is seen here as a domain wall separating the regions with almost
self-dual and anti-self-dual Abelian gauge fields. It should be stressed that consideration itself
and the results of this paper can be seen as instructive but very preliminary ones.

1. MOTIVATION

There are several observations and phenomenological estimates which can be considered
as a qualitative motivation for introducing the effective action to be discussed in the next
section.

The Weyl group associated with SU(N) gauge theory can be conveniently exposed in
terms of representation of the gauge fields suggested in a series of papers by Y.M. Cho [1],
S. Shabanov [3,4], L. D. Faddeev and A.J. Niemi [5] and, recently, by K.-I. Kondo [6]. In this
parameterization the Abelian part V,,(z) of the gauge field A, (x) is separated manifestly,

Au(x) = ( )+ Xpu(@), Vulz) = Bu(x) + éﬂ(x)v

B(w) = (" A (@)l) = By (w)i(e). o
Culx) = 13 (@) x i(x),

Xu(@) = g7 "a(w) x (Oui(x) + gAu (@) x 7)),

where A, (z) = A (2)t?, n(z) = ng(z)t?, nn® =1, and

Ouin x 1 = i fb9,mnbte, [t 1°] = i fabere.

The field V, is seen as the Abelian field in the sense that [V}, (z), V, (x)] = 0.

The comprehensive analysis of the RG-improved one-loop effective action for the Abelian
component B#(x) with the constant n® and the covariantly constant (anti-)self-dual field
B, = —(1/2)Byaxq was given a long time ago by Minkowski [7], Pagels and Tomboulis [8],
and Leutwyler [9]. The analysis based on the trace anomaly of the energy-momentum tensor
and renormalization group leads to the following form of the effective potential for the SU (2)

gauge group [8]:
RG _ p2
VI = B | e ?

Here constant B is defined as B,oByo = BQ(SW. For the strong field B >> A this expression
agrees with the result of the explicit one-loop calculation [9]

1—loop __
Ueff -

BQ{ 11, AB

nos o+ eo} : 3)

Equation (2) indicates that the effective potential can have a minimum for nonzero strength B
only for the negative value of the parameter 9. This parameter can be treated as the dielectric
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constant as g — oo. One-loop result (3) displays the strong field asymptotics B2 In (B/A?)
of the effective Lagrangian and, hence, its boundedness from below. In both calculations the
constant ¢¢ is a free parameter. Some knowledge about the sign of ¢ could be obtained from
the lattice calculations. A minimum of the effective Lagrangian at nonzero field strength was
reported in [10]. However, the most interesting region of small field strength is the most
difficult one for the lattice calculation, and, as the authors of [10] stressed, this result should be
taken into account with great care. Existence of nonzero gluon condensate can be considered
as a general phenomenological argument in favor of nonzero value of the field strength at the
minimum of the QCD effective action and, hence, the negative value of ¢y. Certainly, the
ordered state corresponding to a plain constant field cannot be considered as an appropriate
approximation for QCD vacuum as it breaks all the symmetries of QCD at once. Required
disorder in the mean field could be provided by an ensemble of gauge field configurations
with the strength being constant almost everywhere but changing directions in space and
color space as well as self- and anti-self-duality in small regions of space-time reminiscent
of the domain walls. Phenomenological model of confinement, chiral symmetry breaking and
hadronization based on the ensemble of Abelian (anti)-self-dual fields was developed in a
series of papers [11-13]. The dominance of the domain structured gauge field configurations
has been observed in the recent lattice calculations [14—18]. In paper [16] an effective model
of SU(2) gauge theory for the domain wall formation was considered. The center symmetry
realization in lattice version of QCD is in the focus of these studies. In this paper, we consider
the effective Lagrangian which displays another model for the domain wall formation based
on C'P and the Weyl symmetry breakdown triggered by the trace anomaly or, equivalently,
the nonzero gluon condensate.

2. EFFECTIVE LAGRANGIAN

Consider the following effective Lagrangian for the gauge fields satisfying the requirements
of invariance under the gauge group SU(3) and space-time transformations:

1 ab b ac e ab b ac e
Legt = 4 (DY F,, Dy Fy, + D F,, DEFL,) — Uesr,
4)
1 ro 4 pa 16 g
Uett = 15Tt (CIF +3GF - SGF ) :
where
Db = 590, — A% = 8, — i AS,(T°)",
Fl, = 0,45 = O, Af, +if " A} A5,
F;w = F;VTav Tl;lc = _ifabc
12\ __ frabpba a a
Te(F°) = F F,, = —3F;, F, <0,

Cl>07 CQ>0, C3 > 0.

The gauge coupling constant is absorbed into the gauge field, gA,, — A,. The signs of the
constants C1, Cy and Cs are chosen in such a way that the effective Lagrangian is bounded
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from below and has a minimum at nonzero value of the field strength squared:

Mo 2 - VOBH30iCs—Cy

vac ~ 3 C3

F}:IZIF;LLV = 4b3ac
In terms of Eq. (2) the choice of sign of C'; corresponds to the negative €y. The Lagrangian (4)
contains the lowest-order covariant derivatives and the effective potential which has a polyno-
mial in F? form. Thus, the field Tr F'2 plays the role of the order parameter. The presence of
the term F is of the crucial importance since the Weyl group becomes manifest only in this
and higher orders in field strength. Further increase in the polynomial order in (4) does not
change qualitatively the character of the Weyl group realization. The form of the effective
Lagrangian (4) is not the most general one. Our aim is to study an instructive example rather
than to deal with the full problem in all its complexity. Namely, let us consider a set of fields
A, with the Abelian field strength of the following form:

F = 2By,,
where matrix 7 is an element of Cartan subalgebra in the adjoint representation
f=T3cos (&) +T®sin (£), 0< &< 2.

For ¢ = const this field corresponds to the Abelian part Bu(x) of the gauge field in the
representation (1). It is convenient to introduce the following notation:

. nB,.
buy = nAg = Mbuyys  bubuy = 4b\2fac’

1
e; = by, hy = §5ijkbjka (eh) = [e[ [h[ cos w,

(eh)? = h?(2b?

vac

e? 4+ h? =2p?

vac’

—h?) cos® w.
With this notation one arrives at the following formulae for traces:

Trb? = —12b2

A 1
Trb* =18 (béac - §(eh)2> ,
Trb® = —3b2, (10 + cos 6¢) (bf,ac - %(eh)2> .
Respectively, the effective potential takes the form

U = A* | =102

vac

+ (202

b = (6h)2) 4 ot (10-+ cos 6€) (b — 3(e)?)| . (5
The potential (5) is invariant under transformations £ — & + wk/3, k = 1,...,6, which
can be seen as specific rotations of 7 in Cartan subalgebra. These transformations lead
to permutations of the eigenvalues of 7 and, hence, do not change the traces of 7*. The
permutations correspond to the Weyl group associated with su(3) algebra, i.e., the group
of reflections of the roots of su(3). The effective potential is invariant with respect to
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parity transformation which results in the degeneracy of the self- and anti-self-dual fields
corresponding to w = 0, 7. Altogether there are twelve discrete global degenerated minima at
the following values of the variables h, w and &:

_T
"6

It should be stressed here that we have postulated in (4) the minimum at nonzero value of the
scalar gauge invariant field F}j, F}, equivalent to the existence of nonzero gluon condensate,
but the set of minima in w and & appeared as a consequence of the space-time and local
gauge symmetries of the effective Lagrangian (4). Inclusion of higher powers of F does
not change this picture qualitatively, but the presence of the term o(F°) is crucial since
dependence on ¢ appears starting the 6th order in F'. The minimum of the effective potential
in £ is achieved for the values &, corresponding to the boundaries of the Weyl chambers in
the root space of su(3). Existence of the degenerated minima in the effective action related
to the Weyl group was reported earlier in [12] and, in the context of the one-loop effective
potential of SU(N) gauge theory, in [2]. A mechanism of gauge field localization on a
domain wall within the framework of one-loop effective action for pure Yang—Mills theory
was presented in [19].

h? =02.>0, w=7nk (k=0,1), ¢ (2n+1) (n=0,...,5). (6)

3. KINK-LIKE CONFIGURATIONS

It is well known that the presence of the discrete global vacua in a system leads to the
existence of kink-like solutions of the equations of motion. These solutions describe field
configurations interpolating between different vacua and can be treated as the domain walls
between regions in R* with particular constant values of the parameters w and ¢ from the
set (6). In order to exemplify this statement, let us write down Lagrangian in terms of the
fields £(x), w(x) and h(zx).

Suppose e?(x) = h?(x) = b2, .. Then we have

6Ueff - Ueff - emffm -

=0t A |(Cy 4 30302

vac vac

1
) sin? w + 5031)‘2,30(10 + cos 6£)(1 + 3sin*w)| ,

1. . N
101 0utpe = = (0,hd,h + d,ed, e + 2b2,.0,£0,8) -

Here U™ is the minimal value of the effective potential corresponding to the constant values
of h, w and & given in (6).

In order to separate the relevant variable w from other degrees of freedom of e and h, it
is convenient to represent the electric field as

ei(r) = Oij()h; (z),
0i; = ;5 cos w(x) + m;(z)m;(x)(1 — cos w(x)) + e4jmi(x) sin w(z),
where O is a local rotation about unit vector m orthogonal to h,
_r
b2, sin 0(x)

vac

mi(x) = (02,055 — hi(x)hj(z))v;.
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Here 6 is azimuthal angle of h with respect to v, and v is a constant unit vector. We will
take

o bvac(si3 — ]’Ll cos 0

o byac sin 0

vi = biz, ™My
After some algebraic transformations the Lagrangian density L.g takes the form

1 .59 9 sin? w
Leff = —§A bvac 28H£8H§ + @Lcuauw + { cos”w + —29 8#9(9#94-
S11

+ sin® (1 + cos® w)0,. 0, + 2 cos® wsin 09,wd,p — sin 2w cos 6 9,,00,¢) —

vac

1
— bt A* ((CQ + 3C3b2,.) sin” w + §Cgb2 (10 4 cos 6£)(1 + 3sin? w)) .
Let cos (6£) = —1, 8 = const and ¢ = const, then

vac vac

1
Legg = _§A2biaca#wauw — bl At (Co + 30302, ) sin® w,

and the Euler—Lagrange equation

2sin2w, m2 = b2, A% (Cs + 3C5b2,.) -

vac

Fw=m

Let us look for solutions w which depend only on one of the coordinates, say x1. Equation (7)
takes the form of sine-Gordon equation

W (x1) = m? sin 2w(x1),

with kink solution

w = 2arctan (exp (\/imwm)) . (7)

According to Eq.(7), the angle between chromoelectric and chromomagnetic fields w(x1)
varies from 7 to 0 for x; € [—00,00]. It corresponds to the change from anti-self-dual to
self-dual gauge field configuration, as is shown in the figure.

l—-—————= -~ SO\
N .
| N
\ \
/ .
SN :
0.5 S \x
i L \ \
e \ o
04—~ \ =
\
p (33 \
\
~0.5- - \
\
R ——- \
AN
-1 .

-04 —02 0 0.2 0.4 MyXy

The gauge field flips from the anti-self-dual at m,x1 < —1 to self-dual at m 21 > 1 configuration:
h3 = byac COS w, ha = byac sin w, €; = 0;3bvac. Here byac = 1, my, = 10A
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Similarly, if sin(w) = 0, § = const and ¢ = const, then

1
%€ = —Emg sin 6€, mg = 2C5A?p?

vac’

with the solution

1 k
&(xr) = 3 arctan [sinh (mez1)] + %,
interpolating between two consequent vacuum values of £ in (6) associated with the boundaries
of the kth Weyl chamber.

4. SPECTRUM OF THE CHARGED FIELD IN THE KINK-LIKE BACKGROUND

In this section, we estimate the change in the spectrum of color charged scalar field caused
by the kink-like defect in w in comparison with the spectrum in the presence of confining
(anti-)self-dual purely homogeneous Abelian background. Here we consider the infinitely thin
domain wall for w which corresponds to m, > A in Eq.(7). Since the kink interpolates
between the C'P conjugated vacua and some particular vacuum value of angle &, it is sufficient
to consider the eigenvalue problem

—(0y — iBu(2))*¢ = Ao (8)

In the case of infinitely thin wall, the field Bu(x) is self-dual for x1 < 0, anti-self-dual for
1 > 0, but inside the domain wall (at ; = 0), electric and magnetic fields are orthogonal to
each other.

Inside the domain bulk, vector potential can be represented as the homogeneous self- or
anti-self-dual field

B,U.(x) = B/wxua B/w = :tB/w’ B/LQBL/Q = B25;Ll/a B = A2bvac~

Square integrable solution is well known in this case. The following field strength configura-
tion can be chosen without loss of generality:

H1 :]‘12:07 }I:;ZZFQB7 E1:E2:0, E3=—QB.

Equation (8) is equivalent to

A

= E(év

[BE8: +vive +1] ¢

where creation and annihilation operators B+, 3%, v+, 7f are expressed in terms of the
operators at, a:

1 ) 1 ) 1

ft = 5(041 Fiag), Y+ = 5(013 Fios), au= \/—F(Bx“ + ),
) 1 . 1

ﬁi = —(af :I:za;), W’I =3 (a; :I:za;f) , a: = —B(Bxu — Op)-
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Here «4» indicates the self-dual and anti-self-dual configurations. The eigenvalues and the
square integrable eigenfunctions are

1 n m —-1Ba?
Prmpi () = m(ﬁi)k(ﬁf)l(ﬁ) (Y™ o000 (),  Poooo(z) = e~ 25T ©
A =4B(r 4+ 1),

where r = k+n for self-dual field, » = [ +n for anti-self-dual field. The spectrum is discrete.
At the domain wall the eigenfunctions are continuous. There is an infinite degeneracy of the
eigenvalues.

Inside the domain wall (x; = 0), vector potential can be chosen as

BQ = 0, Bl = QBxg, Bg = 0, B4 = QBxg (.FIz = 235i2, .Ez = —2352‘3).

Charged field displays continuous spectrum similar to Landau levels. Square integrable over
z3 eigenfunctions take the form

On = exp (—ipaTy — IP2T2)Xn, (10)

where functions

vt = o {288 (s )bt (21093 (4 5)

are solutions of the eigenvalue problem

[p3 — 03 + (pa + 2Bx3)* + 4B%13] xn = AnXns

with the eigenvalues

2 2
An 2,2:2\/§B<2n+1+ L +p—4>.

The character of charged field modes is qualitatively different in the domain bulk (self-dual
field) and inside the domain wall (crossed electric and magnetic fields), which illustrates the
character of the problem to be solved to obtain a continuous common solution for the domain
bulk and wall for the case of the finite width of the kink. The form of the eigenfunctions (9)
indicates charge field confinement in the bulk and the presence of «plain wave» solutions
inside the wall.

CONCLUSIONS

In terms of the effective Lagrangian we investigated manifestations of C'P and the Weyl
group associated with the SU(3) gauge theory. It is shown that the requirement of nonzero
gluon condensate leads to the existence of a set of degenerated minima and, as a consequence,
triggers the kink-like gauge field configurations interpolating between different minima. The
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spectrum of a charged scalar field in the background of the kink-like fields was estimated.
The bound state form of the eigenfunctions (9) indicates confinement of charged field inside
domain, while the «plain wave» eigenmodes (10) exist inside the wall. The eigenfunction
properties and the propagator of a charged field in the kink background have to be studied
in detail for the case of finite width of the kink. It is important to investigate the eigenvalue
problem for fermionic charged fields and the chiral symmetry realization in the kink-like
background.

The domain model of QCD vacuum developed in [11-13] is based on the ensemble of
the background gluon fields with the field strength being constant almost everywhere in R*.
The direction of the field in space and color space as well as duality of the field are random
parameters of the domains. All configurations of this type are summed up in the partition
function. The domain model exhibits confinement of static and dynamic quarks, spontaneous
breaking of the flavor chiral symmetry, Ua (1) symmetry is broken due to the axial anomaly,
strong C'P violation is absent in the model. The domain boundaries were introduced by
means of bag-like boundary conditions imposed on the gluon and quark fluctuation fields,
which made the model unbalanced and considerably complicated all calculations. Gauge
field configurations investigated in the present paper provide us with an interesting option for
parameterization of the domain structured ensemble of gluon fields.

Acknowledgements. We would like to thank G. Efimov, A.Isaev, A. Dorokhov, A. Khve-
delidze and N. Kochelev for discussions and valuable comments.

REFERENCES

1. Cho Y. M. // Phys. Rev. Lett. 1980. V.44. P.1115.
2. Cho Y. M., Kim J. H., Pak D.G. // Mod. Phys. Lett. A. 2006. V.21. P.2789.
3. Shabanov S.V. [/ J. Math. Phys. 2002. V.43. P.4127; hep-th/0202146.

4. Shabanov S.V. // Phys. Rep. 2000. V.326. P. 1; hep-th/0002043;
Shabanov S. V., Klauder J. R. // Phys. Lett. B. 1999. V.456. P.38;
Prokhorov L. V. [/ Yad. Fiz. 1982. V.35. P.229.

5. Faddeev L.D., Niemi A.J. // Nucl. Phys. B. 2007. V.776; Phys. Lett. B. 1999. V. 449. P.214.

6. Kondo K.-1., Shinohara T., Murakami T. // Prog. Theor. Phys. 2008. V.120. P. 1; hep-th/0803.0176.
7. Minkowski P. // Phys. Lett. B. 1978. V.76. P.439; Nucl. Phys. B. 1981. V.177. P.203.

8. Pagels H., Tomboulis E. // Nucl. Phys. B. 1978. V. 143. P.485.

9. Leutwyler H. // Phys. Lett. B. 1980. V.96. P. 154; Nucl. Phys. B. 1981. V.179. P. 129.

10. Trottier H. D., Woloshyn R. M. // Phys. Rev. Lett. 1993. V.70. P.2053.

11. Efimov G. V., Nedelko S.N. // Phys. Rev. D. 1995. V.51. P. 176;
Burdanov Ya. V. et. al. // Phys. Rev. D. 1996. V.54. P.4483.

12. Kalloniatis A. C., Nedelko S. N. // Phys. Rev. D. 2001. V. 64. P. 114025.



Weyl Group, CP and the Kink-Like Field Configurations in the Effective SU(3) Gauge Theory 127

13. Kalloniatis A. C., Nedelko S.N. // Phys. Rev. D. 2001. V.64. P.114025; 2002. V.66. P.074020;
2004. V.69. P.074029; Erratum // Ibid. V.70. P.119903; Phys. Rev. D. 2005. V.71. P.054002;
2006. V.73. P.034006.

14. Moran P.J., Leinweber D. B. hep-1at/0805.4246.

15. Moran P.J., Leinweber D. B. PoS LAT2007. 2007. V. 383; hep-1at/0710.2380.

16. de Forcrand Ph., Kurkela A., Vuorinen A. // Phys. Rev. D. 2008. V.77. P.125014.
17. de Forcrand P. // AIP Conf. Proc. 2007. V. 892. P.29; hep-1at/0611034.

18. Illgenfritz E. M. et al. PoS LAT2007. 2007. V.311; hep-lat]/0710.2607.

19. Kobakhidze A. hep-th/0807.4578. 2008.

Received on June 15, 2010.



