
�¨¸Ó³  ¢ �—�Ÿ. 2011. ’. 8, º2(165). ‘. 118Ä127

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

WEYL GROUP, CP AND
THE KINK-LIKE FIELD CONFIGURATIONS
IN THE EFFECTIVE SU(3) GAUGE THEORY

B. V. Galilo a, b, S. N. Nedelko a

a Joint Institute for Nuclear Research, Dubna
b Department of Theoretical Physics, International University for Nature, Society,

and Man ®Dubna¯, Dubna

Effective Lagrangian for YangÄMills gauge ˇelds invariant under the standard space-time and local
gauge SU(3) transformations is considered. It is demonstrated that a set of twelve degenerated minima
exists as soon as a nonzero gluon condensate is postulated. The minima are connected to each other by
the parity transformations and Weyl group transformations associated with the color su(3) algebra. The
presence of degenerated discrete minima in the effective potential leads to the solutions of the effective
Euclidean equations of motion in the form of the kink-like gauge ˇeld conˇgurations interpolating
between different minima. Spectrum of charged scalar ˇeld in the kink background is discussed.
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INTRODUCTION

The purpose of the paper is to expose potentially interesting relation of the Weyl group
associated with the color gauge SU(3) symmetry to the structure of QCD vacuum. At the
level of classical YangÄMills Lagrangian the Weyl group symmetry is trivial. However, the
vacuum structure of QCD is determined by quantum effects. The standard way to discuss the
vacuum structure of the theory in terms of effective quantum action relates to the LandauÄ
Ginsburg type construction based on the symmetries of the theory.

We consider the LandauÄGinsburg Lagrangian for pure YangÄMills gauge ˇelds invariant
under the standard space-time and local gauge SU(3) transformations. It is demonstrated
that a set of twelve degenerated minima of the action density exists as soon as a nonzero
gluon condensate is postulated in the action. The minima are connected to each other by the
Weyl group transformations associated with the color su(3) algebra and parity transformation.
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The presence of degenerated discrete minima in the Lagrangian leads to the solutions of the
effective equations of motion in the form of the kink-like gauge ˇeld conˇgurations interpo-
lating between different minima. As an example we write down the simplest solution which
interpolates between self-dual and anti-self-dual Abelian homogeneous ˇelds and consider the
spectrum of covariant derivative squared D2 in the presence of this kink background ˇeld.
The kink conˇguration is seen here as a domain wall separating the regions with almost
self-dual and anti-self-dual Abelian gauge ˇelds. It should be stressed that consideration itself
and the results of this paper can be seen as instructive but very preliminary ones.

1. MOTIVATION

There are several observations and phenomenological estimates which can be considered
as a qualitative motivation for introducing the effective action to be discussed in the next
section.

The Weyl group associated with SU(N) gauge theory can be conveniently exposed in
terms of representation of the gauge ˇelds suggested in a series of papers by Y.M. Cho [1],
S. Shabanov [3,4], L. D. Faddeev and A. J. Niemi [5] and, recently, by K.-I. Kondo [6]. In this
parameterization the Abelian part V̂μ(x) of the gauge ˇeld Âμ(x) is separated manifestly,

Âμ(x) = V̂μ(x) + X̂μ(x), V̂μ(x) = B̂μ(x) + Ĉμ(x),

B̂μ(x) = [naAa
μ(x)]n̂(x) = Bμ(x)n̂(x),

Ĉμ(x) = g−1∂μn̂(x) × n̂(x),

X̂μ(x) = g−1n̂(x) × (∂μn̂(x) + gÂμ(x) × n̂(x)),

(1)

where Âμ(x) = Aa
μ(x)ta, n̂(x) = na(x)ta, nana = 1, and

∂μn̂ × n̂ = ifabc∂μnanbtc, [ta, tb] = ifabctc.

The ˇeld V̂μ is seen as the Abelian ˇeld in the sense that [V̂μ(x), V̂ν(x)] = 0.
The comprehensive analysis of the RG-improved one-loop effective action for the Abelian

component B̂μ(x) with the constant na and the covariantly constant (anti-)self-dual ˇeld
Bμ = −(1/2)Bμαxα was given a long time ago by Minkowski [7], Pagels and Tomboulis [8],
and Leutwyler [9]. The analysis based on the trace anomaly of the energy-momentum tensor
and renormalization group leads to the following form of the effective potential for the SU(2)
gauge group [8]:

URG
eff = B2

[
1

g2(λB/Λ2)
+ ε0

]
. (2)

Here constant B is deˇned as BμαBνα = B2δμα. For the strong ˇeld B � Λ this expression
agrees with the result of the explicit one-loop calculation [9]

U1−loop
eff = B2

[
11

24π2
ln

λB

Λ2
+ ε0

]
. (3)

Equation (2) indicates that the effective potential can have a minimum for nonzero strength B
only for the negative value of the parameter ε0. This parameter can be treated as the dielectric
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constant as g → ∞. One-loop result (3) displays the strong ˇeld asymptotics B2 ln (B/Λ2)
of the effective Lagrangian and, hence, its boundedness from below. In both calculations the
constant ε0 is a free parameter. Some knowledge about the sign of ε0 could be obtained from
the lattice calculations. A minimum of the effective Lagrangian at nonzero ˇeld strength was
reported in [10]. However, the most interesting region of small ˇeld strength is the most
difˇcult one for the lattice calculation, and, as the authors of [10] stressed, this result should be
taken into account with great care. Existence of nonzero gluon condensate can be considered
as a general phenomenological argument in favor of nonzero value of the ˇeld strength at the
minimum of the QCD effective action and, hence, the negative value of ε0. Certainly, the
ordered state corresponding to a plain constant ˇeld cannot be considered as an appropriate
approximation for QCD vacuum as it breaks all the symmetries of QCD at once. Required
disorder in the mean ˇeld could be provided by an ensemble of gauge ˇeld conˇgurations
with the strength being constant almost everywhere but changing directions in space and
color space as well as self- and anti-self-duality in small regions of space-time reminiscent
of the domain walls. Phenomenological model of conˇnement, chiral symmetry breaking and
hadronization based on the ensemble of Abelian (anti)-self-dual ˇelds was developed in a
series of papers [11Ä13]. The dominance of the domain structured gauge ˇeld conˇgurations
has been observed in the recent lattice calculations [14Ä18]. In paper [16] an effective model
of SU(2) gauge theory for the domain wall formation was considered. The center symmetry
realization in lattice version of QCD is in the focus of these studies. In this paper, we consider
the effective Lagrangian which displays another model for the domain wall formation based
on CP and the Weyl symmetry breakdown triggered by the trace anomaly or, equivalently,
the nonzero gluon condensate.

2. EFFECTIVE LAGRANGIAN

Consider the following effective Lagrangian for the gauge ˇelds satisfying the requirements
of invariance under the gauge group SU(3) and space-time transformations:

Leff = −1
4

(
Dab

ν F b
ρμDac

ν F c
ρμ + Dab

μ F b
μνDac

ρ F c
ρν

)
− Ueff ,

Ueff =
1
12

Tr
(

C1F̂
2 +

4
3
C2F̂

4 − 16
9

C3F̂
6

)
,

(4)

where

Dab
μ = δab∂μ − iÂab

μ = ∂μ − iAc
μ(T c)ab,

F a
μν = ∂μAa

ν − ∂νAa
μ + ifabcAb

μAc
ν ,

F̂μν = F a
μνT a, T a

bc = −ifabc

Tr(F̂ 2) = F̂ ab
μν F̂ ba

νμ = −3F a
μνF a

μν � 0,

C1 > 0, C2 > 0, C3 > 0.

The gauge coupling constant is absorbed into the gauge ˇeld, gAμ → Aμ. The signs of the
constants C1, C2 and C3 are chosen in such a way that the effective Lagrangian is bounded
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from below and has a minimum at nonzero value of the ˇeld strength squared:

F a
μνF a

μν = 4b2
vacΛ

4 > 0, b2
vac =

√
C2

2 + 3C1C3 − C2

3C3
.

In terms of Eq. (2) the choice of sign of C1 corresponds to the negative ε0. The Lagrangian (4)
contains the lowest-order covariant derivatives and the effective potential which has a polyno-
mial in F 2 form. Thus, the ˇeld TrF 2 plays the role of the order parameter. The presence of
the term F̂ 6 is of the crucial importance since the Weyl group becomes manifest only in this
and higher orders in ˇeld strength. Further increase in the polynomial order in (4) does not
change qualitatively the character of the Weyl group realization. The form of the effective
Lagrangian (4) is not the most general one. Our aim is to study an instructive example rather
than to deal with the full problem in all its complexity. Namely, let us consider a set of ˇelds
Aμ with the Abelian ˇeld strength of the following form:

F̂μν = n̂Bμν ,

where matrix n̂ is an element of Cartan subalgebra in the adjoint representation

n̂ = T 3 cos (ξ) + T 8 sin (ξ) , 0 � ξ < 2π.

For ξ = const this ˇeld corresponds to the Abelian part B̂μ(x) of the gauge ˇeld in the
representation (1). It is convenient to introduce the following notation:

b̂μν =
n̂Bμν

Λ2
= n̂bμν , bμνbμν = 4b2

vac,

ei = b4i, hi =
1
2
εijkbjk, (eh) = |e| |h| cos ω,

e2 + h2 = 2b2
vac, (eh)2 = h2(2b2

vac − h2) cos2 ω.

With this notation one arrives at the following formulae for traces:

Tr b̂2 = −12b2
vac,

Tr b̂4 = 18
(

b4
vac −

1
2
(eh)2

)
,

Tr b̂6 = −3b2
vac(10 + cos 6ξ)

(
b4
vac −

3
4
(eh)2

)
.

Respectively, the effective potential takes the form

Ueff = Λ4

[
−C1b

2
vac + C2(2b4

vac − (eh)2) +
1
9
C3b

2
vac(10 + cos 6ξ)(4b4

vac − 3(eh)2)
]

. (5)

The potential (5) is invariant under transformations ξ → ξ + πk/3, k = 1, . . . , 6, which
can be seen as speciˇc rotations of n̂ in Cartan subalgebra. These transformations lead
to permutations of the eigenvalues of n̂ and, hence, do not change the traces of n̂k. The
permutations correspond to the Weyl group associated with su(3) algebra, i.e., the group
of re	ections of the roots of su(3). The effective potential is invariant with respect to
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parity transformation which results in the degeneracy of the self- and anti-self-dual ˇelds
corresponding to ω = 0, π. Altogether there are twelve discrete global degenerated minima at
the following values of the variables h, ω and ξ:

h2 = b2
vac > 0, ω = πk (k = 0, 1), ξn =

π

6
(2n + 1) (n = 0, . . . , 5). (6)

It should be stressed here that we have postulated in (4) the minimum at nonzero value of the
scalar gauge invariant ˇeld F a

μνF a
μν equivalent to the existence of nonzero gluon condensate,

but the set of minima in ω and ξ appeared as a consequence of the space-time and local
gauge symmetries of the effective Lagrangian (4). Inclusion of higher powers of F̂ does
not change this picture qualitatively, but the presence of the term o(F̂ 6) is crucial since
dependence on ξ appears starting the 6th order in F̂ . The minimum of the effective potential
in ξ is achieved for the values ξn corresponding to the boundaries of the Weyl chambers in
the root space of su(3). Existence of the degenerated minima in the effective action related
to the Weyl group was reported earlier in [12] and, in the context of the one-loop effective
potential of SU(N) gauge theory, in [2]. A mechanism of gauge ˇeld localization on a
domain wall within the framework of one-loop effective action for pure YangÄMills theory
was presented in [19].

3. KINK-LIKE CONFIGURATIONS

It is well known that the presence of the discrete global vacua in a system leads to the
existence of kink-like solutions of the equations of motion. These solutions describe ˇeld
conˇgurations interpolating between different vacua and can be treated as the domain walls
between regions in R4 with particular constant values of the parameters ω and ξ from the
set (6). In order to exemplify this statement, let us write down Lagrangian in terms of the
ˇelds ξ(x), ω(x) and h(x).

Suppose e2(x) ≡ h2(x) ≡ b2
vac. Then we have

δUeff = Ueff − Umin
eff =

= b4
vacΛ

4

[
(C2 + 3C3b

2
vac) sin2 ω +

1
9
C3b

2
vac(10 + cos 6ξ)(1 + 3 sin2 ω)

]
,

1
4
∂μF a

ρσ∂μF a
ρσ =

Λ2

2
(
∂μh∂μh + ∂μe∂μe + 2b2

vac∂μξ∂μξ
)
.

Here Umin
eff is the minimal value of the effective potential corresponding to the constant values

of h, ω and ξ given in (6).
In order to separate the relevant variable ω from other degrees of freedom of e and h, it

is convenient to represent the electric ˇeld as

ei(x) = Oij(x)hj(x),
Oij = δij cos ω(x) + mi(x)mj(x)(1 − cos ω(x)) + εijkmk(x) sin ω(x),

where O is a local rotation about unit vector m orthogonal to h,

mi(x) =
1

b2
vac sin θ(x)

(b2
vacδij − hi(x)hj(x))vj .
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Here θ is azimuthal angle of h with respect to v, and v is a constant unit vector. We will
take

vi = δi3, mi =
bvacδi3 − hi cos θ

bvac sin θ
.

After some algebraic transformations the Lagrangian density Leff takes the form

Leff = −1
2
Λ2b2

vac

(
2∂μξ∂μξ + ∂μω∂μω +

(
cos2 ω +

sin2 ω

sin2 θ

)
∂μθ∂μθ+

+ sin2 θ(1 + cos2 ω)∂μϕ∂μϕ + 2 cos2 ω sin θ∂μω∂μϕ − sin 2ω cos θ ∂μθ∂μϕ
)
−

− b4
vacΛ

4

(
(C2 + 3C3b

2
vac) sin2 ω +

1
9
C3b

2
vac(10 + cos 6ξ)(1 + 3 sin2 ω)

)
.

Let cos (6ξ) = −1, θ = const and ϕ = const, then

Leff = −1
2
Λ2b2

vac∂μω∂μω − b4
vacΛ

4
(
C2 + 3C3b

2
vac

)
sin2 ω,

and the EulerÄLagrange equation

∂2ω = m2
ω sin 2ω, m2

ω = b2
vacΛ

2
(
C2 + 3C3b

2
vac

)
.

Let us look for solutions ω which depend only on one of the coordinates, say x1. Equation (7)
takes the form of sine-Gordon equation

ω′′(x1) = m2
ω sin 2ω(x1),

with kink solution
ω = 2 arctan

(
exp

(√
2mωx1

))
. (7)

According to Eq. (7), the angle between chromoelectric and chromomagnetic ˇelds ω(x1)
varies from π to 0 for x1 ∈ [−∞,∞]. It corresponds to the change from anti-self-dual to
self-dual gauge ˇeld conˇguration, as is shown in the ˇgure.

The gauge ˇeld 	ips from the anti-self-dual at mωx1 � −1 to self-dual at mωx1 � 1 conˇguration:
h3 = bvac cos ω, h2 = bvac sin ω, ei = δi3bvac. Here bvac = 1, mω = 10Λ
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Similarly, if sin(ω) = 0, θ = const and ϕ = const, then

∂2ξ = −1
6
m2

ξ sin 6ξ, m2
ξ = 2C3Λ2b4

vac,

with the solution

ξk(x1) =
1
3

arctan [sinh (mξx1)] +
πk

3
, k = 1, . . . , 6,

interpolating between two consequent vacuum values of ξ in (6) associated with the boundaries
of the kth Weyl chamber.

4. SPECTRUM OF THE CHARGED FIELD IN THE KINK-LIKE BACKGROUND

In this section, we estimate the change in the spectrum of color charged scalar ˇeld caused
by the kink-like defect in ω in comparison with the spectrum in the presence of conˇning
(anti-)self-dual purely homogeneous Abelian background. Here we consider the inˇnitely thin
domain wall for ω which corresponds to mω � Λ in Eq. (7). Since the kink interpolates
between the CP conjugated vacua and some particular vacuum value of angle ξ, it is sufˇcient
to consider the eigenvalue problem

−(∂μ − iBμ(x))2φ = λφ. (8)

In the case of inˇnitely thin wall, the ˇeld Bμ(x) is self-dual for x1 < 0, anti-self-dual for
x1 > 0, but inside the domain wall (at x1 = 0), electric and magnetic ˇelds are orthogonal to
each other.

Inside the domain bulk, vector potential can be represented as the homogeneous self- or
anti-self-dual ˇeld

Bμ(x) = Bμνxν , B̃μν = ±Bμν , BμαBνα = B2δμν , B = Λ2bvac.

Square integrable solution is well known in this case. The following ˇeld strength conˇgura-
tion can be chosen without loss of generality:

H1 = H2 = 0, H3 = ∓2B, E1 = E2 = 0, E3 = −2B.

Equation (8) is equivalent to

[
β+
±β± + γ+

+γ+ + 1
]
φ =

λ

4B
φ,

where creation and annihilation operators β±, β+
± , γ±, γ+

± are expressed in terms of the
operators α+, α:

β± =
1
2
(α1 ∓ iα2), γ± =

1
2
(α3 ∓ iα4), αμ =

1√
B

(Bxμ + ∂μ),

β+
± =

1
2
(α+

1 ± iα+
2 ), γ+

± =
1
2

(
α+

3 ± iα+
4

)
, α+

μ =
1√
B

(Bxμ − ∂μ).
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Here ®±¯ indicates the self-dual and anti-self-dual conˇgurations. The eigenvalues and the
square integrable eigenfunctions are

φnmkl(x) =
1√

n!m!k!l!π2
(β+

+)k(β+
−)l(γ+

+)n(γ+
−)mφ0000(x), φ0000(x) = e−

1
2Bx2

,

λr = 4B(r + 1),
(9)

where r = k+n for self-dual ˇeld, r = l+n for anti-self-dual ˇeld. The spectrum is discrete.
At the domain wall the eigenfunctions are continuous. There is an inˇnite degeneracy of the
eigenvalues.

Inside the domain wall (x1 = 0), vector potential can be chosen as

B2 = 0, B1 = 2Bx3, B3 = 0, B4 = 2Bx3 (Hi = 2Bδi2, Ei = −2Bδi3).

Charged ˇeld displays continuous spectrum similar to Landau levels. Square integrable over
x3 eigenfunctions take the form

φn = exp (−ip4x4 − ip2x2)χn, (10)

where functions χn

χn(p4|x3) = exp
{
−2

√
2B

(
x3 +

p4

4B

)2
}

Hn

(
23/4

√
B

(
x3 +

p4

4B

))

are solutions of the eigenvalue problem

[
p2
2 − ∂2

3 + (p4 + 2Bx3)2 + 4B2x2
3

]
χn = λnχn,

with the eigenvalues

λn(p2
2, p

2
4) = 2

√
2B

(
2n + 1 +

p2
2

2
√

2B
+

p2
4

4
√

2B

)
.

The character of charged ˇeld modes is qualitatively different in the domain bulk (self-dual
ˇeld) and inside the domain wall (crossed electric and magnetic ˇelds), which illustrates the
character of the problem to be solved to obtain a continuous common solution for the domain
bulk and wall for the case of the ˇnite width of the kink. The form of the eigenfunctions (9)
indicates charge ˇeld conˇnement in the bulk and the presence of ®plain wave¯ solutions
inside the wall.

CONCLUSIONS

In terms of the effective Lagrangian we investigated manifestations of CP and the Weyl
group associated with the SU(3) gauge theory. It is shown that the requirement of nonzero
gluon condensate leads to the existence of a set of degenerated minima and, as a consequence,
triggers the kink-like gauge ˇeld conˇgurations interpolating between different minima. The
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spectrum of a charged scalar ˇeld in the background of the kink-like ˇelds was estimated.
The bound state form of the eigenfunctions (9) indicates conˇnement of charged ˇeld inside
domain, while the ®plain wave¯ eigenmodes (10) exist inside the wall. The eigenfunction
properties and the propagator of a charged ˇeld in the kink background have to be studied
in detail for the case of ˇnite width of the kink. It is important to investigate the eigenvalue
problem for fermionic charged ˇelds and the chiral symmetry realization in the kink-like
background.

The domain model of QCD vacuum developed in [11Ä13] is based on the ensemble of
the background gluon ˇelds with the ˇeld strength being constant almost everywhere in R4.
The direction of the ˇeld in space and color space as well as duality of the ˇeld are random
parameters of the domains. All conˇgurations of this type are summed up in the partition
function. The domain model exhibits conˇnement of static and dynamic quarks, spontaneous
breaking of the 	avor chiral symmetry, UA(1) symmetry is broken due to the axial anomaly,
strong CP violation is absent in the model. The domain boundaries were introduced by
means of bag-like boundary conditions imposed on the gluon and quark 	uctuation ˇelds,
which made the model unbalanced and considerably complicated all calculations. Gauge
ˇeld conˇgurations investigated in the present paper provide us with an interesting option for
parameterization of the domain structured ensemble of gluon ˇelds.
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