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All-loop Finite Uniˇed Theories (FUTs) are very interesting N = 1 supersymmetric Grand Uniˇed
Theories (GUTs) which not only realize an old ˇeld theoretic dream but also have a remarkable predictive
power due to the required reduction of couplings. Here we present FUT models based on SU(5) and
SU(3)3 gauge groups and their predictions. Of particular interest is the Higgs mass prediction of one
of the models which is expected to be tested at the LHC.
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INTRODUCTION

The success of the Standard Model (SM) of Elementary Particle Physics is seriously
limited by the presence of a plethora of free parameters. An even more disturbing fact is that
the best bet for Physics beyond the SM, namely, the minimal supersymmetric extension of
the SM (MSSM), which is expected to bring us one step further towards a more fundamental
understanding of Nature, introduces around a hundred additional free parameters.

In our studies [1Ä7] we have developed a strategy in searching for a more fundamental
theory possibly at the Planck scale, whose basic ingredients are GUTs and supersymmetry,
but its consequences certainly go beyond the known ones.

Our method consists in hunting for renormalization group invariant (RGI) relations holding
below the Planck scale, which in turn are preserved down to the GUT scale. This programme,
called GaugeÄYukawa uniˇcation scheme, applied in the dimensionless couplings of super-
symmetric GUTs, such as gauge and Yukawa couplings, had already noticeable successes
by predicting correctly, among others, the top-quark mass in the ˇnite and in the minimal
N = 1 supersymmetric SU(5) GUTs. An impressive aspect of RGI relations is that one
can guarantee their validity to all-orders in perturbation theory by studying the uniqueness
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of the resulting relations at one-loop, as was proven in the early days of the programme
of reduction of couplings [8Ä11]. Even more remarkable is the fact that it is possible to
ˇnd RGI relations among couplings that guarantee ˇniteness to all-orders in perturbation
theory [12Ä14].

Although supersymmetry seems to be an essential feature for a successful realization of
the above programme, its breaking has to be understood too, since it has the ambition to
supply the SM with predictions for several of its free parameters. Indeed, the search for
RGI relations has been extended to the soft supersymmetry breaking (SSB) sector of these
theories [6, 15], which involves parameters of dimension one and two. Interesting progress
was made in [16Ä23] concerning the renormalization properties of the SSB parameters, based
conceptually and technically on [24]. Herein [24], the powerful supergraph method [25Ä28]
for studying supersymmetric theories has been applied to the softly broken ones by using the
®spurion¯ external space-time independent superˇelds [29Ä32]. In the latter method a softly
broken supersymmetric gauge theory is considered as a supersymmetric one in which the
various parameters such as couplings and masses have been promoted to external superˇelds
that acquire ®vacuum expectation values¯. Based on this method the relations among the soft
term renormalization and that of an unbroken supersymmetric theory have been derived. In
particular, the β-functions of the parameters of the softly broken theory are expressed in terms
of partial differential operators involving the dimensionless parameters of the unbroken theory.
The key point in the strategy [21Ä23] in solving the set of coupled differential equations so
as to be able to express all parameters in a RGI way, was to transform the partial differential
operators involved to total derivative operators. This is indeed possible to be done on the
RGI surface which is deˇned by the solution of the reduction equations.

On the phenomenological side there exist some serious developments too. Previously
an appealing ®universal¯ set of soft scalar masses was assumed in the SSB sector of su-
persymmetric theories, given that apart from economy and simplicity, (1) they are part of
the constraints that preserve ˇniteness up to two-loops [33, 34], (2) they are RGI up to
two-loops in more general supersymmetric gauge theories, subject to the condition known
as P = 1/3 Q [15], and (3) they appear in the attractive dilaton dominated supersymmetry
breaking superstring scenarios [35Ä37]. However, further studies have exhibited a number of
problems all due to the restrictive nature of the ®universality¯ assumption for the soft scalar
masses. For instance, (a) in Finite Uniˇed Theories the universality predicts that the lightest
supersymmetric particle is a charged particle, namely, the superpartner of the τ lepton τ̃ ,
(b) the MSSM with universal soft scalar masses is inconsistent with the attractive radiative
electroweak symmetry breaking [37], and (c), which is the worst of all, the universal soft
scalar masses lead to charge and/or colour breaking minima deeper than the standard vac-
uum [38]. Therefore, there have been attempts to relax this constraint without loosing its
attractive features. First, an interesting observation was made that in N = 1 GaugeÄYukawa
uniˇed theories there exists a RGI sum rule for the soft scalar masses at lower orders; at
one-loop for the nonˇnite case [39] and at two-loops for the ˇnite case [40]. The sum rule
manages to overcome the above unpleasant phenomenological consequences. Moreover, it
was proven [23] that the sum rule for the soft scalar masses is RGI to all-orders for both the
general as well as for the ˇnite case. Finally, the exact β-function for the soft scalar masses
in the NovikovÄShifmanÄVainsteinÄZakharov (NSVZ) scheme [41Ä43] for the softly broken
supersymmetric QCD has been obtained [23]. Armed with the above tools and results we are
in a position to study the spectrum of ˇnite supersymmetric models.
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1. UNIFICATION OF COUPLINGS BY THE RGI METHOD

Let us next brie�y outline the idea of reduction of couplings. Any RGI relation among
couplings (which does not depend on the renormalization scale μ explicitly) can be expressed
in the implicit form Φ(g1, . . . , gA) = const, which has to satisfy the partial differential
equation (PDE)

μ
dΦ
dμ

= ∇ · β =
A∑

a=1

βa
∂Φ
∂ga

= 0, (1)

where βa is the β-function of ga. This PDE is equivalent to a set of ordinary differential
equations, the so-called reduction equations (REs) [8, 9, 44],

βg
dga

dg
= βa, a = 1, . . . , A, (2)

where g and βg are the primary coupling and its β-function, and the counting on a does
not include g. Since maximally (A− 1) independent RGI ®constraints¯ in the A-dimensional
space of couplings can be imposed by Φas, one could in principle express all the couplings in
terms of a single coupling g. The strongest requirement is to demand power series solutions
to the REs,

ga =
∑

n

ρ(n)
a g2n+1, (3)

which formally preserve perturbative renormalizability. Remarkably, the uniqueness of such
power series solutions can be decided already at the one-loop level [8, 9, 44]. To illustrate
this, let us assume that the β-functions have the form

βa =
1

16π2

⎡
⎣ ∑

b,c,d �=g

β(1) bcd
a gbgcgd +

∑
b�=g

β(1) b
a gbg

2

⎤
⎦ + . . . ,

βg =
1

16π2
β(1)

g g3 + . . . ,

(4)

where . . . stand for higher-order terms, and β
(1) bcd
a s are symmetric in b, c, d. We then assume

that ρ
(n)
a s with n � r have been uniquely determined. To obtain ρ

(r+1)
a s, we insert the power

series (3) into the REs (2) and collect terms of O(g2r+3) and ˇnd∑
d �=g

M(r)d
a ρ

(r+1)
d = lower-order quantities,

where the r.h.s. is known by assumption, and

M(r)d
a = 3

∑
b,c �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c + β(1) d
a − (2r + 1)β(1)

g δd
a, (5)

0 =
∑

b,c,d �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c ρ
(1)
d +

∑
d �=g

β(1) d
a ρ

(1)
d − β(1)

g ρ(1)
a . (6)

Therefore, ρ
(n)
a s for all n > 1 for a given set of ρ

(1)
a s can be uniquely determined if

detM(n)d
a �= 0 for all n � 0.
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As it will be clear later by examining speciˇc examples, the various couplings in su-
persymmetric theories have easily the same asymptotic behaviour. Therefore, searching for
a power series solution of the form (3) to the REs (2) is justiˇed. This is not the case
in nonsupersymmetric theories, although the deeper reason for this fact is not fully under-
stood.

The possibility of coupling uniˇcation described in this section is without any doubt
attractive because the ®completely reduced¯ theory contains only one independent coupling,
but it can be unrealistic. Therefore, one often would like to impose fewer RGI constraints,
and this is the idea of partial reduction [45,46].

2. FINITENESS IN N = 1 SUPERSYMMETRIC GAUGE THEORIES

Let us consider a chiral, anomaly-free, N = 1 globally supersymmetric gauge theory
based on a group G with gauge coupling constant g. The superpotential of the theory is
given by

W =
1
2

mij φi φj +
1
6

Cijk φi φj φk, (7)

where mij and Cijk are gauge invariant tensors, and the matter ˇeld φi transforms according
to the irreducible representation Ri of the gauge group G. The renormalization constants
associated with the superpotential (7), assuming that supersymmetry is preserved, are

φ0
i = (Zj

i )(1/2) φj , (8)

m0
ij = Zi′j′

ij mi′j′ , (9)

C0
ijk = Zi′j′k′

ijk Ci′j′k′ . (10)

The N = 1 nonrenormalization theorem [27, 47, 48] ensures that there are no mass and
cubic-interaction-term inˇnities, and therefore

Zi′j′k′

ijk Z
1/2 i′′

i′ Z
1/2 j′′

j′ Z
1/2 k′′

k′ = δi′′

(i δj′′

j δk′′

k) ,

Zi′j′

ij Z
1/2 i′′

i′ Z
1/2 j′′

j′ = δi′′

(i δj′′

j) .
(11)

As a result, the only surviving possible inˇnities are the wave-function renormalization con-
stants Zj

i , i.e., one inˇnity for each ˇeld. The one-loop β-function of the gauge coupling g
is given by [49]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

l(Ri) − 3 C2(G)

]
, (12)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of the adjoint
representation of the gauge group G. The β-functions of Cijk , by virtue of the nonrenor-
malization theorem, are related to the anomalous dimension matrix γij of the matter ˇelds
φi as

βijk =
dCijk

dt
= Cijl γl

k + Cikl γl
j + Cjkl γl

i. (13)
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At one-loop level γij is [49]

γ
i(1)
j =

1
32π2

[
Cikl Cjkl − 2 g2 C2(Ri)δ1

j

]
, (14)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk . Since

dimensional coupling parameters such as masses and couplings of cubic scalar ˇeld terms
do not in�uence the asymptotic properties of a theory in which we are interested here, it is
sufˇcient to take into account only the dimensionless supersymmetric couplings such as g and
Cijk . So we neglect the existence of dimensional parameters, and assume furthermore that
Cijk are real so that C2

ijk always are positive numbers.
As one can see from Eqs. (12) and (14), all the one-loop β-functions of the theory vanish

if β
(1)
g and γ

(1)
ij vanish, i.e., ∑

i


(Ri) = 3C2(G), (15)

CiklCjkl = 2δi
jg

2C2(Ri). (16)

The conditions for ˇniteness for N = 1 ˇeld theories with SU(N) gauge symmetry
are discussed in [50], and the analysis of the anomaly-free and no-charge renormaliza-
tion requirements for these theories can be found in [51]. A very interesting result is
that the conditions (15), (16) are necessary and sufˇcient for ˇniteness at the two-loop
level [49,52Ä55].

3. FINITENESS IN THE SOFT BREAKING SECTOR

An important issue in the study of ˇnite theories is to understand its consequences in
the soft breaking sector of the theory. Finiteness in the soft breaking sector of N = 4 and
N = 2 supersymmetric theories was studied in [56Ä60]. On the other hand, the method
of reducing the dimensionless couplings was extended to the soft supersymmetry breaking
(SSB) dimensionful parameters of N = 1 supersymmetric theories [6]. In addition, it was
found [39] that RGI SSB scalar masses in GaugeÄYukawa uniˇed models satisfy a universal
sum rule. Here we will describe ˇrst how the use of the available two-loop RG functions
and the requirement of ˇniteness of the SSB parameters up to this order leads to the soft
scalar-mass sum rule [40].

Consider the superpotential given by (7) along with the Lagrangian for SSB terms

−LSB =
1
6

hijk φiφjφk +
1
2

bijφiφj +
1
2

(m2)j
iφ

∗ iφj +
1
2

M λλ + h. c., (17)

where φi are the scalar parts of the chiral superˇelds Φi; λ are the gauginos and M is their
uniˇed mass. Since we would like to consider only ˇnite theories here, we assume that the
gauge group is a simple group and the one-loop β-function of the gauge coupling g vanishes.
We also assume that the reduction equations admit power series solutions of the form

Cijk = g
∑

n

ρijk
(n)g

2n. (18)
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According to the ˇniteness theorem of [12, 61], the theory is then ˇnite to all-orders in

perturbation theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish. The

one- and two-loop ˇniteness for hijk can be achieved by [34]

hijk = −MCijk + . . . = −Mρijk
(0) g + O(g5), (19)

where . . . stand for higher-order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the lowest

order coefˇcients ρijk
(0) and also (m2)i

j satisfy the diagonality relations

ρipq(0)ρ
jpq
(0) ∝ δj

i for all p and q and (m2)i
j = m2

jδ
i
j, (20)

respectively. Then we ˇnd the following soft scalar-mass sum rule [40,62,63]:

m2
i + m2

j + m2
k

MM † = 1 +
g2

16π2
Δ(2) + O(g4) (21)

for i, j, k with ρijk
(0) �= 0, where Δ(2) is the two-loop correction

Δ(2) = −2
∑

l

[(
m2

l

MM †

)
−

(
1
3

)]
T (Rl), (22)

which vanishes for the universal choice in accordance with the previous ˇndings of [34].
If we know higher-loop β-functions explicitly, we can follow the same procedure and

ˇnd higher-loop RGI relations among SSB terms. However, the β-functions of the soft scalar
masses are explicitly known only up to two-loops. In order to obtain higher-loop results,
some relations among β-functions are needed.

Making use of the spurion technique [25Ä29], it is possible to ˇnd the following all-loop
relations among SSB β-functions [16Ä19,21,22]:

βM = 2O
(

βg

g

)
, (23)

βijk
h = γi

lh
ljk + γj

lh
ilk + γk

lh
ijl − 2γi

1lC
ljk − 2γj

1 lC
ilk − 2γk

1 lC
ijl, (24)

(βm2)i
j =

[
Δ + X

∂

∂g

]
γi

j , (25)

O =
(

Mg2 ∂

∂g2
− hlmn ∂

∂Clmn

)
, (26)

Δ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃lmn ∂

∂Clmn
, (27)

where (γ1)i
j = Oγi

j , Clmn = (Clmn)∗, and

C̃ijk = (m2)i
lC

ljk + (m2)j
lC

ilk + (m2)k
lC

ijl. (28)

It was also found [17] that the relation

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
(29)
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among couplings is all-loop RGI. Furthermore, using the all-loop gauge β-function of Novikov
et al. [41Ä43] given by

βNSVZ
g =

g3

16π2

⎡
⎣

∑
l

T (Rl)(1 − γl/2) − 3C(G)

1 − g2C(G)/8π2

⎤
⎦ , (30)

the all-loop RGI sum rule was found [23],

m2
i + m2

j + m2
k = |M |2

{
1

1 − g2C(G)/(8π2)
d lnCijk

d ln g
+

1
2

d2 lnCijk

d(ln g)2

}
+

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d lnCijk

d ln g
. (31)

In addition, the exact-β-function for m2 in the NSVZ scheme has been obtained [23] for the
ˇrst time and is given by

βNSVZ
m2

i
=

[
|M |2

{
1

1 − g2C(G)/(8π2)
d

d ln g
+

1
2

d2

d(ln g)2

}
+

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d

d ln g

]
γNSVZ

i . (32)

Surprisingly enough, the all-loop result (31) coincides with the superstring result for the ˇnite
case in a certain class of orbifold models [40] if d lnCijk/d ln g = 1.

4. FINITE SU(5) UNIFIED THEORIES

Finite Uniˇed Theories (FUTs) have always attracted interest for their intriguing mathe-
matical properties and their predictive power. One very important result is that the one-loop
ˇniteness conditions (13), (14) are sufˇcient to guarantee two-loop ˇniteness [49]. A classi-
ˇcation of possible one-loop ˇnite models was done by two groups [64Ä66]. The ˇrst one-
and two-loop ˇnite SU(5) model was presented in [67], and shortly afterwards the conditions
for ˇniteness in the soft SUSY-breaking sector at one-loop [54] were given. In [68] a one-
and two-loop ˇnite SU(5) model was presented, where the rotation of the Higgs sector was
proposed as a way of making it realistic. The ˇrst all-loop ˇnite theory was studied in [1,2],
without taking into account the soft breaking terms. Finite soft breaking terms and the proof
that one-loop ˇniteness in the soft terms also implies two-loop ˇniteness were done in [34].
The inclusion of soft breaking terms in a realistic model was done in [20] and their ˇniteness
to all-loops was studied in [21], although the universality of the soft breaking terms leads to
a charged LSP. This fact was also noticed in [69], where the inclusion of an extra parameter
in the boundary condition of the Higgs mixing mass parameter was introduced to alleviate it.
The derivation of the sum rule in the soft supersymmetry breaking sector and the proof that
it can be made all-loop ˇnite were done in [40] and [23], respectively, allowing thus for the
construction of all-loop ˇnite realistic models.
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From the classiˇcation of theories with vanishing one-loop gauge β-function [64], one
can easily see that there exist only two candidate possibilities to construct SU(5) GUTs
with three generations. These possibilities require that the theory should contain as matter
ˇelds the chiral supermultiplets 5, 5, 10, 5, 24 with the multiplicities (6, 9, 4, 1, 0) and
(4, 7, 3, 0, 1), respectively. Only the second one contains a 24-plet which can be used to
provide the spontaneous symmetry breaking (SB) of SU(5) down to SU(3)×SU(2)×U(1).
For the ˇrst model one has to incorporate another way, such as the Wilson �ux breaking
mechanism to achieve the desired SB of SU(5) [1, 2]. Therefore, for a self-consistent ˇeld
theory discussion we would like to concentrate only on the second possibility.

The particle content of the models we will study consists of the following supermultiplets:
three (5 + 10), needed for each of the three generations of quarks and leptons, four (5 + 5)
and one 24 considered as Higgs supermultiplets. When the gauge group of the ˇnite GUT is
broken, the theory is no longer ˇnite, and we will assume that we are left with the MSSM.

Therefore, a predictive GaugeÄYukawa uniˇed SU(5) model which is ˇnite to all-orders,
in addition to the requirements mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .
2. The three fermion generations, in the irreducible representations 5i,10i (i = 1, 2, 3),

should not couple to the adjoint 24.
3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs

quintet and antiquintet, which couple to the third generation.
In the following, we discuss two versions of the all-order ˇnite model. The model of [1,2],

which will be labeled A, and a slight variation of this model (labeled B), which can also be
obtained from the class of the models suggested in [18, 19] with a modiˇcation to suppress
nondiagonal anomalous dimensions [40].

The superpotential which describes the two models before the reduction of couplings takes
place is of the form [1,2, 40,67,68]

W =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5i Hi

]
+ gu

23 102103H4+

+ gd
23 10253 H4 + gd

32 10352 H4 +
4∑

a=1

gf
a Ha 24Ha +

gλ

3
(24)3, (33)

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and antiquintets.
The main difference between model A and model B is that two pairs of Higgs quintets

and antiquintets couple to the 24 in B, so that it is not necessary to mix them with H4 and H4

in order to achieve the doubletÄtriplet splitting after the symmetry breaking of SU(5) [40].
Thus, although the particle content is the same, the solutions to Eqs. (13), (14) and the sum
rules are different, which will re�ect in the phenomenology, as we will see.

4.1. FUTA. After the reduction of couplings the symmetry of the superpotential W (33)
is enhanced. For model A one ˇnds that the superpotential has the Z7 × Z3 × Z2 dis-
crete symmetry with the charge assignment as shown in Table 1, and with the following
superpotential:

WA =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5i Hi

]
+ gf

4 H4 24H4 +
gλ

3
(24)3. (34)
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Table 1. Charges of the Z7 × Z3 × Z2 symmetry for model FUTA

51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z7 4 1 2 1 2 4 5 3 6 Ä5 Ä3 Ä6 0 0 0
Z3 0 0 0 1 2 0 1 2 0 Ä1 Ä2 0 0 0 0
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

The nondegenerate and isolated solutions to γ
(1)
i = 0 for model FUTA, which are the

boundary conditions for the Yukawa couplings at the GUT scale, are

(gu
1 )2 =

8
5

g2, (gd
1)2 =

6
5

g2, (gu
2 )2 = (gu

3 )2 =
8
5

g2,

(gd
2)2 = (gd

3)2 =
6
5

g2, (gu
23)

2 = 0, (gd
23)

2 = (gd
32)

2 = 0, (35)

(gλ)2 =
15
7

g2, (gf
2 )2 = (gf

3 )2 = 0, (gf
1 )2 = 0, (gf

4 )2 = g2.

In the dimensionful sector, the sum rule gives us the following boundary conditions at the
GUT scale for this model [40]:

m2
Hu

+ 2m2
10 = m2

Hd
+ m2

5
+ m2

10 = M2, (36)

and thus we are left with only three free parameters, namely, m5 ≡ m53
, m10 ≡ m103

and M .
4.2. FUTB. Also in the case of FUTB the symmetry is enhanced after the reduction of

couplings. The superpotential has now a Z4 × Z4 × Z4 symmetry with charges as shown in
Table 2 and with the following superpotential:

WB =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5i Hi

]
+ gu

23 102103H4+

+ gd
23 10253 H4 + gd

32 10352 H4 + gf
2 H2 24H2 + gf

3 H3 24H3 +
gλ

3
(24)3. (37)

For this model the nondegenerate and isolated solutions to γ
(1)
i = 0 give us

(gu
1 )2 =

8
5

g2, (gd
1)2 =

6
5

g2, (gu
2 )2 = (gu

3 )2 =
4
5

g2,

(gd
2)2 = (gd

3)2 =
3
5

g2, (gu
23)

2 =
4
5

g2, (gd
23)

2 = (gd
32)

2 =
3
5

g2, (38)

(gλ)2 =
15
7

g2, (gf
2 )2 = (gf

3 )2 =
1
2

g2, (gf
1 )2 = 0, (gf

4 )2 = 0,

Table 2. Charges of the Z4 × Z4 × Z4 symmetry for model FUTB

51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z4 1 0 0 1 0 0 2 0 0 0 Ä2 0 0 0 0
Z4 0 1 0 0 1 0 0 2 0 3 0 Ä2 0 Ä3 0
Z4 0 0 1 0 0 1 0 0 2 3 0 0 Ä2 Ä3 0
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and from the sum rule we obtain [40]

m2
Hu

+ 2m2
10 = M2, m2

Hd
− 2m2

10 = −M2

3
,

m2
5

+ 3m2
10 =

4M2

3
,

(39)

i.e., in this case we have only two free parameters m10 ≡ m103 and M for the dimensionful
sector.

As already mentioned, after the SU(5) gauge symmetry breaking we assume we have the
MSSM, i.e., only two Higgs doublets. This can be achieved by introducing appropriate mass
terms that allow one to perform a rotation of the Higgs sector [1, 2, 67, 68, 70], in such a
way that only one pair of Higgs doublets, coupled mostly to the third family, remains light
and acquires vacuum expectation values. To avoid fast proton decay the usual ˇne tuning to
achieve doubletÄtriplet splitting is performed. Notice that, although similar, the mechanism
is not identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the MSSM,
with the boundary conditions for the third family given by the ˇniteness conditions, while the
other two families are basically decoupled.

We will now examine the phenomenology of such all-loop Finite Uniˇed Theories with
SU(5) gauge group and, for the reasons expressed above, we will concentrate only on the
third generation of quarks and leptons. An extension to three families, and the generation of
quark mixing angles and masses in Finite Uniˇed Theories has been addressed in [71], where
several examples are given. These extensions are not considered here.

4.3. Restrictions from Low-Energy Observables. Since the gauge symmetry is sponta-
neously broken below MGUT, the ˇniteness conditions do not restrict the renormalization
properties at low energies, and all it remains are boundary conditions on the gauge and
Yukawa couplings (35) or (38), the h = −MC relation (19), and the soft scalar-mass sum
rule (21) at MGUT, as applied in the two models. Thus, we examine the evolution of these
parameters according to their RGEs up to two-loops for dimensionless parameters and at
one-loop for dimensionful ones with the relevant boundary conditions. Below MGUT their
evolution is assumed to be governed by the MSSM. We further assume a unique supersym-
metry breaking scale MSUSY (which we deˇne as the geometrical average of the stop masses),
and therefore below that scale the effective theory is just the SM. This allows one to evaluate
observables at or below the electroweak scale.

In the following, we brie�y describe the low-energy observables used in our analysis. We
discuss the current precision of the experimental results and the theoretical predictions. We
also give relevant details of the higher-order perturbative corrections that we include. We do
not discuss theoretical uncertainties from the RG running between the high-scale parameters
and the weak scale. At present, these uncertainties are expected to be less important than the
experimental and theoretical uncertainties of the precision observables.

As precision observables we ˇrst discuss the third-generation quark masses that are leading
to the strongest constraints on the models under investigation. Next we apply B physics and
Higgs-boson mass constraints. We also brie�y discuss the anomalous magnetic moment of
the muon.

4.4. Predictions. We now present the comparison of the predictions of the four models
with the experimental data, see [72] for more details, starting with the heavy quark masses. In



Finite Uniˇed Theories: Theoretical Basis and Phenomenological Implications 307

Fig. 1 we show the FUTA and FUTB predictions for the top pole mass, Mtop, and the running
bottom mass at the scale MZ , mbot(MZ), as a function of the uniˇed gaugino mass M , for
the two cases μ < 0 and μ > 0. The running bottom mass is used to avoid the large
QCD uncertainties inherent for the pole mass. In the evaluation of the bottom mass mbot,
we have included the corrections coming from bottom squarkÄgluino loops and top squarkÄ
chargino loops [73]. We compare the predictions for the running bottom-quark mass with the
experimental value, mb(MZ) = (2.83 ± 0.10) GeV [74]. One can see that the value of mbot

depends strongly on the sign of μ due to the above-mentioned radiative corrections involving
SUSY particles. For both models A and B the values for μ > 0 are above the central
experimental value, with mbot(MZ) ∼ 4.0−5.0 GeV. For μ < 0, on the other hand, model

Fig. 1. The bottom-quark mass at the Z boson scale (a) and top-quark pole mass (b) are shown as a

function of M for both models
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B shows overlap with the experimentally measured values, mbot(MZ) ∼ 2.5−2.8 GeV. For
model A we ˇnd mbot(MZ) ∼ 1.5−2.6 GeV, and there is only a small region of allowed
parameter space at large M , where we ˇnd agreement with the experimental value at the
two σ level. In summary, the experimental determination of mbot(MZ) clearly selects the
negative sign of μ.

Now we turn to the top-quark mass. The predictions for the top-quark mass Mtop are
∼ 183 and ∼ 172 GeV in models A and B, respectively, as shown in Fig. 1, b. Comparing
these predictions with the most recent experimental value mexp

t = (173.1±1.3) GeV [75], and
recalling that the theoretical values for Mtop may suffer from a correction of ∼ 4% [7,63,76],
we see that clearly model B is singled out. In addition, the value of tanβ is found to be
tanβ ∼ 54 and ∼ 48 for models A and B, respectively. Thus, from the comparison of the
predictions of the two models with experimental data only FUTB with μ < 0 survives.

We now analyze the impact of further low-energy observables on the model FUTB with
μ < 0. As additional constraints we consider the following observables: the rare b decays
BR(b → sγ) and BR(Bs → μ+μ−), the lightest Higgs boson mass as well as the density
of cold dark matter in the Universe, assuming it consists mainly of neutralinos. More details
and a complete set of references can be found in [72].

For the branching ratio BR(b → sγ), we take the experimental value estimated by the
Heavy Flavour Averaging Group (HFAG) which is [77Ä79]

BR(b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) · 10−4, (40)

where the ˇrst error is the combined statistical and uncorrelated systematic uncertainty,
the latter two errors are correlated systematic theoretical uncertainties and corrections,
respectively.

For the branching ratio BR(Bs → μ+μ−), the SM prediction is at the level of 10−9, while
the present experimental upper limit from the Tevatron is 4.7 · 10−8 at the 95% C.L. [80],
still providing the possibility for the MSSM to dominate the SM contribution.

Concerning the lightest Higgs boson mass, Mh, the SM bound of 114.4 GeV [81, 82]
can be applied, since the main SM search channels are not suppressed in FUTB. For the
prediction we use the code FeynHiggs [83Ä86].

The prediction of the lightest Higgs boson mass as a function of M is shown in Fig. 2.
The light points shown are in agreement with the two B-physics observables listed above.
The lightest Higgs mass ranges in

Mh ∼ 121 − 126 GeV, (41)

where the uncertainty comes from variations of the soft scalar masses, and from ˇnite (i.e., not
logarithmically divergent) corrections in changing renormalization scheme. To this value one
has to add ±3 GeV coming from unknown higher-order corrections [85]. We have also
included a small variation, due to threshold corrections at the GUT scale, of up to 5% of
the FUT boundary conditions. Thus, taking into account the B-physics constraints results
naturally in a light Higgs boson that fulˇlls the LEP bounds [81,82].

In the same way the whole SUSY particle spectrum can be derived. The resulting SUSY
masses for FUTB with μ < 0 are rather large. The lightest SUSY particle starts around
500 GeV, with the rest of the spectrum being very heavy. The observation of SUSY particles
at the LHC or the ILC will only be possible in very favorable parts of the parameter space.
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Fig. 2. The lightest Higgs mass, Mh, as a function of M for the model FUTB with μ < 0, see text

For most parameter combination only an SM-like light Higgs boson in the range of Eq. (41)
can be observed.

We note that with such a heavy SUSY spectrum the anomalous magnetic moment of
the muon, (g − 2)μ (with aμ ≡ (g − 2)μ/2), gives only a negligible correction to the SM
prediction. The comparison of the experimental result and the SM value (based on the latest
combination using e+e− data) [87]

aexp
μ − ath

μ = (24.6 ± 8.0) · 10−10 (42)

would disfavor FUTB with μ < 0 by about 3σ. However, since the SM is not regarded as
excluded by (g − 2)μ, we still see FUTB with μ < 0 as the only surviving model.

Further restrictions on the parameter space can arise from the requirement that the lightest
SUSY particle (LSP) should give the right amount of cold dark matter (CDM) abundance. The
LSP should be color-neutral, and the lightest neutralino appears to be a suitable candidate [88,
89]. In the case where all the soft scalar masses are universal at the uniˇcation scale, there is
no region of M below O (few TeV) in which mτ̃ > mχ0 is satisˇed, where mτ̃ is the lightest
τ̃ mass, and mχ0 Å the lightest neutralino mass. An electrically charged LSP, however,
is not in agreement with CDM searches. But once the universality condition is relaxed,
this problem can be solved naturally, thanks to the sum rule (21). Using this equation,
a comfortable parameter space is found for FUTB with μ < 0 (and also for FUTA and
both signs of μ) that fulˇlls the conditions of (a) successful radiative electroweak symmetry
breaking, (b) mτ̃ > mχ0 .

Calculating the CDM abundance in these FUT models, one ˇnds that usually it is very
large, thus a mechanism is needed in our model to reduce it. This issue could, for instance, be
related to another problem, that of neutrino masses. This type of masses cannot be generated
naturally within the class of Finite Uniˇed Theories that we are considering in this paper,
although a nonzero value for neutrino masses has clearly been established [74]. However,
the class of FUTs discussed here can, in principle, be easily extended by introducing bilinear
R-parity violating terms that preserve ˇniteness and introduce the desired neutrino masses [90].
R-parity violation [91Ä94] would have a small impact on the collider phenomenology dis-
cussed here (apart from the fact the SUSY search strategies could not rely on a ®missing
energy¯ signature), but remove the CDM bound completely. The details of such a possibility
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Table 3. Representative light spectrum for FUTB with μ < 0

MGUT, GeV 1145 MSUSY, GeV 1831
tanβ 44 αs 0.1171

Mtop, GeV 174.4 mbot(MZ), GeV 2.66
MHiggs, GeV 123 MA, GeV 840
MH , GeV 840 M±

H , GeV 844
Mstop1, GeV 1715 Mstop2, GeV 1952
Mbot1, GeV 1679 Mbot2, GeV 1925
Mstau1, GeV 570 Mstau2, GeV 757
Mchar1, GeV 966 Mchar2, GeV 1486
Mneu1, GeV 520 Mneu2, GeV 740
Mneu3, GeV 966 Mneu4, GeV 1486

in the present framework attempting to provide the models with realistic neutrino masses will
be discussed elsewhere. Other mechanisms, not involving R-parity violation (and keeping the
®missing energy¯ signature), that could be invoked if the amount of CDM appears to be too
large, concern the cosmology of the early Universe. For instance, ®thermal in�ation¯ [95]
or ®late time entropy injection¯ [96] could bring the CDM density into agreement with the
WMAP measurements. This kind of modiˇcations of the physics scenario neither concerns
the theory basis nor the collider phenomenology, but could have a strong impact on the CDM
derived bounds.

Therefore, in order to get an impression of the possible impact of the CDM abundance on
the collider phenomenology in our models under investigation, we will analyze the case that
the LSP does contribute to the CDM density, and apply a more loose bound of

ΩCDMh2 < 0.3. (43)

(Lower values than the ones permitted by (43) are naturally allowed if another particle
than the lightest neutralino constitutes CDM.) For our evaluation we have used the code
MicroMegas [97, 98]. In Fig. 2 we show as dark dots the points that pass the constraints
in (43). One can see that relatively light values of M are favored. These points result
in a relatively light SUSY particle spectrum which might make collider searches somewhat
easier. A representative spectrum of this light part of the allowed parameter space is presented
in Table 3.

A more detailed analysis can be found in [72].

5. FINITE SU(3)3 MODEL

We now examine the possibility of constructing realistic FUTs based on product gauge
groups. Consider an N = 1 supersymmetric theory, with gauge group SU(N)1 ×SU(N)2 ×
· · · × SU(N)k, with nf copies (number of families) of the supersymmetric multiplets
(N, N∗, 1, . . . , 1) + (1, N, N∗, . . . , 1) + . . . + (N∗, 1, 1, . . . , N). The one-loop β-function
coefˇcient in the renormalization group equation of each SU(N) gauge coupling is simply
given by

b =
(
−11

3
+

2
3

)
N + nf

(
2
3

+
1
3

) (
1
2

)
2N = −3N + nf N. (44)
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This means that nf = 3 is the only solution of Eq. (44) that yields b = 0. Since b = 0 is
a necessary condition for a ˇnite ˇeld theory, the existence of three families of quarks and
leptons is natural in such models, provided the matter content is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in [99],
where the details of the model are given. It corresponds to the well-known example of
SU(3)C × SU(3)L × SU(3)R [100Ä103], with quarks transforming as

q =

⎛
⎝d u h

d u h
d u h

⎞
⎠ ∼ (3, 3∗, 1), qc =

⎛
⎝dc dc dc

uc uc uc

hc hc hc

⎞
⎠ ∼ (3∗, 1, 3), (45)

and leptons transforming as

λ =

⎛
⎝N Ec ν

E N c e
νc ec S

⎞
⎠ ∼ (1, 3, 3∗). (46)

Switching the ˇrst and third rows of qc together with the ˇrst and third columns of λ, we
obtain the alternative left-right model ˇrst proposed in [103] in the context of superstring-
inspired E6.

In order for all the gauge couplings to be equal at MGUT, as is suggested by the LEP
results [104], the cyclic symmetry Z3 must be imposed, i.e.,

q → λ → qc → q, (47)

where q and qc are given in Eq. (45) and λ in Eq. (46). Then, the ˇrst of the ˇniteness
conditions (15) for one-loop ˇniteness, namely, the vanishing of the gauge β-function, is
satisˇed.

Next, let us consider the second condition, i.e., the vanishing of the anomalous dimensions
of all superˇelds, Eq. (16). To do that ˇrst we have to write down the superpotential. If
there is just one family, then there are only two trilinear invariants, which can be constructed
respecting the symmetries of the theory, and therefore can be used in the superpotential as
follows:

f Tr (λqcq) +
1
6
f ′ εijkεabc(λiaλjbλkc + qc

iaqc
jbq

c
kc + qiaqjbqkc), (48)

where f and f ′ are the Yukawa couplings associated with each invariant. Quarks and leptons
obtain masses when the scalar parts of the superˇelds (Ñ , Ñ c) obtain vacuum expectation
values (vevs),

md = f〈Ñ〉, mu = f〈Ñ c〉, me = f ′〈Ñ〉, mν = f ′〈Ñ c〉. (49)

With three families, the most general superpotential contains 11f couplings, and 10f ′

couplings, subject to 9 conditions, due to the vanishing of the anomalous dimensions of each
superˇeld. The conditions are the following:

∑
j,k

fijk(fljk)∗ +
2
3

∑
j,k

f ′
ijk(f ′

ljk)∗ =
16
9

g2δil, (50)
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where

fijk = fjki = fkij , (51)

f ′
ijk = f ′

jki = f ′
kij = f ′

ikj = f ′
kji = f ′

jik. (52)

Quarks and leptons receive masses when the scalar parts of the superˇelds Ñ1,2,3 and Ñ c
1,2,3

obtain vevs as follows:

(Md)ij =
∑

k

fkij〈Ñk〉, (Mu)ij =
∑

k

fkij〈Ñ c
k〉, (53)

(Me)ij =
∑

k

f ′
kij〈Ñk〉, (Mν)ij =

∑
k

f ′
kij〈Ñ c

k〉. (54)

We will assume that below MGUT we have the usual MSSM, with the two Higgs doublets
coupled maximally to the third generation. Therefore, we have to choose the linear combi-
nations Ñ c =

∑
i

aiÑ
c
i and Ñ =

∑
i

biÑi to play the role of the two Higgs doublets, which

will be responsible for the electroweak symmetry breaking. This can be done by choosing
appropriately the masses in the superpotential [68], since they are not constrained by the
ˇniteness conditions. We choose that the two Higgs doublets are predominately coupled to
the third generation. Then these two Higgs doublets couple to the three families differently,
thus providing the freedom to understand their different masses and mixings. The remnants
of the SU(3)3 FUT are the boundary conditions on the gauge and Yukawa couplings, i.e.,
Eq. (50), the h = −MC relation, and the soft scalar-mass sum rule Eq. (21) at MGUT, which,
when applied to the present model, takes the form

m2
Hu

+ m2
t̃c + m2

q̃ = M2 = m2
Hd

+ m2
b̃c + m2

q̃, (55)

where t̃c, b̃c, and q̃ are the scalar parts of the corresponding superˇelds.
Concerning the solution to Eq. (50), we consider two versions of the model:
I) An all-loop ˇnite model with a unique and isolated solution, in which f ′ vanishes,

which leads to the following relation:

f2 = f2
111 = f2

222 = f2
333 =

16
9

g2. (56)

As for the lepton masses, because all f ′ couplings have been ˇxed to be zero at this order,
in principle they would be expected to appear radiatively induced by the scalar lepton masses
appearing in the SSB sector of the theory. However, due to the ˇniteness conditions they
cannot appear radiatively and remain as a problem for further study.

II) A two-loop ˇnite solution, in which we keep f ′ nonvanishing and we use it to
introduce the lepton masses. The model in turn becomes ˇnite only up to two-loops since
the corresponding solution of Eq. (50) is not an isolated one any more, i.e., it is a parametric
one. In this case we have the following boundary conditions for the Yukawa couplings:

f2 = r

(
16
9

)
g2, f ′2 = (1 − r)

(
8
3

)
g2, (57)

where r is a free parameter which parametrizes the different solutions to the ˇniteness condi-
tions. As for the boundary conditions of the soft scalars, we have the universal case.
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Predictions for SU(3)3. Below MGUT all couplings and masses of the theory run ac-
cording to the RGEs of the MSSM. Thus, we examine the evolution of these parameters
according to their RGEs up to two-loops for dimensionless parameters and at one-loop for
dimensionful ones imposing the corresponding boundary conditions. We further assume a
unique supersymmetry breaking scale MSUSY and below that scale the effective theory is just
the SM.

We compare our predictions with the most recent experimental value mexp
t = (173.1 ±

1.3) GeV [75], and recall that the theoretical values for mt suffer from a correction of
∼ 4% [7, 63, 76]. In the case of the bottom quark, we take again the value evaluated at
MZ , mb(MZ) = (2.83 ± 0.10) GeV [74]. In the case of model I, the predictions for the
top-quark mass (in this case mb is an input) mt are ∼ 183 GeV for μ < 0, which is above
the experimental value, and there are no solutions for μ > 0.

For the two-loop model II, we look for the values of the parameter r which comply with
the experimental limits given above for top- and bottom-quark masses. In the case of μ > 0,
for the bottom quark, the values of r lie in the range 0.15 � r � 0.32. For the top mass,
the range of values for r is 0.35 � r � 0.6. From these values we can see that there is a
very small region where both top- and bottom-quark masses are in the experimental range
for the same value of r. In the case of μ < 0, the situation is similar, although slightly
better, with the range of values 0.62 � r � 0.77 for the bottom mass, and 0.4 � r � 0.62
for the top-quark mass. So far in the analysis, the masses of the new particles hs and Es
of all families were taken to be at the MGUT scale. Taking into account new thresholds
for these exotic particles below MGUT, we hope to ˇnd a wider phenomenologically viable
parameter space. The details of the predictions of the SU(3)3 are currently under a careful
re-analysis in view of the new value of the top-quark mass, the possible new thresholds
for the exotic particles, as well as different intermediate gauge symmetry breaking into
SU(3)c × SU(2)L × SU(2)R × U(1) [105].

CONCLUSIONS

A number of proposals and ideas have matured with time and have survived after careful
theoretical studies and confrontation with experimental data. These include part of the original
GUTs ideas, mainly the uniˇcation of gauge couplings and, separately, the uniˇcation of
the Yukawa couplings, a version of ˇxed point behaviour of couplings, and certainly the
necessity of supersymmetry as a way to take care of the technical part of the hierarchy
problem. On the other hand, a very serious theoretical problem, namely, the presence of
divergencies in Quantum Field Theories (QFT), although challenged by the founders of
QFT [106Ä108], was mostly forgotten in the course of developments of the ˇeld partly due to
the spectacular successes of renormalizable ˇeld theories, in particular of the SM. However,
fundamental developments in Theoretical Particle Physics are based on reconsiderations of the
problem of divergencies and serious attempts to solve it. These include the motivation and
construction of string and noncommutative theories, as well as N = 4 supersymmetric ˇeld
theories [109, 110], N = 8 supergravity [111Ä115] and the AdS/CFT correspondence [116].
It is a thoroughly fascinating fact that many interesting ideas that have survived various
theoretical and phenomenological tests, as well as the solution to the UV divergencies problem,
ˇnd a common ground in the framework of N = 1 Finite Uniˇed Theories, which we have
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described in the previous sections. On the theoretical side, they solve the problem of UV
divergencies in a minimal way. On the phenomenological side, since they are based on
the principle of reduction of couplings (expressed via RGI relations among couplings and
masses), they provide strict selection rules in choosing realistic models which lead to testable
predictions. The celebrated success of predicting the top-quark mass [1Ä4, 6, 117] is now
extented to the predictions of the Higgs masses and the supersymmetric spectrum of the
MSSM. At least the prediction of the lightest Higgs sector is expected to be tested in the next
couple of years at the LHC.
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