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The evolution of the Universe is considered by means of a nonlinear realization of afˇne and
conformal symmetries via MaurerÄCartan forms. Conformal symmetry is realized by the geometry of
similarity with the Dirac scalar dilaton. We provide preliminary quantitative evidence that the zeroth
harmonic of the Dirac scalar dilaton may lead to observationally viable cosmology, where the type
Ia supernova luminosity distances Ä redshift relation can be explained by vacuum dilaton dark energy.
The diffeo-invariance of spin connection coefˇcients of the afˇne formulation leaves only one degree
of freedom of strong gravitation waves. We discuss that the dark matter effect in spiral galaxies
can be described by the gravitation waves expressed through the spin connection coefˇcients of the
afˇne formulation. We show that the evolution equations of the afˇne gravitons with respect to the
dilaton zeroth mode coincide with the equations of ®squeezed oscillator¯. The list of theoretical and
observational arguments is given in favor of that the origin of the Universe can be described by quantum
vacuum creation of these squeezed oscillators.

PACS: 11.25.Hf

INTRODUCTION

The Blue Band predictions of the light Higgs particle masses [4] 114.4 < mh < 134 GeV
are based on the belief that the minimal Standard Model of the electroweak interactions can
describe amplitudes of all elementary particle processes. This minimal Standard Model does
not contain heavy fermions, SUSY generalization, and other modiˇcations that accompany
the accepted cosmological ΛCold Dark Matter Model [5].

The Hamlet question of the modern physics is ®To be Λ and Cold Dark Matter, or not to
be?¯ Large Hadron Collider (LHC) is needed to reply to this question.
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In the present paper, we show that a part of functions of LHC can be covered by the
present-day cosmological data described in the framework of an alternative cosmological
model compatible with the physical content of the minimal Blue Band Standard Model.
This model can be formulated on the way of generalization of the Poincar	e group as the
basis of all relativistic physics beginning with the relativistic transformations of the Cosmic
Microwave Background and galaxy superclusters and ˇnishing with the Standard Model (SM)
of elementary particles and the QFT axiomatics [3]. It is sufˇcient to add to the Poincar	e
group only ten proper afˇne transformations, and the afˇne group of all linear transformations
of four-dimensional space-time arises as the basis of the gravitation theory, as was shown
by V. I. Ogievetsky [1,2]. In the joint nonlinear realization [6,7] of the afˇne and conformal
groups, the new ten afˇne transformation parameters are identiˇed with ten gravitons as the
BogoliubovÄGoldstone modes accompanying the spontaneous afˇne and conformal symmetry
breaking.

However, the afˇneÄconformal gravitation theory differs from the Einstein one. The
new fact is the conformal symmetry broken by the nonsingular initial data. The confor-
mal symmetry can be included into afˇne theory by the Dirac version of the geometry of
similarity [8]. The latter means that measurable quantities are identiˇed with the confor-
mal ones for which the cosmological scale factor is identiˇed with the zeroth harmonics of
the dilaton scalar ˇeld that changes masses but not distances. In this case, introduction of
the Λ term can be completely avoided [9Ä11]. In this context we emphasize that SNeIa
data reveal that observational distances RSNeIa are greater than the distances predicted by
the accepted cosmology with the massive matter dominance RΩM�1. There are two pos-
sibilities to increase these distances. First of them is to suppose the Λ-term dominance
RSNeIa = RΩΛ:p=−ρ=0.7,ΩM:p=0=0.3, and the second is the Dirac geometry of similarity, where
the real measurable distance becomes greater because it acquires an additional z-factor. In
this case, the SNeIa data require the dominance of the kinetic energy of an additional sterile
scalar ˇeld Q with RSNeIa = RΩp=+ρ=0.85±0.10(1 + z) [9].

Thus, the afˇne gravitation theory differs from the initial Einstein theory by the dilaton
geometry of similarity and the MaurerÄCartan forms as objects of the Lorentz transformations
in the tangent Minkowskian space-time. In the present paper, within this afˇne gravitation
theory we will attempt to provide a novel view on the topical problems of the modern
cosmology (see [5]) including dark matter, dark energy, and the Planck epoch at the beginning
of the Universe.

The content of the paper is the following. Section 1 is devoted to a version of General
Relativity obtained in [2] as joint nonlinear realization of afˇne and conformal symmetries and
adapted to the Dirac geometry of similarity [8]. Section 2 considers the frame of reference
deˇned as the DiracÄADM foliation [12, 13]. Section 3 is devoted to the cosmology as a
representation of the Poincar	e group. In Sec. 4, we study the problems of energy and the
Hamiltonian evolution in GR. The strong graviton is considered in Sec. 5. In Sec. 6, we
consider the evolution equations of gravitons and their quantum vacuum creation. In Sec. 7,
we consider a possible uniˇcation of the GR and SM, so that the Higgs scalar ˇeld evolution
with respect to the dilaton zeroth mode is consistent with the squeezed oscillator dynamics.
In Appendix A, we brie
y recapitulate the standard Hamiltonian approach in terms of the
Cartan forms in order to compare it with our approach. Appendix B is devoted to the dilaton
cosmological perturbation theory.



320 Arbuzov A. B. et al.

1. REALIZATION OF AFFINE & CONFORMAL SYMMETRIES

The nonlinear realization of afˇne A(4) and conformal C symmetries in the factor space
A(4) ⊗ C/L with the Lorentz subgroup L of the stable vacuum was constructed in [1].

According to a general theory of the nonlinear realization [6, 7] of an afˇne group G,
the basic elements are the subgroup of the vacuum stability L and ˇnite transformations
G = eiP ·xeiR·h in the factor space A(4)/L. Here, these transformations deal with four
coordinates xμ and ten Goldstone ˇelds, h(α)(β), gravitons, multiplied by the operators of
shift P and proper afˇne transformations R, respectively [1]. Further, the inˇnitesimal
transformation for the afˇne group is

GdG−1 = i[P(α) · ωP
(α) + R(αβ) · ωR

(αβ) + L(αβ) · ωL
(αβ)],

which yields the MaurerÄCartan forms (introduced in the GR by Fock and Cartan [14,15])

ωP
(α)(d) = e(α)μdxμ, (1.1)

ωR
(αβ)(d) =

1
2

(
eμ
(α)de(β)μ + eμ

(β)de(α)μ

)
, (1.2)

ωL
(αβ)(d) =

1
2

(
eμ
(α)de(β)μ − eμ

(β)de(α)μ

)
. (1.3)

Note that there are two types of indexes: one belongs to the subgroup L and the other
(bracket-indexes) to the coset A(4)/L. In this approach the MaurerÄCartan forms with the
coset indexes are main objects of the Poincar	e and Lorentz transformations.

In general, to construct a gravitational theory, one needs to consider the covariant differ-
entiation of a set of the ˇelds Ψ transformed by the representations with the Lorentz group
generators LΨ

μν

D(λ)Ψ = DΨ/ωP
(λ) =

[
∂(λ) +

1
2
iv(μ)(ν),(λ)L

Ψ
(μ)(ν)

]
Ψ, (1.4)

where ∂(λ) = (e−1)σ(λ)∂σ. The action of the Goldstone ˇelds, h(α)(β), can be obtained with
the aid of the commutator of the covariant differentiations of a set of the ˇelds Ψ [16][

D(λ)D(γ) − D(γ)D(λ)

]
Ψ = iRαβ,λγLΨ

(α)(β)Ψ/2, (1.5)

where the Riemannian tensor

R(μ)(ν),(λ)(ρ) = ∂(λ)v(μ)(ν),(ρ) + v(μ)(ν),(γ)v(ρ)(γ),(λ) + v(μ)(γ),(ρ)v(ν)(γ),(λ) − ((λ) ↔ (ρ))
(1.6)

is constructed with the help of MaurerÄCartan forms (1.2) and (1.3)

v(μ)(ν),(γ) = [ωL
(μν)(∂(γ)) + ωR

(μγ)(∂(ν)) − ωR
(νγ)(∂(μ))]. (1.7)

Thus, these elements enable us to formulate the EinsteinÄHilbert action

WHilbert = −
∫

d4x| − e|1
6
R(e) (1.8)
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and the interval
ds2 = gμν dxμ dxν = ωP

(α)(d) ⊗ ωP
(β)(d)η(α)(β) (1.9)

via the diffeo-invariant simplex components (1.1) and MaurerÄCartan forms (1.2)
and (1.3) [14Ä17] in the local tangent Minkowskian space with the metric η(α)(β) =
Diag (1,−1,−1,−1). We recall that, in contrast to the standard approaches (where the
main relativistic covariant objects are the coordinate parameters xμ), in our approach the
objects of relativistic transformations are the MaurerÄCartan forms.

Following Dirac [8], in order to introduce the conformal symmetry of the GR as the
nonlinear realization of a joint afˇne and conformal symmetries, we employ the dilaton scalar
ˇeld D. This nonlinear realization contains the dilaton D as the BogoliubovÄGoldstone
particle accompanying the spontaneous conformal symmetry breaking.

Exploiting the conformal symmetry, one can see that this nonlinear realization [1] coincides
with the simplest scalar version of geometry of similarity [18] proposed by Dirac [8]. We
recall that in the geometry of similarity one can measure only a ratio of two spatial intervals
at the same instance. In other words, measured physical quantities are identiˇed with the
conformal ones

F̃ (n) = enDF (n), d̃s
2

= g̃μν dxμ dxν = e2Dds2 (1.10)

obtained from the standard ones F (n) by the conformal transformation, where (n) is the
conformal weight. Here, the dilaton D is ˇxed by the unit spatial metric determinant |g̃(3)| = 1
[19], so that

D = −1
6

log |g(3)
ij |. (1.11)

Thus, the Hilbert action (1.8) as the nonlinear realization of a joint afˇne and conformal
symmetries takes the form

WHilbert = −
∫

d4x

[
| − ẽ|e−2D

6
R(ẽ) − e−D∂μ

(
| − ẽ|g̃μν∂νe−D

)]
. (1.12)

Hereafter, one uses the units M2
Pl3/(8π) = 1. Below, with the aid of the action (1.12), we

formulate our approach to the classical and quantum version of the GR.

2. THE DIRACÄADM FOLIATION

We start our approach from the formulation of the Hamiltonain dynamics based on the
DiracÄADM 4 = 1 + 3 foliation [12,13]. In particular, in the interval

d̃s
2

= e2Dds2 = ω̃(0) ⊗ ω̃(0) − ω̃(b) ⊗ ω̃(b) (2.1)

the MaurerÄCartan forms in view of the dilaton D may be written as

ω̃(0) = e−2DN dx0 = e−2DNN0 dx0 ≡ e−2DN dτ,

ω̃(b) = e(b)i dxi + e(b)jN
j dx0 = ω(b) + N(b) dτ, (2.2)

ω(b) = e(b)i dxi, (2.3)

e(b)jN
j dx0 = N(b) dτ. (2.4)
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Here dτ = N0 dx0 is the dilaton proper time-interval deˇned by the constraint 〈N−1〉 = N−1
0 ,

the shift vector components N jej(b) = N(b) = N
||
(b) +N⊥

(b) (∂(b)N
⊥
(b) = 0) and the Dirac lapse

function N(x0, xj) = N0(x0)N (τ, x) are the nondynamical potentials, ω̃(b) are the linear

forms deˇned via the triads e(b)i with unit spatial metric determinant |g̃(3)
ij | ≡ |e(b)je(b)i| = 1.

Triads e(a)i form the spatial curvature [17]:

R(3) = R(3)(e) − 4
3
e7D/2�e−D/2, (2.5)

R(3)(e) = −2∂i [ei
(b)σ(c)|(bc)] − σ(c)|(bc)σ(a)|(ba) + σ(c)|(df)σ(f)|(d)(c); (2.6)

σ(c)|(ab) = [ωL
(ab)(∂(c)) + ωR

(ac)(∂(b)) − ωR
(bc)(∂(a))],

ωR
(ab)(∂(c)) =

1
2
[ej

(a)∂(c)e
j
(b) + ei

(b)∂(c)ei
(a)], (2.7)

ωL
(ab)(∂(c)) =

1
2
[ej

(a)∂(c)e
j
(b) − ei

(b)∂(c)ei
(a)]. (2.8)

Here, � = ∂i[ei
(a)e

j
(a)∂j ] is the Laplace operator.

According to a general wisdom, in the Hamiltonian approach, the general coordinate
transformations are reduced into the kinemetric subgroup [20]

x0 → x̃0 = x̃0(x0), (2.9)

xk → x̃k = x̃k(x0, x1, x2, x3). (2.10)

In the case of the reparametrization invariance (2.9), one of the variables (3.2) plays the role
of the evolution parameter and its momentum Å the measurable energy1. Following the
DeWitt analogy with special relativity [22], we employ the zeroth dilaton harmonic 〈D〉 as
the evolution parameter.

As a result, the Hilbert action (1.12) can be represented as a sum

WHilbert = Wz + W̃g (2.11)

of the zeroth dilaton harmonic term

Wz = −
∫

d3x

∫
dx0 (∂0〈D〉)2

N0
≡ −

∫
d3x

τ0∫
τI

dτ(∂τ 〈D〉)2 (2.12)

and the graviton term W̃g

W̃g =
∫

dx0
[
N0 e−2〈D〉Lg

]
, (2.13)

Lg = e2〈D〉
∫

d3xN
[
−(vD)2 +

v2
(ab)

6
− e−4D R(3)

6

]
. (2.14)

1Therefore, the coordinate evolution parameter x0 as an object of reparametrizations cannot be considered as
measurable quantities. And the corresponding Einstein equation (3.9) cannot be treated as a zero value of measurable
energy. This treatment is used in the ADM approach [13] as an argument in favor of a nonlocal energy. Therefore,
the acceptable introduction of a nonlocal energy proposed in [13, 21] has no substantial foundation.
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Here

vD =
1
N

[
(∂0 − N l∂l)D + ∂lN

l/3
]
, (2.15)

v(ab) =
1
N

[
ωR

(ab)(∂0 − N l∂l) + ∂(a)N
⊥
(b) + ∂(a)N

⊥
(b)

]
are velocities of the dilaton and of the triad components.

Following Dirac [12, 21], one can deˇne such a coordinate system, where the covariant
velocity of the local volume element vD and its momentum become zero:

PD = 2vD =
2
N

[
(∂0 − N l∂l)D + ∂lN

l/3
]

= 0. (2.16)

Thus, the dilaton deviation D can be treated as a static potential (see Appendix B).

3. RELATIVISTIC-INVARIANT EVOLUTION OF UNIVERSE

We recall that the accepted description of the cosmological evolution of the Universe
is based on the hypothesis of homogeneity of Einstein equations [23], which considers the
interval in the form

ds2
hom = (dt)2 − a2(t)(dxj)2 = a2(t)[(dη)2 − (dxj)2] = a2(t)d̃s

2

hom. (3.1)

Here, a = (1 + z)−1 is the homogeneous cosmological scale factor (or z-factor); dt is the
world time interval; dη = dt/a(t) is the conformal (proper) time interval of the photon, and
spatial coordinates xj are associated with the coordinate distance r =

√
(xj)2.

The Dirac dilaton variation principle [8] enables us to introduce the cosmological scale
factor into the Hilbert action as the zeroth harmonic of the dilaton

− log a = log(1 + z) = 〈D〉 = V −1
0

∫
V0

d3xD(x). (3.2)

Note that this deˇnition is consistent with Einstein's cosmological principle of averaging of
all scalar ˇelds of the theory over the ˇnite volume V0 =

∫
d3x [24]. In this case, one obtains

that ds2
hom = e−2〈D〉d̃s2

hom (see Eq. (3.1)). The homogeneous interval (3.1) is expressed in
our approach to the GR by means of the zeroth harmonic of the dilaton in the Hilbert action.

In the standard approach to the GR the interval (3.1) is treated as the frame-independent
one. Using the transformation laws of simplex components (1.1) in the tangent Minkowskian
space-time, we introduce the relativistic-invariant time interval derivative∫ ωP

(1) ∧ ωP
(2) ∧ ωP

(3)

ωP
(0)

〈D〉≡
∫
V0

d3x
d

N(x0, xj) dx0
〈D〉 = V0

d

N0 dx0
〈D〉 ≡ V0

d

dτ
〈D〉. (3.3)

The construction (2.2), (3.1), and (3.2), dx0N0(x0) = dτ = a−2dη gives the proper vacuum
time interval and the perturbation series over deviations N = 1 + δ . . . with the consistent
constraint

∫
d3xδ = 0. The derivative provides the frame-independent cosmic evolution in
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the tangent Minkowskian space-time with the metric η(α)(β) = Diag (1,−1,−1,−1) and
interval (1.9), where objects of relativistic transformation are the simplex components ωP

(α).
In accordance with the principle of relativistic invariance of the cosmological motion, the

time derivative in (3.3)

d

dτ
〈D〉 = H0 = const (3.4)

is a constant of motion treated as the present-day value of the Hubble parameter. The
deˇnitions dτ = a−2dη, a = (1 + z)−1, and the condition ∂τ 〈D〉 = H0 determine the
conformal Hubble parameter Hc

∂η〈D〉 =
1
a

da

dη
= H0a

−2 = H0(1 + z)2 = Hc. (3.5)

This condition ˇxes the single cosmological vacuum regime a
da

dη
= H0 of the rigid state,

where the pressure is equal to the energy density p = ρ [23]. Indeed, the dominance of this
regime, determined by the dilaton zeroth mode energy, describes the SNeIa data [25] in the
framework of the Dirac geometry of similarity [9].

The vacuum approximation of the Hilbert action keeps only the zeroth dilaton harmonic
term Wv

WHilbert 
 Wv = −V0

∫
dx0

[
(∂0〈D〉)2

N0
+ N0ρcr

]
, (3.6)

which repeats the action of a relativistic particle at rest. Here ρcr = H2
0M2

Pl3/(8π) = H2
0 is

the critical density in the units (1.12) considered as a motion integral. It corresponds to the
relativistic-invariant vacuum state (3.5) in the Empty Universe. Further we will show that this
approximation of the Empty Universe in our picture dominates during all evolution epoch,
while other contributions (matter, radiation, etc.) are small.

The canonical momentum P〈D〉

P〈D〉 =
∂Wv

∂0〈D〉 = −2V0∂τ 〈D〉 (3.7)

gives us the well-deˇned Hamiltonian formulation

Wv = V0

∫
dx0

[
−P〈D〉∂0〈D〉 + N0

P 2
〈D〉 − E2

v

4V0

]
, (3.8)

where E2
v = 4V 2

0 ρcr.
The DeWitt analogy with the special relativity [22] determines the measurable energy of

the Universe in the ˇeld space of events as the solution of the energy constraint

−N
δWv

δN
= 0 → P 2

〈D〉 − E2
v = 0 (3.9)

with respect to the zeroth dilaton momentum (3.7).
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The elimination of the canonical momentum P〈D〉 from the system of Eqs. (3.7), (3.9)
provides the solution

τ0 − τI = ±2V0

〈D〉0∫
〈D〉I

d〈D〉
Ev(〈D〉) , (3.10)

where the cosmological energy Ev(〈D〉) is determined as a positive constraint-shell value of
the zeroth mode momentum. This equation can be rewritten as the redshift Å coordinate
distance relation, using Eqs. (3.2) and dτ = a2dη:

r/c = η0 − η = H−1
0

a=(1+z)−1∫
1

a da. (3.11)

The Hilbert action in the vacuum approximation admits the ordinary quantization. It leads
to the Universe wave function

ΨU =
1√
2Ev

[
A+ exp {iW+} θ[〈D〉0 − 〈D〉I ] + A− exp {iW−} θ[〈D〉I − 〈D〉0]

]
, (3.12)

where W± = ±
〈D〉0∫
〈D〉I

d〈D〉P〈D〉 is the constraint-shell action, θ[x > 0] = 1, θ[x < 0] = 0 are

the theta functions. The coefˇcients A± are treated as the creation (+) and annihilation (−)
operators. It solves the vacuum problem and gives the arrow of the time τ0 > τI in Eq. (3.10).
One can see that in the wave function (3.12) there are two changes of sign of both energy
and time intervals. Thus, the arrow of the time τ0 > τI and beginning of the time at τ → ∞
are the quantum anomalies as a consequence of the vacuum postulate.

In the rigid regime (3.11) deˇned by the horizon r = [2H0(1 + z)2]−1 using

MPl = 1.2211 · 1019 GeV, (3.13)

H0 = 100 km · s−1 · h = 2.1332 · 10−42 GeV · h, (3.14)

one can obtain the value of the z-factor at the Planck epoch MPl = [1 + zPl]44H0, or

1 + zPl =
(

MPl

4H0

)1/4


 1.2 · 1015. (3.15)

It is just the instance where a value of the action is equal to unit. Recall that a value of
the gravitation action in the four-dimensional space-time is proportional to the product of the
squired Planck mass and the four-dimensional space-time horizon volume [2H0(1 + z)2]−4.

The acceptable naive relation MPl ∼ [1 + zPl]inflatH0 leads to the tremendous value
[1 + zPl]inflat ∼ 1061.



326 Arbuzov A. B. et al.

4. DILATON VERSION OF GR

Let us consider the dilaton version of the GR supplemented by a scalar ˇeld Q and photon.
The action is given by Eq. (A.1) in Appendix A, where the standard Dirac Hamiltonian
approach is adapted to the afˇne gravitation theory.

The difference of our approach to the theory (A.1) from the standard Dirac one given in
Appendix A is the operation of the separation of the zeroth and nonzero harmonics

D = 〈D〉 + D, Q = 〈Q〉 + Q (4.1)

with the strong constraint
∫
V0

Dd3x = 0 in the action (A.1). This action takes the form of the

sum of the zeroth modes and nonzero ones

W = Wz + W̃ , (4.2)

where

Wz =
∫

dx0
[
(∂0〈Q〉)2 − (∂0〈D〉)2

] ∫
d3xN−1(x0,x) (4.3)

is the zeroth mode action, where the integral
∫

d3xN−1(x0,x) = V0N
−1
0 N−1(x0,x) =

V0N
−1
0 rewritten as the average

V −1
0

∫
d3xN−1(x0,x) ≡ 〈N−1〉 = N−1

0 → 〈N0N
−1〉 ≡ 〈N−1〉 = 1 (4.4)

determines the diffeo-invariant time interval dx0N0 = dτ given by Eq. (3.3); while W̃ repeats
action (A.1) for nonzero harmonics associated with local excitations.

One can see that the separation (4.1) does not commute with the operation of the variation
of the action.

The variation of action (4.2) with respect to the lapse function N leads to the energy
constraint

N
δW

δN
= 0 → [∂0〈D〉]2 − [∂0〈Q〉]2

N
− NH = 0, (4.5)

where H is deˇned by Eqs. (A.13) and (A.14), while the Dirac energy constraint takes the
form H = 0. This fact reveals a crucial role of zeroth harmonics (3.2) in both the classical
Hamiltonian evolution and the quantum one.

The energy constraint (4.5) is resolved by the averaging over the volume V0. Using
Eq. (4.4), we obtain the solutions as the global constraint

[∂τ 〈D〉]2 − [∂τ 〈Q〉]2 = 〈NH〉 =
〈√

H
〉2

(4.6)

and the local one

N =
N

N0
=

〈√
H

〉
√
H

. (4.7)
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These constraints determine the diffeo-invariant lapse function through the energy density H
given by Eq. (A.13) and ˇx the diffeo-invariant interval (3.3) dτ = N0 dx0.

In terms of the zero mode momenta

P〈D〉 = 2V0∂τ 〈D〉, P〈Q〉 = 2V0∂τ 〈Q〉 (4.8)

the energy constraint (4.6) takes the form (3.9)

P 2
〈D〉 − E2 = 0, (4.9)

where

E2 = P 2
〈Q〉 + 4V0HDirac, (4.10)

HDirac =
∫

d3xNH, (4.11)

H is the conventional ˇeld Hamiltonian given by Eq. (A.13) and P〈Q〉 = Ev = 2V0H0

√
Ωv is

an integral of motion ∂τP〈Q〉 = 0 determined by ˇtting with observational data (3.4).
The global energy constraint (4.9) has two solutions: positive and negative

E± = ±
√

P 2
〈Q〉 + 4V0HDirac = ±

[
P〈Q〉 +

2V0

P〈Q〉
HDirac + . . .

]

 ±

[
Ev +

HDirac

H0

]
. (4.12)

In the context of the stability of the physical theory, one can recall that the vacuum is the
state with the minimal energy deˇned as the positive solution of the energy constraint with
respect to the canonical momentum of the zeroth dilaton harmonic. The negative energy is
removed by the quantization procedure, where the creation of particles with negative energy
is replaced by the annihilation of particles with positive energy. This change leads to the
classical symmetry breaking as quantum anomalies [26, 27]. One of these anomalies is the
vacuum creation of the Universe. What does Quantum Gravity mean? There are a lot of
problems on the way of consistent quantization of the metric components and ˇeld variables
in GR. However, in the relativistic physics one can quantize the phase space of initial data
as the motion integrals obtained by the Bogoliubov transformations [28], in the spirit of
the Blokhintsev statistical ensembles of states in Quantum Mechanics [29]. Therefore, on
the stage of construction of irreducible unitary representations, we propose the priority of
quantum principles of the type of the vacuum postulate, spectrality, and uncertainty. The
priority of quantum principle leads to new physical consequences, because the separation of
quantum zeroth modes is fulˇlled before the variation of the action.

Here is the point, where one can introduce the concept of the evolution operator

U+(I, 0) = TD exp

⎧⎨⎩−i

D0∫
DI

d〈D〉E

⎫⎬⎭ . (4.13)

If homogeneous vacuum energy P 2
〈Q〉 = E2

v dominates in (4.12), so that E � E − Ev, the
evolution operator is factorized

U+(I, 0) 
 e−iEv(D0−DI)Tτ exp

⎧⎨⎩−i

τ0∫
τI

dτ HDirac

⎫⎬⎭ , (4.14)
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where HDirac = H0 + Hint is given by Eq. (4.11). In the light of the Dirac Hamiltonian
approach this evolution operator is the cosmological generalization of the FaddeevÄPopov
expression for the evolution operator in GR of the local graviton excitations considered in [21].
The evolution operator (4.14) includes both their Newton-like interactions and cosmological
creation of gravitons. Finally, we got the method of calculation of the energy budget of the
Universe using the deˇnition of the present-day state of the Universe as the evolution of the
Bogoliubov vacuum state and the standard interaction representation of QFT [3] in terms of
the Bogoliubov ˇeld operators U+(I, 0)|I〉 = Sb(τI , τ0)|in〉, where

Sb(τI , τ0) = Tτ exp

⎧⎨⎩−i

τ0∫
τI

dτ Hint(b+, b−)

⎫⎬⎭ . (4.15)

In this case, the energy budget of the Universe is described as the Bogoliubov vacuum
expectation value. It is given by the formula

(∂τ 〈D〉)2 = ρv + 〈out|S−1
b (τI , τ0)V0

−1HDiracSb(τI , τ0)|in〉 =

= ρv + 〈out|V −1
0

⎧⎨⎩H0 + i

τ0∫
τI

dτ [H0(τ0), Hint(τ)] + . . .

⎫⎬⎭ |in〉. (4.16)

5. STRONG GRAVITON

The key point of our approach is to express the Hamiltonian approach to the GR action
directly in terms of the MaurerÄCartan forms. Note, that in the spin formulation of the GR
considered by Schwinger [17], the equations of motion were derived in terms of the simplex
components of an unconstrained system. We express the simplex components by means
of the spin connection coefˇcients constrained by the condition of diffeo-invariance. The
dependence of the linear forms

ω(b)(d) = e(b)i dxi = dX(b) − X(c)ei
(c) de(b)i = dX(b) − X(c)[ωR

(cb) + ωL
(cb)] (5.1)

on the tangent space coordinates X(b) ≡
∫

dxie(b)i = xie(b)i via the spin connection co-
efˇcients can be obtained by means of the Leibniz rule AdB = d(AB) − (AB)d log (A)
(in particular, d[xi]eT

bi = d[xieT
bi] − xid[eT

bi]).
The difference between this approach to gravitational waves and the accepted one is that

the symmetry with respect to diffeomorphisms is imposed on spin connection coefˇcients.
This difference leads to the novel result that follows from the theorem [30]: any arbitrary
two-dimensional space metric dl2 = hAB dxA dxB; A, B = 1, 2 can be presented by dif-
feomorphisms xA → x̃A = x̃A(x1, x2) in a diagonal form. The result consists in the fact
that a kinemetric-invariant nonlinear plane wave moving along a direction k with the unit
determinant det h = 1 contains only a single metric component. Using two photon-like

polarization vectors ε
(α)
(a) (k) and the condition

∑
α=1,2

ε
(α)
(a) (k)ε(α)

(b) (k)=δ(a)(b) −
k(a)k(b)

k(2)
, one

can express the linear graviton form with the aid of these vectors:

ωR
(ab)(∂(c)) =

∑
k2 �=0

eikX

√
2ωk

k(c)[εR
(ab)(k)g+

k (η) + εR
(ab)(−k)g−k (η)], (5.2)
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where εL
(ab) = 0 and εR

(ab)(k) = diag [1,−1, 0] in the orthogonal basis of spatial vectors

[ε (1)(k), ε (2)(k), k]. Here, g± are the holomorphic variables of the single degree of freedom,

ωk =
√

k2 is the graviton energy normalized (like a photon in QED) on the units of volume
and time

g±k =
√

8π

MPlV
1/2
0

g±k . (5.3)

Thus, in the class of plane wave functions, the kinemetric-invariant section of the nonlinear
Hamiltonian of the GR coincides with the bilinear theory of a scalar-like ˇeld, if one neglects
Newtonian interactions (2.5).

Let us compare the commonly accepted (see, e.g., [31,32]) interval

ds2
h = a2(η)

[(
dx0

)2 − dxidxj
(
δij + 2hTT

ij + 2hTT
il hTT

lj + . . .
)]

(5.4)

with the diffeo-invariant one in the mean ˇeld approximation N(x0, xj) = N0(x0), N j = 0,
D = 0

ds2
g = a2(η)[(dη)2 − (dX(b) − X(c)ω

R
(cb))

2], (5.5)

where a = e−〈D〉 is the cosmological scale factor. Here only the independent dynamical part
ωR

(cb) is taken into account in the interval (5.1).
In the standard case, graviton moves in the direction of vector k, its wave amplitude

cos {ωkx(k)} depends on the scalar product x(k) = (k · x)/ωk. One can see that the graviton

changes the squared test particle velocity

(
ds

dη

)2

∼ dxi dxj

dη dη
εα

ij in the plane orthogonal to

the motion direction. All these effects are produced by the ˇrst order of the series (5.4)

dl2h = 2dxi dxjhTT
ij (t, x) = dxi dxjεα

ij

√
6 cos {ωkx(k)}

(
H0

ωk

)
Ω1/2

kh , (5.6)

where Ωkh = ωkNkh/[V0ρcr] is the energy density of the gravitons in units of the cosmological
critical energy density ρcr = H2

0M2
Pl3/(8π). One observes that in the accepted perturbation

theory the contribution of a single gravitational wave into the geometrical intervals in units
of the critical density is suppressed by the factor H0/ωk.

In the diffeo-invariant version (5.5)

dl2g = 2dX(b)X(c)ω
R
(cb) = dX(b)X(c)ε

α
(cb)

√
6 cos {ωkX(k)}H0Ω

1/2
kh (5.7)

graviton contains the additional factor. To ˇnd this factor, we take the ratio of the above
intervals (5.6) and (5.7): ∣∣∣∣dl2h

dl2g

∣∣∣∣ =
∣∣∣∣ dxi dxj hTT

ij

dX(b)X(c)ω
R
(cb)

∣∣∣∣ 
 1
r⊥ ωk

. (5.8)

Here, r⊥ =
√
|X⊥|2 is the coordinate distance between two test particles in the plane

perpendicular to the wave motion direction. This factor yields a spatial ampliˇcation of the
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velocities of the test particles in the plane orthogonal to the graviton motion direction, i.e.,
rotation in this plane. If so, we can suggest a hypothesis claiming that rotation of galaxies
could have been initiated by primordial strong gravitational waves passed through clouds of
gas and dust.

Moreover, one can try to estimate the corresponding effect, if the center of a rotated spiral
galaxy can be considered as a source of the graviton emission along the rotation axis. This
effect leads to the additional velocity of a test particle with coordinate X(b) = (r⊥, 0, 0) (r⊥
now is counted from the galaxy center). As a result, the total velocity of a particle in the plane
perpendicular to the wave propagation includes the ®Newtonian¯ (N ), the ®graviton¯ (g), and
the ®Hubble¯ (H) terms [26]:

|v|2 =
[
nN

√
rg

2R⊥
+ ng

√
R⊥H0

√
Ωg + nHH0R⊥γ

]2

, (5.9)

where the unit velocities vectors read⎧⎨⎩
nN = (0, 1, 0),
ng = (+1/

√
2,−1/

√
2, 0),

nH = (1, 0, 0).
(5.10)

The scalar products of vectors of velocities are nN · ng �= 0, nN · nH = 0, H0 = a′/a is
the Hubble parameter, R⊥ = r⊥a(η), factor γ is deˇned by the cosmological density [26]:

γCC:p=+ρ =
√

2, or γΛCDM =
√

2 − (3/2)ΩM :p=0 − 3ΩΩ:p=−ρ, and Ωg is the energy density
of the graviton in units of the cosmological critical energy density ρcr

1. One observes that
the interference of the Newtonian and the graviton-induced velocities in (5.9) vN−g interf 

4
√

ΩgrgH0 does not depend on the radius R⊥. Thus, the strong graviton enforces particles
to rotate around a certain center in the plane orthogonal to the gravitational wave vector with
equal velocities.

One can see that in the mean ˇeld approximation, N = 1, D = 0, N(b) = 0, the
diffeo-invariant sector of the strong gravitation plane waves coincides with a free ˇeld theory:

Hg =
∑

k,k2 �=0

ωk[g+
k (0)g−−k(0)]. (5.11)

This fact is well known as the BRT solutions [16]. The equivalence of nonlinear theory
of gravitons in the diffeo-invariant measurable space-time with the free theory recalls us
the equivalence of the nonlinear unnormalizable theory (∂μ sinh f)2 with a free scalar ˇeld
theory (∂μΦ)2, that is proved by the change of variables Φ = sinh f . The latter can be
treated as a choice of the Cartesian ˇeld coordinates along geodesic in the superspace of ˇeld
variables [33].

1There is one more argument in favor of the geometry of similarity and relative units, namely, the large deˇcit
of the mass of luminous matter ML: M/ML > 10, in all superclusters with a mass of M � 1015M� and a size
of R � 5 Mpc [26]. In this case, the Newtonian velocity is less than the cosmic one by an order of magnitude. In
terms of relative units of the Conformal Cosmology, this deˇcit can be caused by galaxy deceleration in the course
of the cosmological evolution of galaxy masses.
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6. CREATION OF GRAVITONS IN THE DILATON VACUUM BACKGROUND

Straightforward calculations deˇne a set of evolution equations for the Lagrangian Lg (2.14)
and the Hamiltonian Hg (4.5)

∂〈D〉Hg = 2Lg, (6.1)

∂〈D〉Tg = 2 e−2〈D〉Lg, (6.2)

∂〈D〉Lg = 2Hg − 2 e−2〈D〉Tg, (6.3)

where Tg =
√

H2
g − L2

g .

Note, the GR equations in terms of the spin-connection coefˇcients (6.1)Ä(6.3) coincide
with the evolution equations for the parameters of squeezing rb and rotation θb [34Ä36]

∂〈D〉rb = cos 2θb, (6.4)

ωso − ∂〈D〉θb = coth 2rb sin 2θb (6.5)

of the Bogoliubov transformations A+ = B+ cosh r eiθ + B− sinh r eiθ for a squeezed os-
cillator (SO) ∂〈D〉A

± = ±iωsoA
± + A∓. Indeed, Eqs. (6.4), (6.5) establish similar relations

for the expectation values of various combinations of the operators A± with respect to the
Bogoliubov vacuum B−|〉 = 0 (see details in [26])

Nb ≡ 〈|A+A−|〉 =
cosh 2rb − 1

2
≡ ω−1

so : Hb :, (6.6)

i

4
〈A−A− − A+A+〉 =

sinh 2rb sin 2θb

2
≡ ω−1

so Tb, (6.7)

1
4
〈A+A+ + A−A−〉 =

sinh 2rb cos 2θb

2
≡ ω−1

so Lb. (6.8)

On the other hand, Eqs. (2.14), (4.9), (4.12), and (4.11), show up that the graviton
action (2.11) has a bilinear oscillator-like form

Hg =
∑

k

Hk, Hk =
ωk

2
[g+

k g−−k + g−k g+
−k],

Lg =
∑

k

Lk, Lk =
ωk

2
[g+

k g+
−k + g−k g−−k], (6.9)

Tg =
∑

k

T k, T k =
iωk

2
[g+

k g+
−k − g−k g−−k],

where

g±k =

[
gk
√

ωk ∓ ipk/
√

ωk

]
√

2
(6.10)

are the classical variables in the holomorphic representation [35]. The form (6.10) suggests
itself to replace the variables g±k by creation and annihilation graviton operators. Evidently,
in this case we have to postulate the existence of a stable vacuum |0〉. As a consequence, it is
reasonable to suppose that the classical graviton Hamiltonian (see Eqs. (6.9)) is the quantum
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Hamiltonian averaged over coherent states [37]. One may speculate that such a procedure
re
ects a transformation of a genuine quantum Hamiltonian (describing the initial dynamics of
the Universe) to the classical Hamiltonian, associated with present-day dynamics. Having the
correspondence between two sets of equations (6.1)Ä(6.3) for the GR and (6.6)Ä(6.8) for the
SO, we are led to the ansatz that the SO is the quantum version of our graviton Hamiltonian
(see also [31]).

In the limit a = e〈D〉 → 0 the classical graviton equations (6.1)Ä(6.3) take very simple
form

∂2
〈D〉Hg = 4Hg. (6.11)

Its quantum version, in the same limit, differs by the vacuum energy

∂2
〈D〉〈| : Hb : |〉 = 4〈|

[
: Hb : +

ωso

2

]
|〉. (6.12)

Both equations are supplemented by the zero initial data Hg = 0, ∂〈D〉Hg = 0. One can see
that classical equation has zero vacuum solution Hg ≡ 0, whereas the quantum one takes the

nonzero solution 〈| : Hb : |〉 = ωso
cosh 2〈D〉 − 1

2
. This solution means that dilaton plays the

role of the squeezing parameter. The cause of the vacuum creation is the vacuum Casimir
energy. This energy is a result of the normal ordering of the graviton Hamiltonian [26]

Hg = Hb =: Hb : +
ωso

2
, Lg = Lb, Tg = Tb, (6.13)

where
ωso = e−2〈D〉ωc. (6.14)

This is a central point of our construction.
The normal ordering of classical Hamiltonian after its quantization gives the Casimir-

type vacuum energy ωc = 0.09235/(2rg) [38], where rg is the radius of the sphere. One
can obtain the primordial Casimir energy density of gravitons Ωg normalized on the critical
energy ρcr = M2

Pl3/(8π)

Ωg = 0.09235 · 1
M2

PlH
2
0r4

g

. (6.15)

The exact solution of Eqs. (6.1)Ä(6.3) is shown in the Figure for ωso = 1/2 and Hg = 1.
This solution shows us that during some time of relaxation ηg ∼ 2Hg

−1 we obtain almost the
constant density, the value of which depends on the instance of the creation 1 + zg.

In accordance with this solution, at the tremendous redshift (1 + zg) = e〈Dg〉 = a−1
g ,

zg → ∞ is reduced to the zeroth mode dilaton integral of motion Ω〈D〉, which corresponds
to the z-dependence of the Hubble parameter1 H(z) = H0(1 + z)2.

At this moment, the Universe was empty, and all particle densities had the zero initial
data. The next step is the creation of gravitons induced by the direct dilaton interaction.
A hypothetic observer being at the ˇrst instance of the Universe at the horizon value rg =

1Note that the same dilaton vacuum regime H(z) = H0(1 + z)2 is compatible with the SNeIa data [25] in the
geometry of similarity (1.10) [9].
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The creation of the Universe distribution [Nk = Nb] (6.6) versus dimensionless time η and energies

0.5 � ωk = ωso at the initial data Nk(η = 0) = 0 and the Hubble parameter H(η) = 1/(1 + 2η)

1/(2Hg) in the primordial volume Vg = 4πr3
g/(3 · 8) = H3

0 (1 + zg)6/(3 · 8) observes the
vacuum creation of gravitons (and any other massless particles) with the primordial density

Ωg = 0.09235 · 16H2
0

M2
Pl

(1 + zg)8 (6.16)

deˇned by the Casimir energy. The question which remains to answer is how to deˇne the
instance of the creation zg?

7. STANDARD MODEL OF ELEMENTARY PARTICLES

In order to estimate the instance of creation of gravitons (1 + zg), one can add the
Hamiltonian of the Standard Model (SM): Hg → H = Hg + HSM, when in the limit

(1 + zh) → ∞ and ah → 0 all particles become nearly massless
√

k2 + a2
hM2

0 → ωk.

In this case, the same mechanism of intensive particle creation works also for any scalar
ˇelds including four Higgs bosons [36]

Ωh(zh) = 4Ωg(zh). (7.1)

The decays of the Higgs sector including longitudinal vector W and Z bosons approximately
preserve this partial energy density for the decay products. These products are Cosmic
Microwave Background (CMB) photons and nν neutrino. Therefore, one obtains

(1 + nν)ΩCMB(zh) ≈ 4Ωg(zh). (7.2)

In the conformal cosmological model [9], in the dilaton regime H(z) = a′/a = (1+z)2H0,
there is the coincidence of two epochs:
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• the creation of SM bosons in the Universe in electroweak epoch

1 + zW =
[
MW

H0

]1/3

= 0.37 · 1015, (7.3)

when the horizon H(zW ) = (1 + zW )2H0 = (1 + zW )2 = 1.5 · 10−42 GeV contains only a
single W boson;

• and the CMB origin time

1 + zCMB = [λCMBH0]−1/2 = [10−29 · 2.35/1.5]1/2 = 0.39 · 1015, (7.4)

when the horizon contains only a single CMB photon with mean wave length λCMB that is
approximately equal to the inverse temperature λ−1

CMB = TCMB = 2.35 · 10−13 GeV.
One can see that these values of the z-factor (1+zh) 
 (1+zW ) = (1+zCMB) are less in

three times than the Planck value (3.15). This difference can be explained by the retardation

factor deˇned by the cubic root of the Weinberg coupling constant in SM α
1/3
W 
 1/3. It

arises due to the lifetime of the SM bosons. In particular, remember that the W -boson lifetime
is proportional to α−1

W , and the proper time of massive particles is proportional to the cube
of z-factor.

In the same epoch zh ≈ zW ≈ zCMB, the primordial graviton density (6.16) coincides with
the CMB density normalized to a single degree of freedom. Therefore, there are observational
evidences that the instance of the creation of graviton zg 
 0.37 · 1015 is very close to the
instance of the creation of Higgs particles zh 
 zW = 0.37 · 1015. In particular, for nν = 3
we got zg = 0.37 · 1015 = zW = zh (as it was supposed in [31]).

The coincidence of the epoch zg with the ˇrst two ones zh 
 zW = zCMB gives us a
hope to solve cosmological problems with the aid of the quantum dilaton squeezing of the
Higgs particles (1.10) in the Dirac geometry of similarity, without the classical in
ation (see
also [9]).

While adding the SM sector to the theory in order to preserve the conformal symmetry,
we should exclude the unique dimensional parameter from the SM Lagrangian, i.e., the Higgs
term with a negative squared mass. However, following Kirzhnits [39], we can include the
vacuum expectation of the Higgs ˇeld (its zeroth harmonic) 〈φ〉. The latter appears as certain
external initial data or a condensate. In our construction we can choose it in the most simple
form: 〈φ〉 = const = 〈φ〉I = 246 GeV, which could be considered as the initial condition
at the beginning of the Universe. The fact that the Higgs vacuum expectation is equal to
its present-day value allows us to preserve the status of the SM as the proper quantum ˇeld
theory during the whole Universe evolution. The standard vacuum stability conditions

〈0|0〉|φ=〈φ〉 = 1, 〈0|0〉′|φ=〈φ〉 = 0 (7.5)

yield the following constraints on the ColemanÄWeinberg effective potential of the Higgs
ˇeld:

Veff(〈φ〉) = 0, V ′
eff(〈φ〉) = 0. (7.6)

It results in a zero contribution of the Higgs ˇeld vacuum expectation into the Universe energy
density. In other words, the SM mechanism of a mass generation can be completely repeated.
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However, the origin of the observed conformal symmetry breaking is not a dimensional
parameter of the theory but a certain nontrivial (and very simple at the same moment) set of
the initial data. In particular, one obtains that the Higgs boson mass is determined from the
equation V ′′

eff(〈φ〉) = M2
H . Note that in our construction the Universe evolution is provided by

the dilaton, without making use of any special potential and/or any in
ation ˇeld. In this case,
we have no reason to spoil the renormalizability of the SM by introducing the nonminimal
interaction between the Higgs boson and the gravity [40].

The SM interactions include the amplitudes MBγγ of the gamma processes h → γγ,
W+W− → γγ, ZZ → γγ and the process of the transition of double W to neutral kaon
MWW→K0 (described by the triangle anomaly [11, 36]) with creation from the Dirac sea
of quarks and electron that form the baryon asymmetry of the Universe. The interaction
Hamiltonian in Eq. (4.16) can be written in the form

Hint =
∑

fj=W,Z,h

1
2
(b+

j b+
j +b−j b−j )MBjγγ+

+
i

2
(
b+
W+b+

W−MWW→K0 − b−W+b−W−MWW→K0

)
. (7.7)

The Bogoliubov transformation

a+a− +
1
2

= (7.8)

=
1
2

[(
b+b−+

1
2

)
cosh 2r+

(
b+b++b−b−

)
sinh 2r cos 2θ+i

(
b+b+−b−b−

)
sinh 2r sin 2θ

]
(7.9)

shows us that the intensive creation of particle goes from the vacuum 1/2 in the ˇrst term,
while the next terms give additional contributions due to interactions (7.7). Here one can
mark that the evolution equation (4.16) gives the double contribution of the Higgs particle
decays in comparison with the vector boson ones.

The additional photons arising due to interactions in (7.7) in the quantum evolution
equation (4.16) describe the Cosmic Microwave Background power spectrum anisotropy [41].
The numbers of these additional processes (i.e., emitters) determine the multipole momenta
�B at the instance of the processes marked by z-factor. Therefore, the z-dependence of the
multipole momenta �B can be obtained as the ratio of the length of the horizon and the size
of emitters given by their Compton lengths, so that multipole momenta proportional to the
numbers of emitters �B have the z-factor like the cubed conformal mass �B ∼ M3

B .
The observational fact is that the cubic root of the ratio of the third and the second

peak momenta (800/546)1/3 = 1.136 
 MZ/MW in the Cosmic Microwave Background
power spectrum coincides with the ratio of the Z and W masses in good agreement with
the experimentally deˇned value MZ/MW = 1.134. This agreement allows us to interpret
the ˇrst peak (that is two times greater than the last two in accordance with the evolution
equation (4.16) and the Bogoliubov transformation (7.8)) as contribution of the two-photon
decay of the Higgs particle with the mass mh = 2(220/546)1/3MW = 118 GeV lying
just in the region preferred by the results of the Standard Model parameters ˇtted from the
experimental data of LEP [11]. Note that the vacuum postulate in the form of the Dirac
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constraint of zero momentum of the local volume element (A.20) (with negative contribution
into the energy constraint) forbids the Sakharov-type oscillations associated with the CMB
power spectrum in the ΛCDM model [5].

CONCLUSION

In the present paper, we considered the Hilbert action expressed in terms of the MaurerÄ
Cartan forms of the joint nonlinear realization of the afˇne and conformal symmetries follow-
ing the ideas of the afˇne A(4) and conformal symmetry C [1, 2, 8, 18]. The dilaton D was
introduced as a representation of the Poincar	e group in the tangent Minkowskian space-time.
The dilaton zeroth mode 〈D〉 coincides by deˇnition with the redshift-factor logarithm of the
Hubble evolution. Thus, we studied the redshift-factor evolution of the GR and SM in terms
of the MaurerÄCartan forms. Diffeo-invariance of the MaurerÄCartan forms leaves a single
graviton degree of freedom instead of two.

The MaurerÄCartan forms are objects of the Lorentz (relativistic) transformations in the
tangent Minkowskian space-time. It was shown that relativistic properties of the MaurerÄ
Cartan forms and homogeneity hypothesis ˇx the vacuum state that corresponds to the domi-
nance of the scalar ˇeld zeroth mode energy density. This density is in agreement with
SNeIa data in the cosmological model based on the Dirac geometry of similarity. The SNeIa
cosmological evolution of the metrics [25] is induced by the homogeneous scalar ˇeld zeroth
mode, without the in
ation hypothesis and the Λ-term.

The vacuum is deˇned as the state with the minimal energy of the Universe. This energy
is identiˇed with the zeroth mode momentum P〈D〉. It solves the energy-time problems of the
Einstein theory at the level of the Hilbert action. This solution includes the construction of
the z-ordering operator of evolution Û = T〈D〉 exp (−i

∫
d〈D〉P〈D〉). Vacuum stability can

be achieved by the ordinary quantization of the zeroth dilaton harmonics. The corresponding
uncertainty principle gives us the dilaton initial data at the Planck epoch, while the conformal
symmetry unambiguously leads to the Dirac geometry of similarity compatible with SNeIa
data in the vacuum regime.

We have provided a few arguments in favor of that the exact evolution of the GR as
a theory of spontaneous conformal symmetries breaking is related to the equations for the
quantum squeezed oscillator. In the suggested cosmological model, the Planck epoch coincides
with the electroweak one. It was shown that there is intensive vacuum creation of gravitons
and SM bosons due to their Casimir energies at the Planck epoch in the vacuum background
of the Empty Universe. The rough estimation [11] shows us that the considered approach to
the GR and SM dilaton evolution can yield the vacuum creation of matter in the Universe in
agreement with its present-day energy budget. The Early Universe behaves like a factory of
electroweak bosons and Higgs scalars. It gives us a possibility to identify three peaks in the
Cosmic Microwave Background power spectrum with the contributions of photonic decays
and annihilation processes of primordial Higgs, W , and Z bosons in agreement with the QED
coupling constant, Weinberg's angle, and Higgs' particle mass of about 118 GeV.

The problems of calculations of the S-matrix elements and their transformational properties
at the level of quantum theory and its renormalizability will be discussed elsewhere.
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Appendix A

DIRAC HAMILTONIAN APPROACH TO GR IN TERMS
OF THE MAURERÄCARTAN FORMS

In this appendix we adapt the standard Dirac approach to the conventional scalar curvature
action in terms of the MaurerÄCartan forms including the electromagnetic ˇeld Fμν = ∂μAν−
∂νAμ and the scalar one Q

W [g, A, Q] = −
∫

d4x
√
−g

(
1
6
R(4)(g) − 1

4
FμαFνβgμνgαβ + ∂μQ∂νQgμν

)
(A.1)

in units
� = c = MPl

√
3/(8π) = 1. (A.2)

Using the deˇnition of the metric components given by Eqs. (2.1)Ä(2.3), we obtain the
action

W̃ =
∫

d4xN [LD + Lg + LA + LQ] , (A.3)

where

LD = −v2
D − 4

3
eD/2�e−D/2,

Lg =
1
6

[
v2
(ab) − e−4DR(3)(e)

]
,

(A.4)

LA =
1
2

[
e2Dv2

(b)(A) − e−2DFijF
ij

]
,

LQ = e2D(vQ + vDQ̃)2 − e−2D
(
∂(b)Q̃ + ∂(b)DQ̃

)2

is the set of Lagrangian densities,

vQ =
1
N

[
(∂0 − N l∂l)Q̃ + ∂lN

l/3
]
,

vD =
1
N

[
(∂0 − N l∂l)D + ∂lN

l/3
]
,

v(ab) =
1
N

[
ωR

(ab)(∂0 − N l∂l) + ∂(a)N
⊥
(b) + ∂(b)N

⊥
(a)

]
,

v(b)(A) =
1
N

ei
(a)

[
∂0Ai − ∂iA0 + FijN

j
]

are velocities of the metric components and ˇelds, � = ∂i[ei
(a)e

j
(a)∂j ] is the Laplace operator,

and R(3)(e) is a three-dimensional spatial curvature expressed in terms of triads e(a)i and the
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coefˇcients of the spin-connection

R(3) = R(3)(e) − 4
3
e7D/2�e−D/2, (A.5)

R(3)(e) = −2∂i [ei
(b)σ(c)|(bc)] − σ(c)|(bc)σ(a)|(ba) + σ(c)|(df)σ(f)|(d)(c), (A.6)

σ(c)|(ab) = [ωL
(ab)(∂(c)) + ωR

(ac)(∂(b)) − ωR
(bc)(∂(a))],

ωR
(ab)(∂(c)) =

1
2

[
ej
(a)∂(c)e

j
(b) + ei

(b)∂(c)ei
(a)

]
, (A.7)

ωL
(ab)(∂(c)) =

1
2

[
ej
(a)∂(c)e

j
(b) − ei

(b)∂(c)e
i
(a)

]
. (A.8)

Using the Legandre transformations in (A.3) v2/B = pv − Bp2/4, we got momenta

P(ba) =
v(ab)

3
, PD = 2vD, PQ = 2vQ, PA(b) = vA(b). (A.9)

So that one can write total action (A.3) in the Dirac Hamiltonian form [12]

W̃ =
∫

d4x

[∑
F

PF ∂0F − C
]

, (A.10)

∑
F

PF ∂0F = PQ

(
∂0Q̃ + ∂0DQ̃

)
+ P(ab)ω

R(∂0) + PA(b)∂0A(b) − PD∂0D, (A.11)

C = NH + N(b)T(b) + A(0)∂(b)PA(b) + λ(0)PD + λ(b)∂kek
(b), (A.12)

where

H = −δW̃

δN
= HD + Hg + HA + HQ, (A.13)

HD = −P 2
D

4
− 4

3
e7D/2�e−D/2, (A.14)

Hg =
[
6P 2

(ab) +
e−4D

6
R(3)(e)

]
, (A.15)

HA =
e−2D

2

[
Pi(A)P

i
(A) + FijF

ij
]
, (A.16)

HQ = e−2D

[
P 2

Q

4
+

(
∂(b)Q + ∂(b)DQ

)2

]
, (A.17)

T 0
(c) = −P(ab)ω

R
(ab)(∂(c)) +

∑
F=A,Q

PF ∂(c)F (A.18)

are the energy-momentum tensor components [10]. Dirac [12] added the secondary class
gauge constraints

∂kek
(b) = 0, (A.19)

PD = 2
vD

N
≡ 2e3D

3N

[
∂0e−3D − ∂l

(
N le−3D

)]
= 0. (A.20)
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So that the ˇrst three of them ˇx the spatial coordinates by the accepted way [12], and the
constraint PD = 0 removes negative contribution of nonzero Fourier harmonics of dilaton
momentum.

Appendix B
DILATON COSMOLOGICAL PERTURBATION THEORY

The comparison of the cosmological perturbation theory in the ΛCDM model with the
Hamiltonian approach to the same cosmological perturbation theory [10] reveals essential
differences of these approaches and their physical consequences.

In order to keep the vacuum postulate, Dirac [12] imposed the minimal surface constraint
PD = 0 and excluded the negative contribution −P 2

D
of the spatial local volume element

momentum to the energy constraint. In the dilaton version, the local dilaton D is associated
with the acoustic waves used for the explanation of the CMB power spectrum [5]. Thus, the
vacuum postulate PD = 0 excludes the dynamics of acoustic waves PD �= 0 with negative
contribution into the energy density.

In order to demonstrate these consequences, we consider the case when the simplex com-

ponents e(b)idxi = ω
(3)
(b) = dx(b) are total differentials. The latter means that the coefˇcients of

the spin-connection are equal to zero together with the three-dimensional curvature R(3) = 0.
In this case, the transverse components of the shift vector can be deˇned by

T(0)(a) = −ei
(b)

δSU

δNi
= −∂(b)p(b)(a) +

∑
f=φ,Q, ˜F

pf∂(a)f = 0, (B.1)

p(b)(a) =
1

6N

(
2
3
δ(a)(b)∂(c)N(c) − ∂(a)N(b) − ∂(b)N(a)

)
. (B.2)

While the shift-vector longitudinal component is given by the Dirac constraint ∂η e−3D =

∂(b)

(
e−3DN(b)

)
. The lapse function and dilaton in the ˇrst order in the Newton coupling

constant take the forms [10]

e−D/2 = 1 +
1
2

∫
d3y

[
G(+)(x, y)T

(μ)

(+)(y) + G(−)(x, y)T
(μ)

(−)(y)
]
, (B.3)

N e−7D/2 = 1 − 1
2

∫
d3y

[
G(+)(x, y)T

(ν)

(+)(y) + G(−)(x, y)T
(ν)

(−)(y)
]
, (B.4)

where G(±)(x, y) are the Green functions satisfying the equations

[±m2
(±) −�]G(±)(x, y) = δ3(x − y), (B.5)

m2
(±) = H2

0

3(1 + z)2

4
[
14(β ± 1)Ω(0)(z)∓Ω(1)(z)

]
, (B.6)

β =
√

1 +[Ω(2)(z)−14Ω(1)(z)]/[98Ω(0)(z)], (B.7)

T
(μ)

(±) = T (0) ∓ 7β[7T (0) − T (1)], (B.8)

T
(ν)

(±) = [7T (0) − T (1)] ± (14β)−1T (0) (B.9)
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in which the local currents and Ω(n)(z) are given by the equation

Ω(n)(z) =
∑

J=0,2,3,4,6

(2J)n(1 + z)2−JΩJ , ΩJ = 〈TJ 〉/H2
0 , (B.10)

and ΩJ=0,2,3,4,6 are partial density of states: rigid, radiation, matter, curvature, Λ-term,
respectively; Ω(0)(0) = 1, and H0 is the Hubble parameter.

In the case of point mass distribution in a ˇnite volume V0 with the zeroth pressure and
the density

T (0)(x) =
T (1)(x)

6
≡ 3

4a2
M

[
δ3(x − y) − 1

V0

]
, (B.11)

solutions (B.3), (B.4) take the Schwarzschild-type form

e−D/2 = 1 +
rg

4r

[
1 + 7β

2
e−m(+)(z)r +

1 − 7β

2
cosm(−)(z)r

]
H0=0

= 1 +
rg

4r
,

N e−7D/2 = 1 − rg

4r

[
14β + 1

28β
e−m(+)(z)r +

14β − 1
28β

cosm(−)(z)r
]

H0=0

= 1 − rg

4r
,

where β = 5/7, m(+) = 3m(−), m(−) = H0

√
3(1 + z)ΩM/2. These solutions have spatial

oscillations and the nonzero shift of the coordinate origin.
One can see that in the inˇnite volume limit H0 = 0, a = 1 these solutions coincide

with the isotropic version of the Schwarzschild solutions: e−D/2 = 1 + rg/4r, N e−7D/2 =
1 − rg/4r, Nk = 0.

In contrast to standard cosmological perturbation theory [5] the diffeo-invariant version
of the perturbation theory does not contain time derivatives that are responsible for the CMB
®primordial power spectrum¯ in the in
ationary model.

The next differences are a nonzero shift vector and spatial oscillations of the scalar
potentials determined by m̂2

(−). The dominance of rigid state ΩStiff ∼ 1 determines the

parameter of spatial oscillations m̂2
(−) =

6
7
H2

0 [ΩR(z + 1)2 +
9
2
ΩMass(z + 1)]. The red-

shifts in the recombination epoch zr ∼ 1100 and the clustering parameter rclust =
π

m̂(−)
∼

π

H0Ω
1/2
R (1 + zr)

∼ 130 Mpc recently discovered in the researches of a large-scale period-

icity in redshift distribution [42] lead to a reasonable value of the radiation-type density
10−4 < ΩR ∼ 3 · 10−3 < 5 · 10−2 at the time of this epoch.
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