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We obtain a U(M) action for supermembranes with central charges in the Light-Cone Gauge (LCG).
The theory realizes all of the symmetries and constraints of the supermembrane together with the
invariance under a U(M) gauge group with M arbitrary. The world-volume action has (LCG) N = 8
supersymmetry and it corresponds to M parallel supermembranes minimally immersed in the target
M9×T 2 (MIM2). In order to ensure the invariance under the symmetries and to close the corresponding
algebra, a star-product determined by the central charge condition is introduced. It is constructed with a
nonconstant symplectic two-form where curvature terms are also present. The theory is in the strongly
coupled gauge-gravity regime. At low energies, the theory enters in a decoupling limit and it is described
by an ordinary N = 8 SYM in the IR phase for any number of M2-branes.
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INTRODUCTION

An ultimate goal of String Theory is to ˇnd its nonperturbative quantization. M-theory
has been elusive to this point although signiˇcative advances have been realized. To get
contact with four dimensions, at the end of the day a phenomenological model that will
take into account this nonperturbative effects will be required. From that point of view,
obtaining a non-Abelian gauge formulation directly from M-theory Å not just in its effective
action Å but in the full-�edged formulation, is an important goal. In this letter we summarize
the results obtained in [1] where we have been able to ˇnd a non-Abelian extension of the
supermembrane minimally immersed in M9 × T 2.

The supermembrane with a topological restriction associated with an irreducible winding
has been shown to have very interesting properties: discreteness of the supersymmetric spec-
trum [2Ä4], spontaneous breaking of supersymmetry, stabilization of most of the moduli [5],
a spectrum containing dyonic strings plus pure supermembrane excitations [6], formulation
on a G2 manifold [7]. This restriction can be seen at algebraic level as a central charge
condition on the 11D supersymmetric algebra and geometrically as a condition of being mini-
mally immersed into the target space [8], so from now on, we will denote it as MIM2. The
semiclassical supermembrane subject to an irreducible wrapping was ˇrst analyzed in [9].
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2E-mail: arestu@usb.ve
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Recently, the low energy conformal description of multiple M2-branes has received a
lot of attention from the scientiˇc community. The original motivation has been to realize
Maldacena's Conjecture for M-theory [10] according to which M-theory/AdS4 × S7 should
be dual to a CFT3 generated by the action of multiple M2-branes in the decoupling limit, that
is, for a large number M of M2s. Authors of [11, 12] and independently [13] were the ˇrst
to obtain a realization of this algebra by imposing ˇelds to be evaluated on a three-algebra
with positive inner metric. In terms of a unique ˇnite-dimensional gauge group SO(4) with
a twisted ChernÄSimons terms. In order to generalize it for general SU(M) gauge groups, a
ChernÄSimons-matter theory with N = 6 was found by [14] (ABJM) in which they are able
to generalize the theory to an arbitrary SU(N) and recover also BLG theory for the case of
N = 2. The ABJM, or at least a sector of it, can be also recovered from the three-algebra
formulation by relaxing the condition of total antisymmetry of the structure constants [15]. A
more complete list of relevant references for interested reader can be found in [1].

In this letter we summarize the results obtained in [1]. The approach is very different to
the ABJM one. In [1] it consistently extended the action of a single MIM2 to a theory of
interacting parallel M2-branes minimally immersed (MIM2s) preserving all of the symmetries
of the theory: supersymmetry and invariance under area preserving diffeomorphisms. The
theory is not conformal invariant. In the extension, the gauge and gravity sectors are strongly
correlated. It corresponds to have an M-theory dual of the non-Abelian BornÄInfeld action
describing a bundle of multiple D2-D0 branes, so we work in the high energy approximation.
When the energy scale is low, the theory decouples and it is effectively described by a N = 8
SYM in the IR phase. As the energy scale raises, the YM coupling constant becomes weaker
and at some point oscillations modes of the pure supermembrane appear and the theory enters
in the strong correlated gauge-gravity sector.

1. A SUPERMEMBRANE WITH DISCRETE SPECTRUM: THE MIM2

In this section we will make a self-contained summary of the construction of the minimally
immersed M2-brane (MIM2). The Hamiltonian of the D = 11 supermembrane [16] may
be deˇned in terms of maps XM , M = 0, . . . , 10, from a base manifold R × Σ, where
Σ is a Riemann surface of genus g onto a target manifold which we will assume to be
11D Minkowski. The canonical reduced Hamiltonian to the Light-Cone Gauge has the
expression [17]

H =
∫
Σ

dσ2
√

W

(
1
2

(
PM√
W

)2

+
1
4
{XM , XN}2 − ΨΓ−ΓM{XM , Ψ}

)
(1)

subject to the constraints

φ1 := d

(
PM√
W

dXM − ΨΓ−dΨ
)

= 0 (2)

and

φ2 :=
∮
Cs

(
PM√
W

dXM − ΨΓ−dΨ
)

= 0, (3)
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where the range of M is now M = 1, . . . , 9 corresponding to the transverse coordinates in
the Light-Cone Gauge, Cs, s = 1, . . . , 2g is a basis of one-dimensional homology on Σ,

{XM , XN} =
εab√
W (σ)

∂aXM∂bX
N , (4)

a, b = 1, 2 and σa are local coordinates over Σ. W (σ) is a scalar density introduced
in the Light-Cone Gauge ˇxing procedure. φ1 and φ2 are generators of area preserving
diffeomorphisms, see [18]. That is

σ → σ
′ → W

′
(σ) = W (σ).

When the target manifold is simply connected dXM are exact one-forms.
The spectral properties of (1) were obtained in the context of a SU(N) regularized

model [17] and it was shown to have continuous spectrum from [0,∞).
This property of the theory relies on two basic facts: supersymmetry and the presence of

classical singular conˇgurations, string-like spikes, which may appear or disappear without
changing the energy of the model but may change the topology of the world-volume. Under
compactiˇcation of the target manifold generically the same basic properties are also present
and consequently the spectrum should be also continuous [19]. In what follows we will impose
a topological restriction on the conˇguration space. It characterizes a D = 11 supermembrane
with nontrivial central charges generated by the wrapping on the compact sector of the target
space [2,4]. We will consider in this paper the case g = 1 Riemann surface as a base manifold
Σ on a M9 × T 2 target space. The conˇguration maps satisfy∮

cs

dXr = 2πLr
sR

r, r, s = 1, 2, (5)

∮
cs

dXm = 0, m = 3, . . . , 9, (6)

where Lr
s are integers and Rr, r = 1, 2 is the radius of T 2. These conditions ensure that we

are mapping Σ onto a T 2 sector of the target manifold.
We now impose the central charge condition

Irs ≡
∫
Σ

dXr ∧ dXs = (2πR1R2)nωrs, (7)

where ωrs is a symplectic matrix on the T 2 sector of the target and n = detLr
i represents the

irreducible winding.
The topological condition (7) does not change the ˇeld equations of the Hamiltonian (1).

In fact, any variation of Irs under a change δXr, single-valued over Σ, is identically zero.
In addition to the ˇeld equations obtained from (1), the classical conˇgurations must satisfy
condition (7). It is only a topological restriction on the original set of classical solutions of the
ˇeld equations. In the quantum theory the space of physical conˇgurations is also restricted by
condition (7). The geometrical interpretation of this condition has been discussed in previous
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works [20,21]. We noticed that (7) only restricts the values of Sr
s , which are already integral

numbers from (5).
We consider now the most general map satisfying condition (7). Closed one-forms dXr

may be decomposed into the harmonic plus exact parts:

dXr = M r
s dX̂s + dAr, (8)

where dX̂s, s = 1, 2 is a basis of harmonic one-forms over Σ and dAr are exact one-forms.
We may normalize it by choosing a canonical basis of homology and imposing∮

cs

dX̂r = δr
s . (9)

We have now considered a Riemann surface with a class of equivalent canonical basis.
Condition (5) determines

M r
s = 2πRrLr

s, (10)

we rewrite Lr
s = lrS

r
s and l1 · l2 = n. We now impose condition (7) and obtain

Sr
t ωtuSs

u = ωrs, (11)

that is, S ∈ Sp (2, Z). This is the most general map satisfying (7). See [6] for details, in
particular for n > 1.

The natural choice for
√

W (σ) in this geometrical setting is to consider it as the density
obtained from the pull-back of the Kéahler two-form on T 2. We then deˇne

√
W (σ) =

1
2
∂aX̂r∂bX̂

sωrs. (12)

√
W (σ) is then invariant under the change

dX̂r → Sr
sdX̂s, S ∈ Sp (2, Z). (13)

But this is just the change on the canonical basis of harmonics one-forms when a bi-
holomorphic map in Σ is performed changing the canonical basis of homology. That is, the
biholomorphic (and hence diffeomorphic) map associated with the modular transformation
on a Teichméuller space. We thus conclude that the theory is invariant not only under the
diffeomorphisms generated by φ1 and φ2, homotopic to the identity, but also under the dif-
feomorphisms, biholomorphic maps, changing the canonical basis of homology by a modular
transformation.

Having identiˇed the modular invariance of the theory, we may go back to the general
expression of dXr, we may always consider a canonical basis such that

dXr = 2πlrRrdX̂r + dAr (14)
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the corresponding degrees of freedom are described exactly by the single-valued ˇelds Ar.
After replacing this expression in the Hamiltonian (1) we obtain

H =
∫
Σ

√
Wdσ1 ∧ dσ2

[
1
2

(
Pm√
W

)2

+
1
2

(
Πr

√
W

)2

+

+
1
4
{Xm, Xn}2 +

1
2
(DrX

m)2 +
1
4
(Frs)2+

+ (n2Area2
T 2) +

∫
Σ

√
WΛ

(
Dr

(
Πr√
W

)
+

{
Xm,

Pm√
W

})]
+

+
∫
Σ

√
W [−ΨΓ−ΓrDrΨ − ΨΓ−Γm{Xm, Ψ} − Λ{ΨΓ−, Ψ}],

where

DrX
m = DrX

m+{Ar, X
m}, Frs = DrAs −DsAr +{Ar, As}, Dr = 2πlrRr

εab

√
W

∂aX̂r∂b,

and Pm and Πr are the conjugate momenta to Xm and Ar, respectively. Dr and Frs are the
covariant derivative and curvature of a symplectic noncommutative theory [20], constructed
from the symplectic structure εab/

√
W introduced by the central charge. The last term

represents its supersymmetric extension in terms of Majorana spinors. The physical degrees
of the theory are Xm, Ar, Ψα, they are single-valued ˇelds on Σ.

Quantum Supersymmetric Analysis of a Single MIM2. We are going to summarize
the spectral properties of the above Hamiltonian. The bosonic potential of (15) satisˇes the
following inequality [4] (in a particular gauge condition):

∫
Σ

√
Wdσ1 ∧ dσ2

[
1
4
{Xm, Xn}2 +

1
2
(DrX

m)2 +
1
4
(Frs)2

]
�

�
∫
Σ

√
Wdσ1 ∧ dσ2

[
1
2
(DrX

m)2 + (DrAs)2
]
.

The right-hand member under regularization describes a harmonic oscillator potential. In
particular, any ˇnite-dimensional truncation of the original inˇnite-dimensional theory satisˇes
the above inequality. We consider regularizations satisfying the above inequality. We denote
the regularized Hamiltonian of the supermembrane with the topological restriction by H , its
bosonic part Hb and its fermionic potential Vf , then

H = Hb + Vf . (15)

We can deˇne rigorously the domain of Hb by means of Friederichs extension techniques. In
this domain Hb is self-adjoint and it has a complete set of eigenfunctions with eigenvalues
accumulating at inˇnity. The operator multiplication by Vf is relatively bounded with respect
to Hb. Consequently, using Kato perturbation theory it can be shown that H is self-adjoint if
we choose

Dom H = Dom Hb. (16)
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In [2] it was shown that H possesses a complete set of eigenfunctions and its spectrum
is discrete, with ˇnite multiplicity and with only an accumulation point at inˇnity. An
independent proof was obtained in [3] using the spectral theorem and theorem 2 of that
paper. In Sec. 5 of [3] a rigorous proof of the Feynman formula for the Hamiltonian of the
supermembrane was obtained. In distinction, the Hamiltonian of the supermembrane, without
the topological restriction, although it is positive, its fermionic potential is not bounded from
below and it is not a relative perturbation of the bosonic Hamiltonian. The use of the Lie
product theorem in order to obtain the Feynman path integral is then not justiˇed. It is not
known and completely unclear whether a Feynman path integral formula exists for this case.
In [4] it was proved that the theory of the supermembrane with central charges corresponds
to a nonperturbative quantization of a symplectic Super YangÄMills in a conˇned phase and
the theory possesses a mass gap.

In [7] we constructed the supermembrane with the topological restriction on an orbifold
with G2 structure that can be ultimately deformed to lead to a true G2 manifold. All the
discussion of the symmetries on the Hamiltonian was performed directly in the Feynman path
integral, at the quantum level, then valid by virtue of our previous proofs.

2. A U(N) EXTENSION OF THE MIM2 FOR ARBITRARY RANK

In this section we extend the algebraic symplectic structure of the supermembrane with
central charges in the LCG in terms of a noncommutative product and a U(M) gauge
group. The main point is to show that in such an extension the original area preserving
constraint preserves the property of being ˇrst class. It is not enough to have the symplectic
structure tensor U(M) in order to close the algebra of the ˇrst-class constraint. The complete
expansion related to a noncommutative associative product is needed. The noncommutative
product we may introduce is constructed with the symplectic two-form already deˇned on the
base manifold Σ:

ωab =
√

Wεab, (17)

where
√

W =
n

2
AreaT 2(εrsε

ab∂aX̂r∂bX̂
s). In this section, in order to get a better insight on

the star-product, we use, without loosing generality, coordinates on the base manifold with
length dimension +1 and deˇne the dimensionless

√
W with the area factor. The two-form

ω deˇnes the area element which is preserved by the diffeomorphisms generated by the ˇrst-
class constraint of the supermembrane theory in the Light-Cone Gauge, which are homotopic
to the identity, and by the SL(2, Z) group of large diffeomorphisms discussed in Sec. 1.
The two-form is closed and nondegenerate over Σ. By Darboux theorem one can choose
coordinates on an open set N in Σ in a way that

√
W becomes constant on N. However, this

property cannot be extended to the whole compact manifold Σ. The noncommutative theory
must be globally constructed from a nonconstant symplectic ω. The construction of such
noncommutative theories for symplectic manifolds was performed in [22, 23]. The general
construction for Poisson manifolds was obtained in [24].

The Hamiltonian we propose in this section is not related to a SeibergÄWitten limit of
String Theory [25] in which one obtains a noncommutative theory with constant B-ˇeld.

2.1. The Non-Abelian Hamiltonian. We now extend the above construction and consider
the tensor product of the Weyl-algebra bundle times the enveloping algebra of U(M). It may
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be constructed in terms of the Weyl-algebra generators TA introduced in the previous section,
with the inclusion of the identity associated with A = (0, 0). This complete set of generators
determines an associative algebra under matrix multiplication. The inclusion of the identity
allows one to realize the generators of U(M) in terms of TA matrices, with A = (a1, a2) and
a1, a2 = −(M − 1), . . . , 0, . . . , M − 1. All the properties of the Fedosov construction remain
valid, in particular the associativity of the star-product. The trace property is also valid. In
order to construct the Hamiltonian of the theory, we consider the following connection on the
Weyl bundle [26]:

D� =
i

h
[Gre

r, �]◦ +
i

h
[Are

r, �]◦, (18)

where Gr,Ar ∈ C∞(WAbel), σGr = δrsX
s
h and Xs

h = 2πRslsX̂
s. It corresponds to the

harmonic sector of the map to the compact sector of the target space. σAr = Ar using the
notation of Sec. 1, er = ∂aX̂rdσa. Its curvature is given by

Ω =
i

2h
[G, G]◦ +

i

h
[G, γ]◦ +

i

2h
[γ, γ]◦, γ = Are

r. (19)

We now consider (Xm, Pm), (Ar , Πr) the canonical conjugate pairs as well as the spinor
ˇelds Ψ lifted to the quantum algebra WAbel ∈ C∞(W ). The constraint is then deˇned as

φ(σ, ξ, h) ≡ Dr
ΠrA

√
W

TA +
i

h

(
XmB ◦ PC

m√
W

− PB
m√
W

◦ XC
m

)
TBTC +

i

h
[ΨΓ−, Ψ]◦ (20)

with

Dr
ΠrA

√
W

TA =
i

h

[
Gr ,

ΠrA

√
W

]
◦
TA +

i

h

(
AB

r ◦ ΠrC

√
W

− ΠrB

√
W

◦ AC
r

)
TBTC . (21)

We notice that the ˇrst two terms of the commutator[
Xm,

Pm√
W

]
◦

= XmB PC
m√
W

fE
BCTE +

(
− i

h

2

){
XmB,

PC
m√
W

}
dE

BCTE + O((hω)2) (22)

are the terms which we considered in the previous section as extensions of the algebraic
structure of the supermembrane in the Light-Cone Gauge. The additional terms arising from
the noncommutative product, ensuring an associative product, are relevant in order to close
the constraint algebra. In fact, using the trace properties φ ∈ WAbel is a ˇrst-class constraint
generating a gauge transformation which is a deformation of the original and preserving
diffeomorphisms.

The projection of Ω in (19) has the expression [26]

σΩ = −ω + F − h2

96

(
Rbcda

(
D
̂bDĉD̂d

)
Am − 1

4
R
̂bĉ̂dpε

pqDqAm

)
εb̂bεcĉεd̂dea ∧ em−

− h2

96.8
RbcdaR̂bĉ̂dmεb̂bεcĉεd̂dea ∧ em + O(h3) . . .

and

F =
1
2
er ∧ es

(
DrAs − DsAr +

i

h
{Ar, As}∗

)
, (23)
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with ω = 1/2h
√

wεabdσa ∧ dσb, Dr, Ds are the ones deˇned in Sec. 1. We remark that Gr

is the lifting to the Weyl algebra of the harmonic X̂r of Sec. 1, and Ar is the lifting of Ar.
The O(h2) depends explicitly on the Riemann tensor of the symplectic connection, which
itself depends on the symplectic two-form introduced by the central charge. The O(h) terms
are necessary in order to close the constraint algebra. The star-product formula involves the
covariant derivatives constructed from the symplectic connection as well as terms involving
the Riemann tensor of symplectic connection, which are absent in the Moyal product.

The Hamiltonian of the theory for M multiple parallel M2-branes with U(N) gauge group
is then

Tr
∫
Σ

H = Tr
∫
Σ

√
W

[
1
2

(
Pm

√
W

)2

+
1
2

(
Πr

√
W

)2

+
1

2h2
({Xr

h, Xm}∗ + {Ar, Xm}∗)2+

+
1

4h2
{Xm, Xn}2

∗ +
1
2
(Frs − ωrs)(Frs − ωrs)−

− i

h
ΨΓ−Γr({Xr

h, Ψ}∗ + {Ar, Ψ}∗) −
i

h
ΨΓ−Γm{Xm, Ψ}∗

]
,

where the term {Xr
h, Xm}∗ + {Ar, Xm}∗ = δrsDsX

m + O(h) in the notation of Sec. 1. The
Hamiltonian is subject to the ˇrst-class constraint

φ ≡
{

Xr
h,

Πr

√
W

}
∗

+
{

Ar,
Πr

√
W

}
∗

+
{

Xm,
Πr

√
W

}
∗
−

{
ΨΓ−, Ψ

}
∗

= 0. (24)

The ˇrst terms in the star-product expansion are

φ ≡ Dr
Πr

√
W

+
{

Xm,
Πr

√
W

}
− {ΨΓ−, Ψ}∗ + O(h), (25)

where 〈 , 〉∗ has been normalized in a way to be a deformation of {, } the symplectic bracket
of the supermembrane in the LCG. In the notation of Sec. 1, the ˇelds are now u(M) valued.
An explicit expression for O(h), the ˇrst terms with the explicit dependence were found
in [26], for example, if we make manifest the dimensional dependence of the star-product,
we can realize that the parameter [h] = n AreaT 2 , n is the wrapping number. In fact, due
to the minimal immersion map there is a local bijection between the coordinates in the base
manifold and those in the compact part of the target space:∫

Σ

d2σ
√

W =
∫
Σ

dX1
hdX2

h (26)

with Xr
h = 2πRrlrX̂r. The star-product is explicitly given by

i

h
{f, g}a

∗ =
i

h
f bgcfa

bc + {f b, gc}da
bc + O(h) =

=
i

n AreaT 2
f bgcfa

bc + {f b, gc}da
bc + O(n AreaT 2),



Non-Abelian D = 11 Supermembrane 351

where {f b, gc} = εrsDrf
bDsg

c. Dr was deˇned in Sec. 1. The factor 1/h ensures that this
formalism is a non-Abelian extension of the Abelian MIM2-brane, since for the Abelian case
fa

bc vanishes, da
bc = 1, and the algebra closes exactly with the ordinary symplectic bracket

corresponding to a single M2 action without further contributions.
The associated action to this Hamiltonian [1] is invariant under the following supersym-

metric transformations with parameter ε = Γ−Γ+ε:

δAM = δAB
MTB = εΓMΨBTB, M = r, m,

δA0 = δAB
0 TB = −εΨBTB,

δΨ = δΨBTB =
1
4
Γ+ΩB

MNΓMN εTB +
1
2
Γ+ΩB

0MΓM εTB.

These transformations are a U(N) extension of the SUSY transformations for the supermem-
brane in the LCG found by [17,27] and they preserve N = 8 supersymmetry. The invariance
of the action arises in a similar way as it does for Super YangÄMills.

2.2. Decoupling Limit. The mass square operator may be written as

− mass2 =
∫ (

1
2
dx̂r ∧ dx̂sεrs

)[
1
2

(
P√
W

)2

+

+
1
2

(
Π√
W

)2

+ (T Area2
T 2)(VB + VF )

]
, (27)

where VB and VF are the bosonic and fermionic potentials of the Hamiltonian. The scale
of the theory is then T n Area2

T . The measure of integration reduces to the dimensionless
(1/2)dx̂r ∧ dx̂sεrs. The conjugate momenta have mass dimension +1, and the corresponding
conˇguration variable mass dimension −1. T has mass dimension +3. On the other hand, by
considering the contribution to YangÄMills arising from the ˇrst term in the above expansion
of the star-product and by taking canonical dimensions for the conjugate pairs, we get for the
coupling constant

gYM =
1

T
1/2
M2 n AreaT 2

. (28)

It has dimension of mass1/2. It represents the coupling constant of the ˇrst term in the
star-product expansion. We assume that the compactiˇcation radii are Ri � lp but with
the theory still deˇned at high energies. For a ˇxed tension and winding number n, the
only relevant contribution in the star-product at low energies is the U(M) commutator since
the natural length is much larger than the effective radii Reff = n1/2

√
R1R2. This is the

decoupling limit of the theory since the YangÄMills ˇeld strength becomes the coupling
constant of the theory. The gYM is very large in this phase and the theory is in the IR
phase. It corresponds to have a description of M multiple MIM2-branes as point-like par-
ticles, representing M the number of supermembranes. As we raise the energy, the gYM

coupling constant gets weaker and for energies high enough, comparable with the natural
scale of a MIM2-brane with an effective area of (n AreaT 2), the oscillation and vibrational
modes containing the gauge but also gravity interactions between the supermembranes are
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no longer negligible, so the full star-expansion has to be considered. All terms associated
with the supermembrane symplectic structure of the star-bracket contribute, while the ordi-
nary SYM contribution vanishes. The point-like particle picture is no longer valid, and it is
substituted for that of an extended (2 + 1)D object and the gauge and gravity contributions
are strongly coupled. One can deˇne formally effective physical coupling constant for the
ordinary Fμν ˇeld strength which would correspond to Λ = MgYM with M representing the
number of supermembranes and then one can try to obtain the 't Hooft coupling expansion
in the large M . In this picture, however, one should take care of the limit. By keeping
Λ ˇxed with M going to inˇnity, for a ˇxed tension and a ˇxed compactiˇcation radii,
one has to consider the wrapping number n also going to inˇnity. But n Area is the order
parameter that would also go multiplied by M in the expansion, so one enters ®faster¯ in
the strong correlated limit where the rest of the terms of the star-product expansion cannot
be neglected, moreover, from a physical point of view, n AreaT 2 is related to the size of
the MIM2 as an extended object and it cannot be larger than the present energy bounds
we have, otherwise, it would be in contradiction with our point-particle description at low
scales. In order to perform a more accurate analysis, one should be working with the non-
Abelian extension of the MIM2 for 4D noncompact, Å it will be considered elsewhere Å
however, we believe that the qualitative arguments presented here should remain valid also
in that case.

3. DISCUSSION AND CONCLUSIONS

We have obtained a N = 8 non-Abelian U(M) formulation of the minimally immersed
supermembrane for arbitrary number of colors M with all the symmetries of the super-
membrane, in the LCG. This corresponds to the M-theory dual of the non-Abelian formulation
of a bundle of DiracÄBornÄInfeld representing a D2-branes-D0 bound state. It is the ˇrst
time that a non-Abelian gauge theory can be directly obtained from a full-�edged sector of
M-theory element, so far restricted to String Theory: Heterotics and Dp-branes in type II
theories. This opens a new interesting window for models in phenomenology. At energies of
the order of the compactiˇcation scale, the theory has the gauge and gravity sector strongly
coupled. It describes all of the oscillations modes of the multiple parallel M2-branes minimally
immersed. At low energies the theory enters in a decoupling regime and the physics is then
described by a N = 8 SYM theory of point-like particles in the IR phase. We then expect
to describe correctly many aspects of phenomenology when realistic gauge groups will be
considered. From the point of view of the target space, the theory has N = 1 SUSY in 9D
�at dimensions. In [5] a N = 1 target space, D = 4 formulation of a single supermembrane
minimally immersed together with a number of interesting phenomenological properties were
found. Moreover, in [7] a formulation of the supermembrane minimally immersed in a G2
manifold was also obtained. Its quantum supersymmetric spectrum is also purely discrete.
The analysis in 4D can be also extended to the non-Abelian case following the lines shown in
this paper, allowing one to obtain models with reduced number of target and world-volume
supersymmetries.

Acknowledgements. The work of M. P.G.M. has been partially supported by the grants
MICINN-09/FPA2009-07122, FICYT-09/IB09-069 and the MEC-DGI Consolider
CSD2007-00042. The work of A. R. is partially supported by PROSUL, under contract
CNPq 490134/2006-08.



Non-Abelian D = 11 Supermembrane 353

REFERENCES

1. Garc��a del Moral M. P., Restuccia A. A N = 8 Action for Multiple M2-Branes with an Arbitrary
Number of Colors. hep-th/0903.5202.

2. Boulton L., Garc��a del Moral M. P., Restuccia A. Discreteness of the Spectrum of the Compactiˇed
D = 11 Supermembrane with Non-Trivial Winding // Nucl. Phys. B. 2003. V. 671. P. 343Ä358.

3. Boulton L., Restuccia A. The Heat Kernel of the Compactiˇed D = 11 Supermembrane with
Non-Trivial Winding // Nucl. Phys. B. 2005. V. 724. P. 380Ä396.

4. Boulton L., Garc��a del Moral M. P., Restuccia A. The Supermembrane with Central Charges:
(2 + 1)-D NCSYM, Conˇnement and Phase Transition // Nucl. Phys. B. 2008. V. 795. P. 27Ä51.

5. Garc��a del Moral M. P., Pena J.M., Restuccia A. N = 1 4D Supermembrane from 11D // JHEP.
2008. V. 07. P. 039.

6. Garc��a del Moral M. P., Martin I., Restuccia A. Nonperturbative SL(2, Z)(p, q)-Strings Manifestly
Realized on the Quantum M2. hep-th/0802.0573.

7. Belhaj A. et al. The Supermembrane with Central Charges on a G2 Manifold // J. Phys. A. 2009.
V. 42. P. 325201.

8. Bellorin J., Restuccia A. D = 11 Supermembrane Wrapped on Calibrated Submanifolds // Nucl.
Phys. B. 2006. V. 737. P. 190Ä208.

9. Duff M. J. et al. Semiclassical Quantization of the Supermembrane // Nucl. Phys. B. 1988. V. 297.
P. 515.

10. Maldacena J.M. The Large N Limit of Superconformal Field Theories and Supergravity // Adv.
Theor. Math. Phys. 1998. V. 2. P. 231Ä252.

11. Bagger J., Lambert N. Modeling Multiple M2's // Phys. Rev. D. 2007. V. 75. P. 045020.

12. Bagger J., Lambert N. Gauge Symmetry and Supersymmetry of Multiple M2-Branes // Phys. Rev.
D. 2008. V. 77. P. 065008.

13. Gustavsson A. Algebraic Structures on Parallel M2-Branes // Nucl. Phys. B. 2009. V. 811. P. 66Ä
76.

14. Aharony O. et al. N = 6 Superconformal ChernÄSimons-Matter Theories, M2-Branes and Their
Gravity Duals // JHEP. 2008. V. 10. P. 091.

15. Bagger J., Lambert N. Three-Algebras and N = 6 ChernÄSimons Gauge Theories // Phys. Rev.
D. 2009. V. 79. P. 025002.

16. Bergshoeff E., Sezgin E., Townsend P. K. Supermembranes and Eleven-Dimensional Supergravity //
Phys. Lett. B. 1987. V. 189. P. 75Ä78.

17. de Wit B., Hoppe J., Nicolai H. On the Quantum Mechanics of Supermembranes // Nucl. Phys.
B. 1988. V. 305. P. 545.

18. de Wit B., Marquard U., Nicolai H. Area Preserving Diffeomorphisms and Supermembrane Lorentz
Invariance // Commun. Math. Phys. 1990. V. 128. P. 39.

19. de Wit B., Peeters K., Plefka J. Supermembranes with Winding // Phys. Lett. B. 1997. V. 409.
P. 117Ä123.

20. Martin I., Restuccia A., Torrealba R. S. On the Stability of Compactiˇed D = 11 Supermem-
branes // Nucl. Phys. B. 1998. V. 521. P. 117Ä128.

21. Martin I., Ovalle J., Restuccia A. Compactiˇed D = 11 Supermembranes and Symplectic Non-
commutative Gauge Theories // Phys. Rev. D. 2001. V. 64. P. 046001.

22. Fedosov B. Deformation Quantization and Index Theory. Berlin: Akademie-Verlag, 1996. 325 p.

23. Fedosov B. A Simple Geometrical Construction of Deformation Quantization // J. Diff. Geom.
1994. V. 40. P. 213Ä238.



354 Garc��a del Moral M. P., Restuccia A.

24. Kontsevich M. Deformation Quantization of Poisson Manifolds, I // Lett. Math. Phys. 2003. V. 66.
P. 157Ä216.

25. Seiberg N., Witten E. String Theory and Noncommutative Geometry // JHEP. 1999. V. 09. P. 032.

26. Martin I., Restuccia A. Symplectic Connections, Noncommutative YangÄMills Theory and Super-
membranes // Nucl. Phys. B. 2002. V. 622. P. 240Ä256.

27. Bergshoeff E., Sezgin E., Townsend P. K. Properties of the Eleven-Dimensional Supermembrane
Theory // Ann. Phys. 1988. V. 185. P. 330.

28. de Wit B., Luscher M., Nicolai H. The Supermembrane is Unstable // Nucl. Phys. B. 1989. V. 320.

P. 135.


