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FACTORIZATION OF WAVE FUNCTIONS OF THE
QUANTUM INTEGRABLE PARTICLE SYSTEMS

V. I. Inozemtsev1

Joint Institute for Nuclear Research, Dubna

The relation between the characteristics of the equilibrium conˇgurations of the classical CalogeroÄ
Moser integrable systems and properties of the ground state of their quantum analogs is found. It is
shown that, under the condition of factorization of the wave function of these systems, the coordinates
of classical particles at equilibrium are zeroes of the polynomial solutions of the second-order linear
differential equation. It turns out that, under these conditions, the dependence of classical and quantum
minimal energies on the parameters of the interaction potential is the same.

PACS: 03.65.-W; 03.65.Fd

The most known example of the correspondence between classical and quantum dynamical
systems is the BohrÄSommerfeld rule for one-dimensional quasi-classical motion. It allows
one to ˇnd the characteristics of the states with large quantum numbers without complicated
procedure of investigations of the solutions of the Schréodinger equation. But in general case
there is no analogy between the properties of the ground state of the quantum mechanical
systems and their classical counterparts.

However, for integrable particle systems there might be a much deeper connection between
the classical and quantum dynamics due to the common symmetry of the Hamiltonians having
the same group-theoretical grounds. The aim of the present work is demonstration of the
existence of such a connection for integrable cases of the motion of the CalogeroÄMoser
particle systems [1, 2] in the external ˇeld discovered by mine [3, 4]. These systems of
arbitrary number of particles N with the mutual two-particle interaction given by the potential
V (q) are supposed to move in the external ˇeld with the potential W (q) and are deˇned by
the quantum Hamiltonian

H =
N∑

j=1

[
−

(
∂

∂qj

)2

+ W (qj)

]
+

N∑
j>k

V (qj − qk), (1)

where

V (q) = g2(sinh q)−2, W (q) = 8g2(2A2 cosh 4q + B cosh 2q + C sinh 2q). (2)
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The parameters A, B, C and coupling constant g are absolutely arbitrary real numbers. The
case of A = B = C = 0 corresponds to the usual CalogeroÄMoser hyperbolic systems [1,2].

It was shown in the paper [4] that, under the condition

B = −Ag−1(1 + α(N − 1)), α =
1
2

+

√
g2 +

1
4
, (3)

the ground-state wave function of the quantum systems deˇned by (1) is factorized,

ψ(q1, . . . , qN ) =
N∏

j>k

| sinh (qj − qk)|α
N∏

j=1

exp
[
−g

(
4A cosh 2qj +

C

A
qj

)]
. (4)

Later on, it was shown in [5] that, under conditions similar to (3), there are several solutions
which differ from (3) by polynomials in {cosh 2qj} and the model belongs to the class of
quasi-exactly solvable ones, i.e., it is possible to determine analytically some ˇnite set of the
eigenvalues of the Hamiltonian (1). It was also found that the eigenvalue which corresponds
to the wave function (4), i.e., the ground-state energy, is given by the formula

Eq = −N

2

[
α2

3
(N2 − 1) +

C2

A2
g2 − 32A2g2

]
. (5)

We use the system of units in which � = 1; the parameters of the potentials (2) slightly
differ from those used in [4] for convenience. If the condition (3) does not take place, the
factorization (4) does not hold and the energy of the ground state depends on the parameters
A, B, C by much more complicated form. The solution of the corresponding quantum problem
is not known till now.

The natural question arises: which properties of the corresponding classical systems do
correspond to (3)Ä(5)? It is natural to suppose that they reveal themselves for the states with
minimal energy, i.e., classical equilibrium points. The description of these points might be
much easier under the condition similar to (3). It will be shown later that such a correspon-
dence indeed takes place. Note also that at A = B = C = 0 there are no equilibrium points
at all.

It is well known that there is the relation between the coordinates of particles of some,
more simple than (1), (2), classical systems of particles at equilibrium, and zeroes of classical
orthogonal polynomials. It was discovered ˇrst by Stiltjes in the 19th century. It was used for
getting various ®sum rules¯ for zeroes of Hermit, Jacobi, Laquerre polynomials and zeroes of
Bessel functions [6, 7]. As for the systems (1), (2) in some limit, when W (q) coincides with
the Morse potential 8g2A2(exp (4q)−exp (2q)), this relation was established in the paper [8].
Let us now show that the simpliˇcation of the equilibrium equations takes place even in the
general case of potential (2). These equations can be written as

−
N∑

k �=j

cosh (qj − qk)
sinh3 (qj − qk)

+ 8[4A2 sinh (4qj) + B sinh (2qj) + C cosh (2qj)] = 0. (6)

With the use of variables zj = exp (2qj), the system of equations (6) can be cast in the
rational form

−
∑
k �=j

zk(zj + zk)
(zj − zk)3

+ 4A2(zj − z−3
j ) + B + C − (B − C)z−2

j = 0. (7)
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Let us now use the following trick [7] for transformation of the system (7) to more simple
form. Let {zj} be the solution of (7). Let us construct the polynomial

PN (z) =
N∏

j=1

(z − zj)

and consider the integral on closed contour removed enough from the origin and surrounding
all {zj}, for the function

Fj(z) =
z(z + zj)P ′

N (z)
(z − zj)3PN (z)

.

Since Fj(z) ∼ z−2 as z → ∞, this integral and, correspondingly, the sum of the residues at
the poles of Fj(z), equal zero. The residues at the poles of the ˇrst order at zk, k �= j, equal

resFj(z) =
zk(zk + zj)
(zk − zj)3

,

and the system (7) can be written as

4A2(zj − z−3
j ) + B + C − (B − C)z−2

j = −res Fj(z)|z=zj . (8)

The pole of Fj(z) at the point z = zj is of the fourth order, and the right-hand side of (8) is
calculated with the use of the formula

− resFj(z)|z=zj = −1
6

d3

dξ3

[
ξ(zj + ξ)(2zj + ξ)

P ′
N (zj + ξ)

PN (zj + ξ)

]
|ξ=0 =

− 1
4
[2a + zj(4b − 3a2) + z2

j (a3 − 2ab + c)], (9)

where

a =
P ′′

N (zj)
P ′

N (zj)
, b =

P
(3)
N (zj)

P ′
N (zj)

, c =
P

(4)
N (zj)

P ′
N (zj)

. (10)

If we suppose that PN (z) is a solution of the second-order differential equation

μ(z)P ′′
N (z) + ρ(z)P ′

N (z) + λ(z)PN (z) = 0 (11)

(the functions μ, ρ, λ can depend on N ), then the value (10) and the residue (9) can be
expressed through μ, ρ, λ and their derivatives. Our purpose is to choose such kind of μ, ρ, λ
which guarantees the transformation of equations (8) to identities and also allows one to prove
the existence of the polynomial solutions to (11). One can show that all these requirements
can be satisˇed if and only if

μ(z) = z2.

Then the residue (9) can be relatively simply expressed through ρ and λ,

resFj(z)|z=zj =
1
4

(
−ρ2

z3
j

+
ρρ′

z2
j

− ρ′′ − 2λ′

)
. (12)
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The validity of equations (8) happens if

ρ(z) = pz2 + qz + r, λ(z) = uz + v. (13)

The constants p, q, r, u are determined from (8),

p = −r = −4A, pq − 2(p + u) = 4(B + C), qr = 4(B − C). (14)

The polynomial of the degree N can be a solution of (11) in accordance with (13) if and only
if the condition pN + u = 0 is satisˇed. It results ˇnally in

B = −A(N − 1), (15)

q = −C

A
− N + 1. (16)

It is clear now that the solutions to the system (7) are determined by the roots of the polynomial
PN (z) satisfying the second-order differential equation (11) if and only the equality (14) takes
place. The coefˇcient B cannot be arbitrary. Equation (11) with the coefˇcients (13) does
not fall into the hypergeometric class since it has irregular singular points at zero and inˇnity.
This is the characteristic feature of the Hill equation. The parameter v in (13) must be
determined by the condition of compatibility of the system of the recurrence relations for the
coefˇcients of the polynomial

PN (z) =
N−1∑
l=0

dN−lz
l + zN , (17)

which appear under the substitution of (17) into (11). This condition can be represented in the
form of the algebraic equation of (N +1)th order. Its solution for v should be chosen so that
all the roots of PN (z) must be real and positive. I cannot point out the explicit dependence
of v on A and C. However, it turns out that it is not necessary for the calculation of the
energy of the ground state.

This calculation can be performed as follows. Let us write the expression for the ground-
state energy in the form

Ecl = 4g2(S + 2A2(S2 + S−2) + (B + C)S1 + (B − C)S1), (18)

where

S =
∑
k<j

zjzk

(zj − zk)2
, Sα =

N∑
j=1

zα
j .

The sum of the residues of the function

ψ(z) =
∑
j=1

zzj

(z − zj)2
P ′

N (z)
PN (z)

in all its poles must equal zero since ψ(z) ∼ z−2 as z → ∞. The calculation of these residues
with the use of equalities (9), (10) and equation (11) with the coefˇcients (13)Ä(16) allows
one to express the double sum S through Sα,

S = −p2

24
(S2 +S−2)−

S1

12
(pq−3p−2u)− S−1

12
r(q +1)− N

12
(2pr+(q−1)2−4v−1). (19)
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All the sums {Sα} are expressed through p, q, r, u, v with the use of (11) and (17). It
follows from (17) that

S1 = −d1, S2
1 − S2 = 2d2, S−1 = −dN−1

dN
, S2

1 − S−2 = 2
dN−2

dN
.

The substitution of (17) into (11) leads to simple expressions for all values in the right-hand
sides of all these equations. The subsequent substitiuion of them into (18) and (19) results,
after very long but not too tedious calculations, in the very simple formula

Ecl = −Ng2

2

[
N2 − 1

3
+

C2

A2
− 32A2

]
. (20)

All nonzero degrees of the parameter v which appear on intermediate stages of the calculation
cancel, and getting the ˇnal answer (20) does not need the explicit form of v.

Let us also show that Eq. (11) with the coefˇcients (13) can be considered as one-
particle Schréodinger equation. Indeed, after the change of the variable z = exp (2q) and the
substitution

PN (e2q) = ψ(q) exp
[
4A cosh 2q +

(
C

A
+ N

)
q

]
,

one obtains from (11) the equation

−ψ′′

2
+ W̃ (q)ψ = εψ, (21)

where
W̃ (q) = 8(2A2 cosh 4q − A(N + 1) cosh 2q + C sinh 2q),

ε = 16A2 + 2v − 1
2

(
C

A
+ N

)2

.

To summarize, it is established that, under the condition (15), the coordinates of particles
of the classical systems (2) at equilibrium coincide with zeroes of the wave function of
N th level of one-particle wave function, the solution to the one-dimensional Schréodinger
equation (21) with the potential W̃ (z). The condition (15) is completely analogous to the
condition of the factorization of the wave function of the ground state for the quantum
CalogeroÄMoser problem (1), (2) and exactly coincides with it in the limit of large coupling
constants g (i.e., at � → 0). In this limit, the minimal classical and quantum energies (5),
(20) do coincide; the transition to the usual systems of units corresponds to the changes as
in (3)Ä(5)

g → g

�
, εq(g) → �

2εq

(g

�

)
.

The dependence of the energies (5) and (20) on the parameters of the external ˇeld are
identical. It seems that this fact is not casual. Nevertheless, I do not know the theoretical
group interpretation of such a coincidence. It is quite possible that it might be found if
one ˇnds a way of inclusion of (1), (2) into the KirillovÄKostant [9] scheme of geometrical
quantization. However, till now it was used only for the investigation of much more simple
dynamical systems.

I would like to thank the referee for careful reading of the manuscript and pointing to me
the serious misprints and improving the language.
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