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LINEARIZED INTERACTIONS OF SCALAR
AND VECTOR FIELDS

WITH THE HIGHER SPIN FIELD IN AdSD

K.Mkrtchyan1

Yerevan Physics Institute, Yerevan, Armenia

The explicit form of linearized gauge and generalized ®Weyl invariant¯ interactions of scalar and
general higher even spin ˇelds in the AdSD space constructed in [1] is reviewed. Also a linearized
interaction of vector ˇeld with general higher even spin gauge ˇeld is obtained. It is shown that the
gauge-invariant action of linearized vector ˇeld interacting with the higher spin ˇeld also includes the
whole tower of invariant actions for couplings of the same vector ˇeld with the gauge ˇelds of smaller
even spin.

PACS: 04.20.Fy

INTRODUCTION

After discovering the AdS4/CFT3 correspondence of the critical O(N) sigma model [4],
interest in the interacting theory of an arbitrary even high spin ˇeld drastically increased. So
in the center of our attention is a theory of FradkinÄVasiliev type [5] in Fronsdal's metric
formulation [6]. This case of AdSD/CFTD−1 correspondence is also of great interest be-
cause supersymmetry and BPS arguments are absent and because both conformal points of
the boundary theory (i.e., unstable free ˇeld theory and critical interacting point, in the large
N limit) correspond to the same higher spin theory and are connected on the boundary by a
Legendre transformation which corresponds to different boundary conditions (regular dimen-
sion one or shadow dimension two) in the quantization of the bulk scalar ˇeld [7]. Existence
of this scalar ˇeld in higher spin gauge theory is also an interesting and important phenomenon
and supports the spontaneous symmetry breaking mechanism and mass creation for initially
massless gauge ˇelds due to corresponding possible interactions (see, for example, [8, 9]).
From this point of view, any construction of a reasonable even linearized interaction is an
interesting and important task in this reconstruction of the higher spin gauge theory from the
holographic dual CFT and can be controlled by corresponding information about the anom-
alous dimensions of the dual global symmetry currents that fulˇll the conservation conditions
in the large N limit. Therefore, we see that construction of the conformal coupling of the
scalar with a general even higher spin gauge ˇeld appears as an interesting example of an
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interaction which is applicable for many different quantum one-loop calculations such as the
trace anomaly of the scalar in the external higher spin gauge ˇeld and so on [10].

In this article we construct a generalization of the well-known action for the conformally
coupled scalar ˇeld in D dimensions in external gravity

S =
1
2

∫
dDz

√
−G

[
Gμν∇μφ∇νφ − (D − 2)

4(D − 1)
R(G)φ2

]
(1)

to the coupling with the linearized external higher spin � gauge ˇeld. We show that the
gauge and ®Weyl invariant¯ interaction of the scalar with the spin � Fronsdal gauge ˇeld can
be constructed only if we add the same type of interaction with all lower even spin gauge
ˇelds. In other words, we can construct a self-consistent interaction of a gauge ˇeld with the
conformally coupled scalar only with the whole ˇnite tower of gauge ˇelds with even spins
in the range 2 � s � �. We use the same notations and conventions as in [1]. In Sec. 1
we explicitly construct a linearized interaction Lagrangian of the conformal scalar ˇeld with
the spin � gauge ˇeld using Noether's procedure for higher spin gauge invariance. In Sec. 2
we extend our investigation including Noether's procedure for generalized Weyl invariance
and obtain a unique interacting action after nontrivial and tedious calculations. In Sec. 3 we
construct the linearized gauge-invariant interaction of electromagnetic ˇeld with the higher
spin ˇelds. Note also that some consideration of nonlinear gauge-invariant couplings of the
scalar ˇeld on the level of the equation of motion can be found in [11] and on the level of the
BRST formalism for higher spin ˇelds in [12]. Finalizing introduction, we can say that this
is a linearized interaction with the scalar for conformal higher spin theory of the type discus-
sed in [13,14].

1. GAUGE-INVARIANT INTERACTION
FOR THE SCALAR FIELD COUPLED TO SPIN � FIELD

Here we construct gauge-invariant action for coupling of the scalar to the general spin �
ˇeld. Following [1], we apply the following gauge transformation:

δ1
ε φ(z) = ε

μ1μ2···μl−1
� (z)∇μ1∇μ2 · · ·∇μl−1φ(z), (2)

δ0
ε h(�)μ1···μl = l∇(μlε

μ1μ2···μl−1)
� , δ0

ε h(�)αμ1···μl−2
α = 2ε

μ1···μl−2
�(1) , (3)

εα
�αμ3···μl−1

= 0 (4)

to the action

S0(φ) =
1
2

∫
dDz

√
−g

[
∇μφ∇μφ +

D(D − 2)
4L2

φ2

]
, (5)
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and obtain the following variation for Noether's procedure1:

δ1
ε S0(φ) =

∫
dDz

√
−g

⎧⎨
⎩

l
2∑

m=1

(
� − m − 1

m − 1

) [
−∇(μ2mε

μ1···μ2m−1)
�(l−2m) Ψ(2m)

μ1···μ2m

]
+

+
[
∇2φ − D(D − 2)

4L2
φ

] l
2∑

m=2

(
� − m − 1

m − 2

)
∇μ1 · · · ∇μm−1(ε

μ1···μ2m−2

�(l−2m+1)∇μm · · ·∇μ2m−2φ)

⎫⎬
⎭ ,

(7)

where

Ψ(2m)
μ1···μ2m = (−1)m

{
∇μ1 · · ·∇μmφ∇μm+1 · · · ∇μ2mφ−

− m

2
gμ2m−1μ2mgαβ∇(μ1 · · · ∇μm−1∇α)φ∇(μm

· · · ∇μ2m−2∇β)φ−

− m(D + 2m − 2)(D + 2m− 4)
8L2

gμ2m−1μ2m∇μ1 · · ·∇μm−1φ∇μm · · ·∇μ2m−2φ

}
, (8)

and we admitted symmetrization for the set μ1, · · · , μ2m of indices. So we see that mirac-
ulously the coefˇcients in (8) do not depend on l! All �-dependence is concentrated in the
second line of (7) proportional to the equation of motion for the action (5). This part like in
the spin four case can be removed by appropriate ˇeld redeˇnition (see (13), (14), (A.6))

φ → φ +

l
2∑

m=2

m − 1
2(l − 2m + 1)

∇μ1 · · · ∇μm−1

(
h(2m)αμ1···μ2m−2

α ∇μm · · ·∇μ2m−2φ
)

(9)

and we can drop these terms from our consideration. Thus, we obtain the following spin �
gauge-invariant action:

SGI(φ, h(2), h(4), . . . , h(�)) = S0(φ) +

l
2∑

m=1

SΨ(2m)

1

(
φ, h(2m)

)
, (10)

1For compactness we introduce shortened notations for divergences of the tensorial symmetry parameters

εμν···
(1)

= ∇λελμν···, εμ···
(2)

= ∇ν∇λενλμ..., · · · (6)
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where

SΨ(2m)

1 (φ, h(2m)) =
1

2m

∫
dDz

√
−gh(2m)μ1···μ2mΨ(2m)

μ1···μ2m =

=
(−1)m

2m

∫
dDz

√
−g

{
h(2m)μ1···μ2m∇μ1 · · · ∇μmφ∇μm+1 · · · ∇μ2mφ−

− m

2
h

(2m)αμ1···μm−1
αμm···μ2m−2 ∇(μ1 · · · ∇μm−1∇μ)φ∇(μm · · · ∇μ2m−2∇μ)φ−

− m(D + 2m − 2)(D + 2m − 4)
8L2

h(2m)αμ1···μ2m−2
α ∇μ1 · · · ∇μm−1φ∇μm · · · ∇μ2m−2φ

}
,

(11)

and the ˇnal form of the improved gauge transformations

δ1
ε φ(z) = ε

μ1μ2···μl−1
� (z)∇μ1∇μ2 · · ·∇μl−1φ(z), (12)

δ0
ε h(2m)μ1···μ2m = 2m∇(μ2mε

(2m)μ1···μ2m−1)
� , δ0

ε h(2m)αμ1···μ2m−2
α = 2ε

(2m)μ1···μ2m−2

�(1) ,

(13)

ε
(2m)μ1···μ2m−1
� =

(
� − m − 1

m − 1

)
ε
μ1···μ2m−1

�(l−2m) , 2m � l. (14)

So we found the gauge-invariant action for a general spin l gauge ˇeld coupled to a
scalar and this action possesses the following property: it redeˇnes the gauge parameters
for lower spin gauge ˇelds coupled to scalar, which means: The gauge-invariant action
SGI(φ, h(2), h(4), . . . , h(�)) for a spin � gauge ˇeld coupled to a scalar includes gauge-
invariant actions of a tower of all smaller even spin gauge ˇelds coupled to the same scalar
in an analogous way.

2. WEYL INVARIANT ACTION
FOR A HIGHER SPIN FIELD COUPLED TO A SCALAR

In this section we introduce generalized Weyl transformations for higher spin ˇelds and
derive a Weyl invariant action for a higher spin ˇeld coupled to a scalar ˇeld. Following [1,3],
we write the generalized Weyl transformation for the even spin l ˇeld in the form

δ0
σh(�)μ1···μl = l(l − 1)σ(μ1···μl−2

� gμl−1μl), (15)

δ0
σh(�)αμ1···μl−2

α = 2(D + 2l − 4)σμ1···μl−2
� , (16)

δ1
σφ = Δ�σ

μ1···μl−2
� ∇μ1 · · · ∇μl−2φ. (17)

Then we assume that the Weyl invariant action for a spin l ˇeld should be accompanied with
similar Weyl invariant actions for smaller spin gauge ˇelds and therefore can be constructed
from (10) by adding l/2 additional terms

SWI
(
φ, h(2), h(4), . . . , h(�)

)
= SGI

(
φ, h(2), . . . , h(�)

)
+

l/2∑
m=1

Sr(2m)

1

(
φ, h(2m)

)
, (18)
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where each Sr(2m)

1 is gauge-invariant itself. Now we will see that the generalization of the
Ricci scalar for a higher spin ˇeld, namely, the trace of Fronsdal's operator [6, 9]

r(�)μ1···μl−2 = −1
2
TrF(h�) = ∇α∇βh(�)αβμ1···μl−2 − �h(�)αμ1···μl−2

α −

− l − 2
2

∇(μ1∇αh
(�)μ2···μl−2)αβ
β − (l − 1)(D + l − 3)

L2
h(�)αμ1···μl−2

α , (19)

is the only gauge-invariant combination of two derivatives and a higher spin ˇeld which
we need to construct the Weyl invariant action (18) starting from (10). We will use the
following strategy for solving our problem: We apply transformation (15)Ä(17) to (10) and
try to compensate it with the variation of

l/2∑
m=1

Sr(2m)

1 (φ, h(2m)), where Sr(�)

1 (φ, h(2), · · · , h(�)) =

=
1
2

l
2−1∑
m=0

ξm
�

∫
dDz

√
−g∇μ2m+1 · · · ∇μl−2r

(�)μ1···μl−2∇μ1 · · ·∇μmφ∇μm+1 · · · ∇μ2mφ,

(20)

introducing necessarily gauge and Weyl transformations for lower spin gauge ˇelds

δσ�
h(2m)μ1···μ2m = 2m(2m − 1)Cm

� σ
(μ1···μ2m−2

�(l−2m) gμ2m−1μ2m), m = 1, . . . , l/2, (21)

C
�/2
� = 1. (22)

In other words, we solve the equation

δσ�
SWI

(
φ, h(2), . . . , h(�)

)
= δ1

σ�
S0 +

l/2∑
s=1

δ0
σ�

SΨ(2s)

1 +
l/2∑
s=1

δ0
σ�

Sr(2s)

1 = 0, (23)

which consists of a system of l + 1 equations for (l/2 + 1)(l/2 + 2)/2 variables1

��, (24)

Cm
� , m = 1, 2, . . . , l/2, (25)

ξn
2s, n = 0, 1, . . . , s − 1; s = 1, . . . , l/2, (26)

but when we ˇnd ξ
�/2−k
� we also ˇnd ξs−k

2s for any s � k. In other words, we ˇnd a whole

1This system includes also (22) as an equation for C
�/2
� .
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diagonal of this triangle matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
� C2

� . . . C
�/2−1
� C

�/2
� Δ�

ξ0
� ξ1

� . . . ξ
�/2−2
� ξ

�/2−1
�

ξ0
�−2 ξ1

�−2 . . . ξ
�/2−2
�−2

. . . . .

. . . .
ξ0
4 ξ1

4

ξ0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

which helps us to solve the whole system. We have two equations for any vertical line of
this matrix besides the last, for which we have one equation for Δ. We start from the last
vertical line and go to the left. When we take any line and two equations for that line of
variables, we have only two variables to ˇnd if we have already solved all lines to the right of
that one. That means that our system has a unique solution. We do not write all complicated
Weyl variations of (23) and present here the resulting system of equations for the unknown
variables (24)Ä(26):

Δ� = 1 − D

2
, (28)

(−1)l/2

2

(
Δ� −

l − 2
2

)
− (D + 2l − 5)ξ�/2−1

� = 0, (29)

(−1)mCm
� +

l/2∑
s=m+1

mCs
� ξm

2s = 0 (m = 1, . . . , l/2 − 1), (30)

(−1)m−1

2
(m − 1)Cm

� − Cm
� (D + 4m − 5)ξm−1

2m +

+
1
2

l/2∑
s=m+1

Cs
�

[
−m(m − 1)ξm

2s − (2s − 2m + 2)(D + 2s + 2m − 5)ξm−1
2s

]
= 0

(m = 1, . . . , l/2 − 1). (31)

The solution of this system is unique Δ� = Δ = 1 − D/2 and

ξm
� =

(−1)m

2�−2m(�/2)

(
�/2
m

)
(D/2 + m − 1)�/2−m(

D + � − 1
2

+ m − 1
)

�/2−m

, (32)

Cm
� =

(−1)�/2−m

2�−2m

(
�/2 − 1
m − 1

)
(D/2 + m − 1)�/2−m(
D − 1

2
+ 2m

)
�/2−m

. (33)

These completely ˇx (20) and therefore the full Weyl invariant action (18) and also determine
the transformation law for the whole tower of higher spin gauge ˇelds (21).
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3. SPIN ONE FIELD COUPLINGS TO THE HIGHER SPIN GAUGE FIELDS

Now we generalize the result of [2] for coupling of vector ˇeld to the spin four ˇeld to
the general higher even spin case. We work in the 	at space because that case is enough for
our interests, although some discussion connected with AdS space is provided below. So we
start from the free ˇeld Lagrangian1

L0 = −1
4
FμνFμν = −1

2
∂μAν∂μAν +

1
2
(∂A)2, (34)

Fμν = ∂μAν − ∂νAμ, ∂A = ∂μAμ (35)

for an electromagnetic ˇeld and use the Noether procedure with following starting variation:

δ1
ε Aμ = ε

μ1...μl−1
� ∇μ1 · · ·∇μl−2Fμl−1μ. (36)

From very long and tedious calculations we get

δ1
εL0 =

�/2∑
m=1

(
� − m − 1

m − 1

) (
−∇(μ2mε

μ1···μ2m−1)
�(l−2m) Ψμ1···μ2m(Aμ)

)
+

+
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1

m
∇μm+1 · · · ∇μ2m−2

(
∇νε

μ1···μ2m−2

�(l−2m)μ ∇μ1 · · ·∇μm−1F
ν
μm

)
∇αFαμ+

+
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1
2m

∇μm · · · ∇μ2m−3

(
ε
μ1···μ2m−3

�(l−2m+1)μ∇μ1 · · ·∇μm−2∇νFνμm−1

)
∇αFαμ−

−
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1

l − 2m + 1
∇μm · · · ∇μ2m−2

(
ε
μ1···μ2m−2

�(l−2m+1)∇μ1 · · ·∇μm−2Fμm−1μ

)
∇αFαμ,

(37)

where

Ψμ1···μ2m(Aμ) = (−1)m
(
−∇μ1 · · · ∇μm−1F

ν
μm

∇μm+1 · · · ∇μ2m−1Fμ2mν+

+
m − 1

2
gμ1μ2∇μ3 · · ·∇μm∇αFμm+1β∇μm+2 · · · ∇μ2m−1∇βFμ2mα+

+
m

4
gμ1μ2∇μ3 · · · ∇μm+1F

ρσ∇μm+2 · · ·∇μ2mFρσ

)
, (38)

and we admitted symmetrization for the set μ1 · · ·μ2m of indices. This means that when we
change our initial variation (36) to

δ1
ε Aμ = ε

μ1···μl−1
� ∇μ1 · · ·∇μl−2Fμl−1μ−

−
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1

m
∇μm+1 · · ·∇μ2m−2

(
∇νε

μ1···μ2m−2

�(l−2m)μ ∇μ1 · · · ∇μm−1F
ν
μm

)
(39)

1From now on we will never make a difference between a variation of the Lagrangians or the actions discarding
all total derivative terms and admitting partial integration if necessary.
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and also take into account appropriate ˇeld redeˇnition

Aμ → Aμ +
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1
2m

∇μm · · · ∇μ2m−3

(
ε
μ1···μ2m−3

�(l−2m+1)μ∇μ1 · · ·

· · ·∇μm−2∇νFνμm−1

)
∇αFαμ−

−
�/2∑

m=1

(
� − m − 1

m − 1

)
m − 1

l − 2m + 1
∇μm · · ·∇μ2m−2

(
ε
μ1μ2m−2

�(l−2m+1)∇μ1 · · ·

· · · ∇μm−2Fμm−1μ

)
∇αFαμ, (40)

we can see that the gauge-invariant Lagrangian for interaction of electromagnetic ˇeld with
the higher even spin � ˇeld is

L1(Aμ, h(2), h(4), . . . , h(�)) =
�/2∑

m=1

1
2m

h(2m)μ1...μ2mΨ(2m)
μ1...μ2m

(Aμ). (41)

This result is similar to the scalar case investigated in Sec. 1. The same tower of even spin
gauge ˇelds appears when we construct gauge-invariant interaction with higher spin ˇelds.
The generalization to the non-Abelian scalar or vector (YangÄMills) ˇelds is trivial. In scalar
case we went further and constructed Weyl invariant Lagrangian. We could not generalize
Weyl invariance for spin one case. That is the price for spin one manifest gauge invariance
(in all interactions vector ˇeld is represented by its curvature Fμν ). Here we would like to
mention that AdSD corrections to (38) have the following basic properties. As in the scalar
case, there are no 1/L4 or higher corrections. The 1/L2 term is proportional to � − 2. For
1 − 1 − 2 interaction we do not have any difference between interaction in the 	at space and
AdS. The s−s−2s case investigated in [2] can also be written in AdS in the same form as in
the 	at space like 1−1−2 case. The only difference is that curvatures of higher spin (s > 1)
ˇelds have analytical expansion in powers of cosmological constant [10], so the background
changes interaction, but that difference is encoded in curvatures and is ˇnite series in powers
of 1/L2 in AdS case.

CONCLUSION

We constructed a gauge and generalized Weyl invariant interacting Lagrangian for a
linearized higher even spin gauge ˇeld and a conformally coupled scalar ˇeld in AdSD space.
We also constructed gauge-invariant interaction of vector ˇeld with higher spin ˇelds. The
resulting Lagrangian for the spin � ˇeld includes all lower even spin gauge ˇelds also with
the same type of interaction with the same scalar or vector ˇeld. These results can be used
for construction of a more complicated interaction between different higher spin gauge ˇelds
in AdS space.
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dation under 3.4-Fokoop-ARM/1059429, ANSEF 2009 and CRDF-NFSAT UCEP06/07. The
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APPENDIX

We use the following commutation relations in AdSD:

ε
μ1···μl−1
� [∇μ,∇μ1 · · · ∇μk

]φ =
k(k − 1)

2L2
ε
μμ2···μl−1
� ∇μ2 · · ·∇μk

φ, (A.1)

[∇μ1 · · · ∇μk
,∇μ]εμ1···μl−1

� =
2k(D + l − 2) − k(k + 1)

2L2
ε
μμk+1···μl−1
�(k−1) , (A.2)

ε
μ1···μl−1
� [∇μ,∇μ1 · · · ∇μk

]∇μφ =
k(2D + k − 3)

2L2
ε
μ1μ2···μl−1
� ∇μ1 · · · ∇μk

φ, (A.3)

ε
μ1···μl−1
� [∇2,∇μ1 · · · ∇μk

]φ =
k(D + k − 2)

L2
ε
μ1μ2···μl−1
� ∇μ1 · · ·∇μk

φ, (A.4)

where ε
μ1···μl−1
� is the symmetric and traceless tensor. Finally we list all necessary binomial

identities
n−m∑
k=0

(−1)k

(
n

k

)
= (−1)n−m

(
n − 1
m − 1

)
,

n−m∑
k=0

(−1)k

(
n

m + k

)
=

(
n − 1
m − 1

)
, (A.5)

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
,

(
� − m − 1

m − 2

)
=

m − 1
l − 2m + 1

(
� − m − 1

m − 1

)
. (A.6)
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