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The sine-Gordon model and afˇne Toda ˇeld theories on the half-line, on the one hand, and the
XXZ spin chain with nondiagonal boundary term and interacting many-body lattice systems with a
	ow, on the other, have a common characteristic. They possess nonlocal conserved boundary charges,
generating the AskeyÄWilson algebra, a coideal subalgebra of the bulk quantized afˇne symmetry. We
argue that the boundary AskeyÄWilson symmetry is the deep algebraic property allowing for integrability
of the physical system in consideration.
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A rich family of quantum ˇeld theories, known as quantum afˇne Toda models, possess
quantum afˇne symmetry, solitons, and integrable boundaries. In the presence of general
boundaries, the quantum symmetry, and the integrability of the model as well, are broken.
However, with suitably chosen boundary conditions, a remnant of the bulk symmetry may
survive, and the system possesses hidden boundary symmetries, which determine a K matrix,
a solution to the boundary YangÄBaxter equation and allow for the exact solvability. Such
nonlocal boundary symmetry charges were originally obtained for the sine-Gordon model [1]
and generalized to afˇne Toda ˇeld theories [2], and derived from spin chain point of view
as commuting with the transfer matrix for a special choice of the boundary conditions [3]
or analogously as the one-boundary TemperleyÄLieb algebra centralizer in the ®nondiagonal¯
spin 1/2 representation [4]. The derivation of the nonlocal charges used the algebraic tech-
nique based on the quantum afˇne symmetry in the bulk and the known boundary re	ection
K matrices. They were obtained as coideals of the bulk quantum symmetry and interpreted
as generating a new symmetry.

In a recent paper [5], we have deˇned the AskeyÄWilson (AW) algebra as a coideal
subalgebra of the quantum afˇne Uq(ŝl(2)). We have constructed a K matrix in terms of the
AskeyÄWilson algebra generators, which satisˇes a boundary YangÄBaxter equation (known
as a re	ection equation). As an example of an AskeyÄWilson boundary symmetry, we have
considered a model of nonequilibrium physics, the open asymmetric simple exclusion process
with most general boundary conditions. This model is exactly solvable in the stationary state
within the matrix product ansatz to stochastic dynamics, and it can be shown that the boundary
operators generate the AskeyÄWilson algebra. The model is known [6] to be equivalent to the



468 Aneva B.

integrable spin 1/2 XXZ chain with general boundary terms (in the proper parameterization),
whose bulk Hamiltonian (inˇnite chain) possesses the quantum afˇne symmetry Uq(ŝu(2)).
The results of Baseilhac and Koizumi [7] for the XXZ spin chain boundary AskeyÄWilson
algebraic relations follow from the asymmetric exclusion process boundary algebra for the
particular values of the structure constants.

In our opinion, it is quite remarkable that afˇne Toda ˇeld theory (a special case of
which is the sine-Gordon model), the XXZ spin chain, and the interacting lattice many-body
system with a 	ow have the common characteristic of possessing a quantum afˇne symmetry
Uq(ŝl(2)) (or Uq(ŝu(2)) in the bulk and boundary nonlocal charges generating an AskeyÄ
Wilson algebra, a coideal subalgebra of the quantum group bulk symmetry. The existence
of an operator-valued re	ection matrix, expressed in terms of the AW algebra generators
and satisfying a boundary YangÄBaxter equation, is the deep algebraic property behind these
models allowing for integrability. This puts forward a connection to a Bethe Ansatz (BA)
solution for the spectrum of the relevant physical quantities.

There is a natural homomorphism to the AskeyÄWilson algebra of a tridiagonal algebra
(TD), known as deformed DolanÄGrady relations or deformed Onsager algebra. Recently
Baseilhac and Koizumi [8] have explicitly constructed the deformed analogue of the Onsager
algebra for the XXZ spin chain. Using the representation theory of the q-Onsager algebra
they diagonalize the transfer matrix of the spin 1/2 XXZ chain of L sites, with general
integrable boundary conditions, and generic anisotropy parameter q, with |q| = 1. They argue
to have obtained the complete exact spectrum from the roots of the characteristic polynomial
of dimension 2L.

In this paper, we consider a different spectral problem exact solution for a system with
boundary symmetry based on the AskeyÄWilson algebra. The importance of the AW alge-
bra related spectral problem is motivated by the identiˇcation of one of the generators with
the second order difference operator for the AW polynomials in the basic representation.
The difference equation for the AW polynomials [9] becomes equivalent to the diagonal-
ization problem for a general quadratic form in the quantum group generators (commonly
interpreted as the Hamiltonian of a proper physical system). We present a diagonalization
of the ASEP transition rate matrix (Hamiltonian) by Bethe Ansatz procedure for the sec-
ond order difference operator for the AskeyÄWilson polynomials and obtain the complete
spectrum for the lattice system with boundary AW symmetry, namely the asymmetric sim-
ple exclusion process (the XXZ spin chain). The algebraic scheme can be applied to any
system with the boundary AskeyÄWilson algebra. In our opinion, however, due to the ul-
timate relation of the ASEP to the AW polynomials, already manifest in the exact solution
at the stationary state, the proposed solution is the most appropriate for this nonequilibrium
system.

We would like also to note that the implementation of the second order difference operator
for the AW algebra related spectral problem was brie	y mentioned in [10]. The careful reader
will notice that it was done assuming the constraint abcd = q for the parameters of the AW
polynomials. This constraint is the deˇning condition of a ˇnite-dimensional representation
of the AskeyÄWilson (tridiagonal) algebra and is unacceptable for the ASEP. The nontrivial
point in the diagonalization we propose is the construction of a ˇnite-dimensional represen-
tation of the tridiagonal algebra without imposing conditions that restrict the physics of the
nonequilibrium system. We comment also on the relation to the solution, obtained in [11] for
even number of lattice sites.
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We will use the deˇnition of the AskeyÄWilson algebra as a coideal subalgebra of the
quantized afˇne algebra Uq(ŝl(N)), N � 3. (The case N = 2 was considered in [5].)
Let ui, , vi, , ki, i = 0, . . . , N − 1 be some scalars. The AW algebra is deˇned by the
homomorphism to the level zero Uq(ŝl(N)) [12] (with Chevalley basis E±

i , Hi )

Ai = uiE
+
i q−Hi/2 + viE

−
i q−Hi/2 + kiq

−Hi , i = 0, . . . , N − 1 (1)

so that the generators Ai, i = 0, . . . , N − 1 satisfy

[Ai, Aj ] = 0, |i − j| � 2, (2)

[[Ai, Aj ]q, Ai]q = −ρiAj − ωi
jAi − ηj

i ,

[Aj , [Ai, Aj ]q]q = −ρjAi − ωi
jAj − ηi

j ,
(3)

where [Ai, Aj ]q = q1/2AiAj − q−1/2AjAi, 0 � i, j � N , is the q commutator and the
structure constants are representation-dependent

−ρi = uivi(q − q−1)2, (4)

ωi
j = (q1/2 − q−1/2)2kikjq

−μ(i)−μ(j), (5)

ηj
i = (q − q−1)2uivikjq

−2μ(i)−μ(j), ηi
j = (q − q−1)2ujvjkiq

−2μ(j)−μ(i) (6)

with either i = 0, 1, . . . , N−2 and j = i+1 or i = 0, j = N−1. The Uq(ŝl(N)) representation
module V is of type 1 [13], i.e., V = ⊕μVμ with weight space Vμ = (ν ∈ V |qHiν = qμ(i)ν),
a joint eigenspace of the commuting operators qHi , i = 0, . . . , N − 1. The explicit form of
the structure constants for the AW algebra as a coideal of Uq(ŝl(2)) is given by the formulae
(31)Ä(34) in [5], where it has been found that the structure constants depend on the quadratic
Casimir element [14], l0V (for details, see [5]).

The tridiagonal algebra, generated by the elements (1), is obtained by taking the commu-
tator, respectively with Ai and Aj , in the ˇrst and second lines of (3) and is deˇned by the
relations

[Ai, [Ai[Ai, Aj ]q]q−1 ] = ρi[Ai, Aj ],
[Aj , [Aj , [Aj , Ai]q]q−1 ] = ρj [Aj , Ai],

(7)

together with (2) and ρi given by (4).
From the explicit realization of the operators Ai, it follows that they generate a linear

covariance algebra for the Uq(ŝl(N)), which has the property of a coideal subalgebra. From

the comultiplication of Uq(ŝl(N)) one has

Δ(Ai) = I ⊗ Ai + (Ai − kiI) ⊗ q−Hi , i = 0, . . . , N − 1. (8)

1. TWO-DIMENSIONAL FIELD THEORY MODELS

The sine-Gordon model is a free bosonic conformal ˇeld theory, with the action on

the whole line (with φ(−∞, t) = 0), with the perturbing operator Φpert(x, t) = eiβ̂φ(x,t) +
e−iβ̂φ(x,t), where β̂ is the Toda coupling constant. The Uq(ŝl2) symmetry of the sine-Gordon
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model with deformation parameter q = exp
(

2iπ(1 − β̄2)
β̄2

)
is generated by the charges

Q± =
1
4π

∞∫
−∞

(J± − H±), Q̄± =
1
4π

∞∫
−∞

(J̄± − H̄±) together with the topological charge

T =
β̂

2π

∞∫
−∞

dx ∂xφ. The explicit expressions of the currents J±, J̄±, H±H̄± are given by

formulae (3.5), (3.6), and (3.7) in [2]. The charges are related to the conventional basis in
Uq(ŝl2) Q± = E±qH , Q̄± = E±q−H , T = H . The Neumann boundary conditions ∂xφ = 0
at x = 0 restrict the sine-Gordon model to the half-line x � 0, but the model was found to
be classically integrable with rather more general boundary conditions

∂xφ = iβλb

(
ε− eiβ̂φ(0,t) − ε+ e−iβ̂φ(0,t)

)
, (9)

which is a perturbation to the Neumann boundary conditions Sε = SNeumann +
λ

2π
×∫

dtΦpert
bound(t), with the boundary perturbing operator Φpert

bound(t) = ε− eiβ̂φ(0,t)+ε+ e−iβ̂φ(0,t).

It has been shown in [2] that with these boundary conditions, the nonlocal charges, Q̂∓ =

Q∓ + Q̄± + ε̂∓q∓T , where ε̂± =
λbε±
2π

(1 − β̄2)
β̄2

, are conserved and generate a coideal subal-

gebra of Uq(ŝl2). It is now straightforward to show that the algebra of the charges Q̂± is the
AW algebra with two generators

A = Q+ + Q̄− + ε̂+qT , A∗ = Q− + Q̄+ + ε̂−q−T (10)

with structure constants corresponding to the value (of the Uq(ŝl2)) Casimir l0V = q1/2+q−1/2

ρ = ρ∗ = −(q − q−1)2, (11)

ω = (q1/2 − q−1/2)2
(
ε̂+ε̂− + (q1/2 + q−1/2)2

)
, (12)

η = η∗ = (q − q−1)2(ε̂+ + ε̂−). (13)

A Hamiltonian, describing a sine-Gordon model on the half-line coupled to a nonlinear
oscillator at the boundary (i.e., dynamical boundary), was proposed in [15] and has been
shown to be integrable at the classical level. The model was then studied at the quantum
level [16], and nonlocal charges Ê± corresponding to the dynamical case were constructed,
which were natural extensions to the known nondynamical ones [2]. These nonlocal charges
have been shown to be coideals of Uq(ŝl2) and to obey the algebraic relations

(q + q−1)Ê+Ê−Ê+ − Ê2
+Ê− − Ê−Ê2

+ = −c2(q1/2 + q−1/2)2Ê−,

(q + q−1)Ê−Ê+Ê− − Ê2
−Ê+ − Ê+Ê2

− = −c2(q1/2 + q−1/2)2Ê+,
(14)

where c2 = i2μ(q − 1)/λ2, λ = 2/β̂2 − 1, μ is the boundary perturbation parameter and
q ≡ exp (−2πi/β̂2). These relations deˇne the AW boundary algebra of the dynamical
model with structure constants

ρ = ρ∗ = −c2(q1/2 + q−1/2)2, (15)

ω = 0, η = η∗ = 0. (16)
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The more general class of models is the afˇne Toda ˇeld theory associated to every afˇne
Lie algebra of rank N and deˇned by the Euclidean action for an N -component boson ˇeld
in two dimensions

S =
1
4π

∫
d2z ∂φ ∂̄φ +

λ

2π

∫
d2z

N−1∑
j=0

exp

(
−iβ̂

1
|α2

j |
αj · φ

)
, (17)

where the exponential interaction potential is expressed by the simple roots αj , j = 0, . . . ,

N − 1, λ is the mass parameter, and β̂ is the coupling constant. The quantum symmetry

Uq(ŝl(N)) is generated by the topological charges Tj =
β̂

2π

∞∫
−∞

dxαj∂xφ and the nonlocal

conserved charges Qj =
1
4π

∞∫
−∞

(Jj −Hj), Q̄j =
1
4π

∞∫
−∞

(J̄j − H̄j), where j = 0, . . . , N − 1,

Qi ≡ E+
i qHi/2, Q̄i ≡ E−

i qHi/2, Ti ≡ Hi. The explicit expressions for Jj , J̄j, Hj , H̄j are
given by the formulae (4.4), (4.5), and (4.6) in [2]. The linear combinations Qj + Q̄j are
parity invariant and conserved on the half-line with Neumann boundary conditions. Adding to

the action a boundary perturbation Sε = SNeumann +
λ

2π

∫
dt Φpert

bound(t), where Φpert
bound(t) =

N−1∑
j=0

εj exp

(
− iβ̂

2
αj · φ(0, t)

)
, we obtain a more general boundary condition

∂xφ = −iβ̂λb

N−1∑
j=0

εjαj exp

(
− iβ̂

2
αj · φ(0, t)

)
, x = 0. (18)

The new conserved charges are

Q̂i = Qi + Q̄i + ε̂iq
Ti , ε̂i =

λbεi

2πc

(1 − β̂2)
β̂2

, i = 0, . . . , N − 1. (19)

The nonlocal charges of the afˇne Toda ˇeld theory generate the AW algebra with N gener-
ators and with structure constants given by (no summation over repeated indices)

ρi = ρi+1 = −(q − q−1)2, (20)

ωi+1 = (q1/2 − q−1/2)2ε̂iε̂i+1q
−μ(i)−μ(i+1), (21)

ηi+1
i = (q − q−1)2ε̂i+1q

−2μ(i)−μ(i+1), ηi
i+1 = (q − q−1)2ε̂iq

−2μ(i+1)−μ(i). (22)

The nonlocal charges of the afˇne Toda ˇeld theory generate the tridiagonal algebra with
structure constants ρi given by Eq. (20).

2. THE XXZ SPIN CHAIN AND THE OPEN ASYMMETRIC SIMPLE
EXCLUSION PROCESS (ASEP)

The ASEP is an interacting many-body system with wide range of applications [17, 18].
It is described in terms of a probability distribution P (si, t) of a stochastic variable si at
a site i = 1, 2, . . . , L of a linear chain. On successive sites, particles hop with probability
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g01dt to the left, and g10dt to the right. The event of hopping occurs if out of two adjacent
sites one is a vacancy, si = 0, and the other, s′i = 1, is occupied by a particle. The
symmetric process is the lattice gas model of particles hopping between the nearest-neighbour
sites with a constant rate g. The asymmetric simple exclusion process with hopping in a
preferred direction is the driven diffusive lattice gas of particles moving under the action
of an external ˇeld. The process is partially asymmetric if there is a different nonzero
probability of both left and right hopping, g01 = q, g10 = 1, and totally asymmetric if
all jumps occur in one direction only, q = 0. In the case of open systems, the lattice
gas is coupled to external reservoirs of particles of ˇxed density, and additional processes
can take place at the boundaries. Namely, at the left boundary i = 1 a particle can be
added with probability α dt and removed with probability γ dt, and at the right boundary
i = L it can be removed with probability β dt and added with probability δ dt. The time
evolution of the system is governed by the master equation dP (s, t)/dt =

∑
s′

Γ(s, s′)P (s′, t)

which is mapped to a Schréodinger equation in imaginary time for a quantum Hamiltonian
with the nearest-neighbour interaction in the bulk and single-site boundary terms. A relation
to the integrable spin 1/2 XXZ quantum spin chain is obtained through the similarity
transformation for the transition rate matrix Γ = −qU−1

μ HXXZUμ (for details, see [6]);
HXXZ is the Hamiltonian of the Uq(su(2)) invariant quantum spin chain with anisotropy
Δ = −1/2(q + q−1) and with the added nondiagonal boundary terms B1 and BL: HXXZ =

−1/2
L−1∑
i=1

(σx
i σx

i+1+σy
i σy

i+1−Δσz
i σz

i+1+h(σz
i+1−σz

i )+Δ)+B1+BL, where h = 1/2(q−q−1).

The explicit relation of the boundary terms to the transition rates of the ASEP is given in [11].
The steady state properties of the ASEP are studied within the Matrix Product State Ansatz

(MPA). The idea is [19] that the stationary probability of a given conˇguration (s1, s2, . . . , sL)

can be exactly obtained as the expectation value P (s) =
〈w|Ds1Ds2 . . . DsL |v〉

ZL
, in terms of

matrices Dsi = D1 if si = 1, and Dsi = D0 if si = 0, satisfying the quadratic (bulk) algebra
D1D0 − qD0D1 = x1D0 − D1x0, with boundary conditions of the form and x0 + x1 = 0

(βD1 − δD0)|v〉 = x0|v〉, 〈w|(αD0 − γD1) = 〈w|x0. (23)

The exact solution in the stationary state was related to AskeyÄWilson polynomials [20].
Emphasizing the equivalence of the open ASEP to the Uq(ŝu(2)) XXZ invariant quantum
spin chain with added general boundary terms, we have shown [21] that the boundary operators
generate the AW algebra with the structure constants

ρ = x2
0βδq−1(q1/2 + q−1/2)2, ρ∗ = x2

0αγq−1(q1/2 + q−1/2)2, (24)

−ω = x2
0(β − δ)(γ − α) − x2

0(βγ + αδ)(q1/2 − q−1/2)Q, (25)

η = q1/2(q1/2 + q−1/2)x3
0

(
βδ(γ − α)Q +

(β − δ)(βγ + αδ)
q1/2 − q−1/2

)
,

η∗ = q1/2(q1/2 + q−1/2)x3
0

(
αγ(β − δ)Q +

(α − γ)(αδ + βγ)
q1/2 − q−1/2

)
,

(26)

where Q is the central element of the ˇnite-dimensional Uq(su(2)) representation. The
left boundary operator and right boundary operator, being shifted AW algebra generators
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DL = A∗ + α − γ and DR = A + β − δ, have a diagonal and a tridiagonal (inˇnite-
dimensional) representations, respectively, with basis the AW polynomials pn, n = 0, 1, . . .
The parameters a, b, c, d of the AW polynomials are uniquely related to the four boundary
rates, namely a = k+(α, γ), b = k+(β, δ), c = k−(α, γ), d = k−(β, δ), where

k±(u, v) =
−u + v + (1 − q) ±

√
(u − v − (1 − q))2 + 4uv

2u
. (27)

The corresponding AW algebra for the XXZ spin chain, proposed and studied in [10], is a
particular case of the ASEP boundary AW algebra. It is generated by the operators

A =
1
c0

Q+ + Q̄−, A∗ = Q− +
1
c0

Q̄+, (28)

where c0 is an arbitrary parameter and structure constants are given by

ρ = ρ∗ =
(q1/2 + q−1/2)2

c0
, (29)

ω = − ω(j)

c0(q − q−1)
, η = η∗ = 0, (30)

where ω(j) = (qj+1/2 + q−j−1/2) is the value of the Uq(sl2) Casimir in the spin j represen-
tation.

The tridiagonal algebra as a coideal subalgebra of the Uq(ŝl(2)) for the XXZ chain with
general boundary terms was considered in [22] with ρ = ρ∗ = k+k−, where k+, k− belong
to the boundary parameters at the left end of the chain.

We point out the different form of the structure constants in the boundary AW algebras
for the ASEP and XXZ spin chain. Despite the equivalence of the ASEP to the XXZ spin
chain, through a similarity transformation, they describe different physics. A relation among
the structure constants of the type ρ = ρ∗ is unacceptable for a model of nonequilibrium
physics, as the ASEP is, because it will restrict the physics of the system. On the other hand,
we have proved in [5] that the solution of the AW operator-valued K matrix to the boundary
YangÄBaxter equation requires ρ ≡ ρ∗. The AW operator-valued K matrix is essential for
the transfer matrix formalism. Within the framework of the latter, the exact spectrum of the
XXZ spin chain was derived in [8] in the parameterization of six (two real and two complex)
boundary parameters and q Å a phase. It may seem likely that using the property of the
ASEP AW (TD) algebras with ρ 	= ρ∗ one can rescale the generators to obtain equal structure
constants and then try to implement the construction of [8], taking care of the proper ASEP
parameterization. The AW algebra is very important for the exact solution of the ASEP in
the stationary state, where the form of the functions of the model parameters deˇning the
phase diagram were determined for the ˇrst time from the boundary symmetry representation
properties. In view of this, we develop an exact spectral problem solution based on the
boundary algebra and using the zeros of the AW polynomials to provide an independent
treatment of the stochastic dynamics.

The tridiagonal algebra approach provides a unifying scheme for the exact description
of the various versions of the asymmetric simple exclusion process. The AW algebra of
the open ASEP with incoming and outgoing particles at both boundaries, whose structure
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constants are given by (25)Ä(27), is the general algebra from which the boundary algebras
of the particular processes follow as limit cases. This is due to its irreducible modules,
namely the AskeyÄWilson polynomials, that are the most extensive generalizations known of
orthogonal polynomials. Hereafter, we denote the boundary algebras of the ASEP i) with
general boundary conditions Å AW (α, γ, β, δ; q); ii) with only incoming particles at site 1
and only outgoing particles at site L Å AW (α, β, q); iii) AW (PBC; q) Å with periodic
boundary conditions. The boundary algebra AW (α, β, q) with generators A, A∗ is represented
in the space with basis the Al-SalamÄChihara polynomials depending on two parameters a, b.
The structure constants of the algebra have the form

ρ = 0, ρ∗ = abq−1(q − q−1)2, ω = η = η∗ = 0 (31)

with

a = κ+(α, 0), b = κ+(β, 0). (32)

The unique relation to the model parameters follows as a special case of (27) for γ = δ = 0.
The exact stationary solution of the process was obtained in [23] without any relevance to
the boundary algebra. From the point of view of the present algebraic treatment, the Jacobi
matrix C = D0 + D1 solving the eigenvalue equation for the Al-SalamÄChihara polynomials
in [23] coincides upto a shift with the operator A in the tridiagonal representation. The other
particular case is the ASEP on a chain of L sites with periodic boundary conditions. This
is given by the algebra AW (ρ̄, q; ) in a space with basis the big q-Hermite polynomials for
the representation of the generators A, A∗. In the periodic case, the number of particles N is
conserved and the density parameter in the bulk is ρ̄ = 〈N〉/L. The relation of the parameter

a of the big q-Hermite polynomials Hn(x; a) to the density parameter a =
−ρ̄ − (1 − q)

ρ̄
is

the limit case of the corresponding relation for the AW polynomials with b = c = d = 0. The
structure constants of the boundary algebra AW (PBC; q) have the form

ρ = 0, ρ∗ = aq−1(q − q−1)2, ω = η = η∗ = 0. (33)

In all three cases the exact solution in the stationary case is due to the calculation of the
relevant physical quantities exploiting the orthogonality relation of the corresponding poly-
nomials with respect to a positive measure. These are polynomials orthogonal (on the unit
circle) and with a resolution of unity with respect to the corresponding positive measure
(see [24] for details). The calculation of the relevant quantities has similar structure. To
ˇnd, e.g., the normalization factor to the stationary probability distribution, one considers the
orthogonality condition as the contour integral and performs the asymptotic analysis. In this
way, the expressions for the normalization factor ZL were obtained in [20] for the general
case of ASEP boundary conditions and in [23] for only incoming particles at the left bound-
ary and only outgoing at the right one. We present here the exact stationary solution of the
asymmetric process on a chain of L sites with periodic boundary conditions i = L+ i. In this
case, the normalization factor to the stationary probability distribution is given in the form
Tr (D0 + D1) ≡ TrA, where the trace has to be taken in the auxiliary Hilbert space with
respect to the vector |1〉0, i.e., Tr A = 〈1|A|1〉. Using the resolution of unity in the space
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with the big q-Hermite polynomials as the basis we have

Tr (D0 + D1)L =

=
∮
C

dz

4πiz
w

(
z + z−1

2

)
〈1|(H

(
z + z−1

2

)
; a|q0〉〈H

(
z + z−1

2

)
; a|q)(D0 + D1)L|1〉, (34)

where the measure w is according to Eq. (3.18.2), Sec. 3.18 in [24]. There is no essential
difference in the technique already applied in [20,23], and the result for the case of periodic
boundary conditions is

ZL 
 (1/a2; q)∞
(a + a−1 + 2)L

(1 − q)L
. (35)

For the current J 
 (1 − q)
a

(1 + a)2
one has

J = (1 − q)ρ̄(ρ̄ − 1) (36)

for 0 < ρ̄ < 1/2 and 1 > ρ̄ > 1/2 with Jmax = (1 − q)/4 at ρ̄ = 1/2. The uniform
distribution in the case of a partial ASEP on a ring is known. Apart from the existence
of a current in the steady state there are no correlations and no phase transitions. However
the physics becomes less trivial for the time-dependent process. We will show that within
the tridiagonal approach one obtains a solution to the ASEP to describe the dynamics of the
afore-mentioned processes.

The dynamics of the ASEP is governed by the master equation with the transition rate
matrix Γ whose non-negative off-diagonal elements are the probability rates. As was pointed
out in [18], if one can diagonalize the matrix Γ, all probabilities at all times can be found
due to the formal solution of the master equation |P (s, t)〉 = exp (tΓ)|P (s, t = 0)〉. Γ is a
stochastic intensity matrix with the property that the columns (rows) sum up to zero. Hence
it can be related to a positive Markov matrix 1 + Γ with the largest eigenvalue λmax = 1 due
to probability conservation and all other eigenvalues (or their real parts) |λ| � 1 according to
PerronÄFrobenius theorem.

The importance of the AW algebra related spectral problem is motivated by the represen-
tation of the generator A∗ as the second order difference operator for the AW polynomials,
commonly interpreted as the Hamiltonian (H) of a proper physical system [9]. For the
transition matrix of the ASEP we have Γ = −H .

We ˇrst summarize the most important formulae and notations about the representations
of the AW algebra with two generators A, A∗ which we will need in the following. Let pn =
pn(x; a, b, c, d) denote the nth AskeyÄWilson polynomial [25] depending on four parameters
a, b, c, d

pn =4 Φ3

(
q−n, abcdqn−1, ay, ay−1

ab, ac, ad
|q; q

)
(37)

with p0 = 1, x = y + y−1 and 0 < q < 1. There is a basic representation of the AW
algebra [26] in the space of symmetric Laurent polynomials f [y] = f [y−1] with a basis
(p0, p1, . . .) as follows:

Af [y] = (y + y−1)f [y], A∗f [y] = Df [y], (38)
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where D is the second order q-difference operator [25] having the AskeyÄWilson polynomials
pn as eigenfunctions. It is a linear transformation given by Df [y] = (1 + abcdq−1)f [y] +
ϕ(y)(f [qy] − f [y]) + ϕ(y−1)(f [q−1y] − f [y]) with

ϕ(y) =
(1 − ay)(1 − by)(1 − cy)(1 − dy)

(1 − y2)(1 − qy2)
(39)

and D(1) = 1 + abcdq−1. The eigenvalue equation for the joint eigenfunctions pn reads

Dpn = λ∗
npn, λ∗

n = q−n + abcdqn−1, (40)

and the operator A∗ is represented by an inˇnite-dimensional matrix diag (λ∗
0, λ

∗
1, λ

∗
2, . . .).

The operator Apn = xpn is represented by a tridiagonal matrix, denoted A, whose matrix
elements enter the three-term recurrence relation for the AskeyÄWilson polynomials

xpn = bnpn+1 + anpn + cnpn−1, p−1 = 0. (41)

We will only need the explicit form of the matrix elements bn of A

bn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
. (42)

In diagonalizing the transition matrix we have to keep in mind that Γ is not Hermitian
and has different left and right eigenvectors. In [21], we proved that the quantum afˇne

Uq( ˆsu(2)) is the hidden symmetry of the ASEP in the bulk. Hence the boundary conditions
deˇne the boundary operators DL and DR as shifted coideal elements of the bulk quantum

afˇne Uq( ˆsu(2)). Accordingly, the left boundary vector is the left eigenvector of the shifted
generator A∗ of the AW algebra in the diagonal representation, and the right boundary
vector is the right eigenvector of the shifted generator A of the AW algebra in the diagonal
representation. The importance of the AW algebra for the steady state exact solution is the
identiˇcation of the bulk matrix D0 + D1 with the generator in the tridiagonal representation.

Proposition I. The exact solution of the ASEP is achieved in the auxiliary space of
symmetric Laurent polynomials, where the operator

DL + DR = (A∗ + α − γ) + (A + β − δ) (43)

is interpreted as the transition rate matrix of the process. It is assumed that A is in the
tridiagonal representation of the AW algebra while A∗ is in the diagonal representation (or
equivalently A is diagonal and A∗ is tridiagonal in the dual representation of the AW algebra).

The diagonal generator of the AW algebra is responsible for the eigenvalue zero in the
stationary state, while the tridiagonal generator is relevant for the time-dependent description
of the process. This is justiˇed by the observation that in the basic representation the
tridiagonal Jacobi matrix when properly rescaled by

√
−γ/α and shifted by (α−γ−(1−q))/α

has the property of an intensity stochastic matrix. We have

an + bn + cn = 0 (44)
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due to
a + a−1 + (α − γ − (1 − q)) = 0 (45)

with solution

a± =
−(α − γ − (1 − q)) ±

√
(α − γ − (1 − q))2 + 4αγ

2α
. (46)

This is consistent with the unique relation of the four parameters of the AW polynomials to
the ASEP model parameters obtained in the previous work as a consequence of the boundary
vector deˇnition in the stationary state, namely a+ = k+(α, γ). Thus the AskeyÄWilson
polynomials belong to the class of random walk polynomials [27] providing a basis for the
stochastic matrix 1 + Γ with the property an + bn + cn = 1.

We consider now the eigenvalue equation (42) for the operator D for a polynomial of a
given ˇnite degree n (with ϕ(y) from (41))

ϕ(y)(pn(qy)− pn(y)) + ϕ(y−1)(pn(q−1y)− pn(y)) = (q−n − 1)(1− qn−1abcd)pn(y) (47)

and use the procedure of algebraic Bethe Ansatz [9]. Expanding the function pn as a product
of its zeros

pn(y) =
n∏

m=1

(y − ym)(y − y−1
m ) (48)

gives the Bethe-Ansatz equation for the zeros of the AskeyÄWilson polynomials

(yk − a)(yk − b)(yk − c)(yk − d)
(ayk − 1)(byk − 1)(cyk − 1)(dyk − 1)

=
L∏

l=1,l �=k

(qyk − yl)(qykyl − 1)
(yk − qyl)(ykyl − q)

. (49)

The second order AW difference operator is exactly solvable and these equations are valid for
any L < 2j + 1, so that for any L there is exactly one polynomial (48). This means that for
each L(< 2j + 1) the Bethe equations have exactly one solution for the set yk, k = 1, . . . , L.

The diagonalization procedure can be summarized in the following steps:
1. We use the unique solution for the AW zeros Bethe-Ansatz equation to obtain a discrete

set of AW polynomials in the space of Laurent polynomials of a given degree.
2. We impose a condition for the ˇnite-dimensional representations of the TD algebra in

the space with discrete set of AW polynomials as the basis.
3. We relate the ˇnite-dimensional representation of the TD algebra with the irreducible

2L-dimensional representation of the quantum afˇne symmetry in the bulk.
To terminate the three-term recurrence relation at any ˇnite (n + 1) ≡ L for a discrete set

of AW polynomials (p[y] = p[y−1]), due to pL[y] = 0, we have to set bn = 0 in the matrix
representing the operator A, without imposing restrictive conditions on the model parameters.
Note that for the XXZ spin chain this can be done directly by the vanishing of any of the
factors in the numerator of bn, e.g., 1 − abcdqn−1 = 0 (with the proper identiˇcation of the
AW parameters a, b, c, d with the parameters of the XXZ boundary terms, this is the second
factor of the XXZ BA condition [11]). For the ASEP one can use the parameter x0 ≡ ζ in
the stationary state to rescale a → ζa, b → ζb, c → ζc, d → ζd. With |ζ| � 1, this has no
effect on the Bethe equations and does not change the identiˇcation of the parameters a, b, c, d
with the boundary probability rates. In the factor (1− abqn) of the matrix element bn we can
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redeˇne ζ2ab as a new parameter t treating it independent of a, b, and q, so that the factor
(1 − ζ2abqn) in the numerator of bn becomes (1 − tqn). The condition to terminate the AW
algebra ladder representation due to bn = 0 becomes

tqn = 1. (50)

We thus obtain a discrete set of AW polynomials pn(xk, a, b, c, d|t, q); n = 0, 1, . . . , L − 1,

such that
L−1∑
k=0

wkpn(xk)pm(xk) = 0 for distinct n, m. Then we will have, if x = xk ,

xpL−1(x) = aL−1pL−1(x) + cL−1pL−2(x), (51)

which for general x will deˇne a polynomial

pL(x) = const
L−1∏
k=0

(x − xk). (52)

For each xk, the condition (50) with n = L−1 determines a ˇnite-dimensional representation
(of dimension L) of the AW (and the TD) algebra. The representing matrices for A, A∗ in
the tridiagonal, diagonal representation are ˇnite L × L square matrices. The eigenvalues of
the diagonal matrix have eigenspaces of dimension 1. We want to relate this representation
to the highest weight irreducible representation of the Uq(ŝu(2)) with deformation parameter
q. (Note the change of the deformation parameter from q1/2 to q.)

With each zero yi from the unique solution to the Bethe equations we associate a two-
dimensional irreducible representation V1(xi; p0, p1) of Uq(ŝu(2)). According to the theorem
of Chari and Pressley [28], the tensor product representation of dimension 2L V1(x1) ⊗
V1(x2) ⊗ . . . ⊗ V1(xL) is irreducible and possesses the highest weight vector Ω generating
an L + 1 dimensional subrepresentation whose associated unique polynomial is such, that

with xk → x−1
k it coincides with (42) for the choice const = (−1)L

L−1∏
k=0

x−1
k . (To simplify

notations in what follows we keep xk to denote xk = (yk + y−1
k )−1.)

From the action of A, Apn(xk) = xkpn(xk), n = 0, 1, it follows that the module V1 is an
eigenvector of A (but not of A∗)

AV1(xk) = xkV1(xk). (53)

On the tensor product of two irreducible modules V1(xi)⊗V1(xk) the operator A will act by
means of the coproduct

Δ(A) = Ai1 ⊗ I + I ⊗ Ak2 + Ai1 ⊗ Ak2 . (54)

Iterating the coproduct we obtain the action of the operator A on the tensor product. (We
denote the n-fold iteration by Δ(1) = Δ, Δ(n) = (Δ ⊗ I(n−2))Δ(n−1) with I(n−2) = I ⊗
. . .⊗ I(n− 2 times).) To make the formulae more transparent, we denote the ˇrst two terms
in (54) by ΔP (A). We have

Δ(n)
P (A) =

n∑
k=1

I(k−1) ⊗ Aik
⊗ I(n−k). (55)
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The complete set of eigenvalues of A on the tensor product of n representations V1 will be
given by subsequent action of the operators

Δ(n)
P A, A⊗Δ(n−1)

P A+Δ(n−1)
P A⊗A, . . . , A(k)⊗Δ(n−k)

P A(k)+Δ(n−k)
P A(k)⊗A(k), A(n), (56)

where k = 1, . . . , n − 1 and A(l) ≡ A ⊗ A ⊗ . . . ⊗ A (l times), for l = k or l = n.
To obtain a compete set of 2L eigenvectors with 2L eigenvalues for any ˇnite n,

0 � n � L, we associate with each lattice site i a basis vector p0(xk) if a site is empty
(occupation number si = 0) or p1(xk) if there is a particle on the site (occupation number
si = 1). A state ψ(x1, x2, . . . , xL) of the ASEP on the lattice of L sites corresponding to
any conˇguration given by the set si1 , si2 , . . . , siL is identiˇed with the Uq(ŝu(2)) irreducible
tensor product representation

ψ(x1, x2, . . . , xL) = V1(x1) ⊗ . . . ⊗ V1(xL) (57)

with the highest weight vector generating the 2j = L subrepresentation.
The highest weight vector of the considered Uq(ŝu(2)) tensor product evaluation repre-

sentation has the form Ω = p0(x1)p0(x2) · · · p0(xL). The discrete set of AW polynomials
satisfy the three-term recurrence relation (41) with p0(x) = 1 for x = xk . Hence Ω is a
constant vector and is an eigenvector of the operator A∗ with the eigenvalue determined by
the condition D(1) = 1 + abcdq−1

A∗Ω = (1 + abcdq−1)Ω. (58)

This property is related to the ground state of the system. Namely, a proper shift of A∗ will
produce a unique state with eigenvalue zero (the steady state of the ASEP).

By construction the state ψ(xi) becomes an eigenvector of the operator A to be interpreted
as the Hamiltonian in the auxiliary space of the physical system. It acts on it by means of
the coproduct. Namely, the action of the iterated coproduct according to (56) gives the

eigenvalues
L∑

k=1

xk, in the one occupation number zero si = 0 (one spin down) sector, the

A ⊗ A-type operator terms in (56) give the values
∑
i<j

xixj in the two occupation numbers

zero (two-spin down) sector and so on. The action of A according to (56) yields all the
eigenvalues whose number is

L∑
n=1

L!
n!(L − n)!

= 2L − 1 (59)

from which the eigenvalue equation with the corresponding distinct eigenvalues for the state
ψ(x1, x2, . . . , xL) follows:

Aψ(x1, x2, . . . , xL) =

⎛
⎝ L∑

i=1

xi +
∑
i<j

xixj + . . . + x1x2 · · ·xL

⎞
⎠ψ(x1, x2, . . . , xL). (60)

With the interpretation of A as the Hamiltonian, Eq. (60) yields the energy eigenvalues.
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The considered algebraic BA, based on the unique solution of the Bethe equations (49),
yields for any n + 1 = L an exactly solvable two-boundary value spectral problem with the
identiˇcation of L with the spin value 2j of the ˇnite-dimensional highest weight evaluation
representation of Uq(ŝu(2)). There are two limit cases. The ˇrst one is n → ∞, L ˇxed.
This limit is obtained by treating ab dependent on a, b, 1− abqn 	= 1 so that bn 	= 0 when the
inˇnite-dimensional representation of the AW algebra is restored corresponding to a ˇnite-
dimensional representation of Uq1/2(ŝu(2)). The thermodynamic limit for ˇnite lattice systems
with added boundary terms is conventionally obtained by letting L → ∞. In our scheme we
start from the very beginning with models in the inˇnite volume/inˇnite chain with quantum
afˇne Uq1/2(ŝu(2)) symmetry which is manifest. Boundary conditions break the inˇnite
volume symmetry. However, with suitably imposed boundary conditions, a remnant of this
symmetry survives and is encoded in the nonlocal conserved charges, elements of the coideal
AW subalgebra of Uq1/2(ŝu(2)), deˇned through the homomorphism to the quantized afˇne
Uq1/2(ŝu(2)).

We can now use this prescription to obtain the complete set of eigenvectors with distinct
eigenvalues for the transition matrix of the open ASEP. For a ˇnite-dimensional representation
of the AW (TD) algebra from the inˇnite-dimensional one, we use the set of zeros, denoted
x̂i, i = 1, . . . , L, of an AW polynomial of degree L for the particular choice of parameters
in terms of the boundary probability rates, a = k+(α, γ), b = k+(β, δ), c = k−(α, γ),
d = k−(β, δ). Result: In the auxiliary space of symmetric Laurent polynomials pn of order
n, 0 � n � L − 1, the ASEP transition matrix is identiˇed with the representation of the
right boundary operator A + β − δ and the left boundary operator A∗ + α − γ in the dual
representation. There is a representation of dimension 2L for any ˇnite L, where the transition
rate matrix Γ (the Hamiltonian H , respectively) has a unique ground state (Ω, 0, 0, . . . , 0) of
eigenvalue zero which is the eigenstate of the right boundary operator, to be identiˇed with
the ASEP stationary state and 2L − 1 eigenstates of the right boundary operator with real
distinct eigenvalues given by

E = α − γ − (1 − q)+

+

⎛
⎝(1 − q)

L∑
i=1

x̂i + (1 − q)2
∑
i<j

x̂ix̂j + . . . + (1 − q)Lx̂1x̂2 · · · x̂L

⎞
⎠ , (61)

where x̂−1
i = ŷi + ŷ−1

i and ŷi satisfy the Bethe-Ansatz equation

(ŷi − ζa)(ŷi − ζb)(ŷi − ζc)(ŷi − ζd)
(ζaŷi − 1)(ζbŷi − 1)(ζcŷi − 1)(k−(ζdŷi − 1)

=
L∏

l=1,l �=i

(qyi − yl)(qyiyl − 1)
(yi − qyl)(yiyl − q)

(62)

with a suitable choice for ζ =
q−1/2√

k+(a, c)k+(b, d)
and k±(u, v) given by (27). In this

representation the time-dependent ASEP transition matrix is a left stochastic Markov matrix
ΓM = 1 + tΓ for the (one step) inˇnitesimal time dt transition.

There is a dual representation in the auxiliary space of symmetric Laurent polynomials pn,
0 � n � L − 1, of dimension 2L, where the transfer matrix ΓM (the Hamiltonian H ,
respectively) has a unique eigenstate (Ω, 0, 0, . . . , 0)t of eigenvalue zero which is the eigenstate
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of the left boundary operator and 2L−1 nonzero eigenvalues. The complete set of eigenvalues
are the same as (61) up to the shift term where α− γ → β − δ. In the dual representation the
ASEP transition matrix is a right stochastic Markov matrix ΓM = 1 + tΓ.

We note that we can shift by 2γ + (1 − q) + 2δ the boundary operators to produce the
terms α+β + γ + δ in (61) which will correspond to the solution in [11], in a different basis,
as given for the energy eigenvalues in the one spin sector. Apart from the shift, the latter
is inferred from the XXZ BA solution for even L and needs, in addition, a wavenumber
counting function. Exploring the boundary symmetry of the lattice system we have obtained
the complete set of eigenvalues of the transition matrix (the Hamiltonian) for any ˇnite L.

The special cases are immediately obtained from (61). The transition matrix of the process
with particles only incoming at left and only outgoing at right is the limit case γ = δ = 0
in (62) with x̂i being the simple zeros of the Al-SalamÄChihara polynomials. There is a left
and right stochastic Markov matrix, whose eigenvalues are related by a shift and should not
be considered as different ones. In the case of the ASEP on a ring the tansition matrix is
a double stochastic Markov matrix, where the eigenvalues of Γ are obtained from (61) with
α = ρ̄, β = γ = δ = 0, and x̂i being the simple zeros of the big q-Hermite polynomials.

It is well known that the transition matrix of the ASEP being a positive stochastic matrix
has real eigenvalues or, if complex, they appear in conjugate pairs. In our scheme the ASEP
transition matrix is related by a (real) shift to the operator A + A∗ in the space of Laurent
polynomials which is self-dual with respect to the AW duality. In view of this property,
the zeros of the AW polynomials and their limit cases provide the most adequate ˇtting
for modelling the stochastic dynamics. Our study strengthens the conviction [20] about the
intimate relationship of the ASEP with the AW polynomials.

We stress once again the difference in the way the ˇnite-dimensional representation of
the AW (TD) algebra needed for the BA is obtained. We have used the general scheme
where no relation among the model parameters appears so that we can apply it to models
of nonequilibrium physics. For the XXZ chain the condition for the ˇnite-dimensional
representation of the AW algebra follows directly from the three-term recurrence relation and
coincides with the previously found BA condition [11]. The considered prescription for the
diagonalization of the transition matrix in this paper provides an opportunity for independent
treatment of stochastic dynamics which will be very useful for description of the many-species
systems.

To summarize, we have developed an algebraic Bethe Ansatz based on Bethe equations
for the AskeyÄWilson polynomials with a unique solution for any n + 1 = L (including
L = 0, any ˇnite L = 2j and L = ∞), which yields a complete set of 2L eigenvectors with
distinct eigenvalues and a unique ground state of transition matrix (equivalently Hamiltonian)
operator. We have illustrated the algebraization of the difference eigenvalue equation for
the AW polynomials on lattice systems, but the procedure is rather general and should work
for any system with boundary AW symmetry. The developed BA scheme will produce a
diagonalization of the proper Hamiltonian in the auxiliary space for the sine-Gordon model
and quantum afˇne Toda ˇeld theory as well.
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APPENDIX

We show the validity of the derived formula for the ASEP for the cases L = 2, γ = δ = 0,
0 < q < 1 and q = 0. In the conˇguration space the transition rate matrix [11] has the form

Γ =

⎛
⎜⎜⎝
−α β 0 0
0 −α − β − q 1 0
α q −1 β
0 α 0 −β

⎞
⎟⎟⎠ (63)

and is diagonalized with eigenvalues λ0 = 0, a pair of complex conjugate roots λ1, λ2

and a real λ3. The nonzero eigenvalues are the distinct roots of the cubic characteristic
polynomial equation which is solved by using the Cardano formulae after the substitution
λi = λ̃i − 1/3(2α + 2β + q + 1), with λ̃3 = −λ̃1 − λ̃2. We spare the details and omit the
rather long explicit expressions for the roots λ̃i. In the (auxiliary) representation space of
the boundary deformed DolanÄGrady algebra, the transition rate matrix ΓAW is diagonalized
with the discrete set of AW polynomials p0(x), p1(x) as the basis. It has the form diag
(x0, x1, x2, x1x2), where x0 = 0 and x1, x2 are the simple roots of the (second order) AW
polynomial p2(x, a, b, |q) [25] in the interval (0, π/2). The transition rate matrix Γ and the
diagonalized matix ΓAW have determinants equal to zero. The one-to-one correspondence
requires that both matrices have equal traces

Tr (Γ) = −2α − 2β − q − 1. (64)

Equality of the traces is achieved due to the rescaling and shifting properties of the boundary
operators in the representation space. By separating the constant C0 = −α−β, corresponding
to a shift of the eigenvalue zero, the equality of the traces requires the relation

−(1 + q)(a + b) − q(a + b)2 − (1 − q)2 = −α − β − q − 1 (65)

(where a, b are the rescaled parameters by (qab)−1/2); on the r.h.s. of (65) −α−β− q− 1 ≡
Tr (Γ) − C0. From the stationary state we have a = (1 − q)α−1 − 1, b = (1 − q)β−1 − 1.
These relations follow from the representation of the boundary algebra where the stationary
state corresponds to the eigenvalue zero of the transition matrix. The shift of the eigenvalue
zero amounts to a change of the steady state parameterization. We recall that the dominant
contributions in the physical quantities of the exact stationary solution [20] in terms of the
AW polynomials are expressed in terms of the parameter a only, if a > b (or in terms of b
only if b > a). For the time-dependant process, as a consequence of (65), the parameters a, b
obey

q1/2(a + b)√
ab

= −(1 + q) ± 2
√

3 + α + β − 2(1 − q) (66)

and one has either a = (1−q)α−1−1, or b = (1−q)β−1−1. The relation (66) is equivalently
written as

q1/2(a + b)√
ab

= −(1 + q) ± 2
√

1 − (Tr (Γ) − C0). (67)

The correspondence for the totally asymmetric process follows straightforward as the q = 0
limit of the above formulae. Besides, it can be veriˇed independently with the help of the
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parameterization a/b = (1/3) exp (
√

2α + 2β) (up to O(α2, β2)). After the proper rescaling
by 1+q this parameterization works also in the q 	= 0 case with q = (1/3) exp (−

√
h), which

amounts to adding −2h under the square root for a/b. This proves that the L = 2 transition
rate matrices in the conˇguration and the auxiliary space describe the same process.
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