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FINE STRUCTURE OF THE MUONIC “He ION
E. N. Elekina, A. A. Krutov, A. P. Martynenko

Samara State University, Samara, Russia

On the basis of quasi-potential approach to the bound state problem in QED we calculate the
vacuum polarization, recoil and structure corrections of orders o’ and o to the fine splitting interval
AE®™ = E(2P;);) — E(2Py/2) in muonic 4He ion. The resulting value AE™ = 146180.68 ueV
provides reliable guideline in performing a comparison with the relevant experimental data.

B P MK X KB 3UIIOTE€HOH JIBHOI'O IMOAXOH K Hp06H6M6 CBSI3 HHBIX COCTOSSHUM B KB HTOBOH QJIEKTPO-

JWH MUKE BBIYUCIIEHBI IIOIIP BKU IOJIKIPU3 LOHUU B KyyM , OTA YU U CTPYKTYPBI 4P MOPAOK 045 u ()56 B

WHTEpB Jle TOHKO# cTpyKTyphl AE™ = E(2P3/5) — E(2P;/2) B none mioonnoro remms (u3He) ™. Ilo-
nydenn g pemuunn AE™ = 146180,68 MkaB npenct Biser coGoil H IEXHbI OPHEHTHD i CP BHEHH:
C ®KCHEPUMEHT JIbHBIMU I HHBIMU.

PACS: 31.30.Jv; 12.20.Ds; 32.10.Fn

INTRODUCTION

Simple atoms play an important role in the check of quantum electrodynamics (QED),
the bound state theory and precise determination of fundamental physical constants (the fine
structure constant, the lepton and proton masses, the Rydberg constant, the proton charge
radius, etc.) [1-3]. Light muonic atoms (muonic hydrogen (up), muonic deuterium, ions of
muonic helium, etc.) are distinguished among simple atoms by the strong influence of the
vacuum polarization (VP) effects, recoil effects, nuclear structure and polarizability effects
on the structure of the energy levels. The comparison of the theoretical value of the fine
and hyperfine splittings in muonic helium ions with the future experimental data will lead
to a more precise values of the helion and a-particle charge radii. The energy levels of
muonic helium ions were theoretically studied many years ago in [4-6] both on the basis of
the relativistic Dirac equation and nonrelativistic approach, accounting different corrections
by the perturbation theory (PT). In these papers the basic contributions to the energies for the
(2P—29) transitions in muonic helium (u3He)* were evaluated with the accuracy 0.1 meV.
For more than forty years, a measurement of the muonic hydrogen Lamb shift has been
considered one of the fundamental experiments in atomic spectroscopy. Recently, the progress
in muon beams and laser technology made such an experiment feasible. The first successful
measurement of the pp Lamb shift 49881.88 (76) GHz in [7] leads to new value of the proton
charge radius r, = 0.84184(36)(56) fm, where the first and second uncertainties originate
respectively from the experimental uncertainty 0.76 GHz and the uncertainty 0.0049 meV
in the Lamb shift value which is dominated by the proton polarizability term. The new
value of proton radius r, improves the CODATA value [3] by an order of the magnitude.



Fine Structure of the Muonic *He Ion 555

Another important project which exists now at PSI (Paul Scherrer Institute) in the CREMA
(Charge Radius Experiment with Muonic Atoms) collaboration proposes to measure several
transition frequencies between 25 and 2P states in muonic helium ions (u3He)™, (u3He)™
with 50 ppm precision. As a result, new values of the charge radii of the helion and « particle
with the accuracy 0.0005 fm will be determined. This program suggests that the theoretical
calculations of the (25—2P) transition frequencies will be performed with high accuracy.

In this work we continue the investigation [8] of the energy spectrum of (u3He)™ in the
P-wave part. The aim of the present study is to calculate such contributions of orders o®
and af to the fine structure of the 2P-state, which are connected with the electron vacuum
polarization, the recoil and structure effects, the muon anomalous magnetic moment and the
relativistic corrections. The role of all these effects is crucial in obtaining high theoretical
accuracy. Our purpose also consists in the refinement of the earlier performed calculations
in [4,6] and in the derivation of the reliable numerical estimate for the energy intervals
(2P3)5 — 251 /2), (2P1 /2 — 251 2) in the ion (u3He)™, which can be used for the comparison
with experimental data. Modern numerical values of fundamental physical constants are
taken from [3]: the electron mass m. = 0.510998910(13) - 10~3 GeV, the muon mass my, =
0.1056583668(38) GeV, the fine structure constant o' = 137.035999679(94), the proton
mass m, = 0.938272013(23) GeV, the mass of « particle m, = 3.727379109(93) GeV, the
muon anomalous magnetic moment a,, = 1.16592069(60) - 10~3.

1. FINE STRUCTURE OF P-WAVE ENERGY LEVELS

Our approach to the investigation of the energy spectrum of muonic helium ion (ujHe)™"
is based on the use of quasi-potential method in quantum electrodynamics [9—11], where the
two-particle bound state is described by the Schrodinger equation. The basic contribution to
the muon and a-particle interaction operator is determined by the Breit Hamiltonian [12, 13]:

2 4 4
P Za p p Ael ( 1 1 )(5(1')—
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where my, mo are the masses of the muon and « particle; g = mymsa/(m; + ms) is the
reduced mass; AV is the muon spin-orbit interaction:
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The leading order (Z«)* contribution to the fine structure is determined by the operator AV,
As it follows from Eq.(2), the potential AV includes also the recoil effects (the Barker—
Glover correction [14]) and the muon anomalous magnetic moment a,, correction. The fine
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structure interval (2P;/5—2P; ) for the ion (u3He)™ can be written in the form

3 4
w?(Za) 2my my
1 2 1+ —
32mf [ * mo + + mo +
5m1(Za)® _ m?(Za)s  a(Za)®u? I w(Za)? +1 n
256 64mo 327rm% mq 5

+ a(Za)4AvP + a2(Za)4BvP + Astr(Za)G/fri. 3)

AE™ = E(2Py)5) — E(2P, 2) =

This expression includes a relativistic correction of order (Z«)®, which can be calculated
with the aid of the Dirac equation [1, 15], the correction of order Oé(ZOé)G enhanced by the
factor In (Z«) [16,17], a number of terms of fifth and sixth order in « which are determined
by the effects of the vacuum polarization and the nuclear structure. The relativistic recoil
effects of order my(Za)%/my in the energy spectra of hydrogenic atoms were investigated
in [1,15,18-20]. In the fine splitting (3) they were calculated in [15,20]. Additional corrections
of the same order were obtained in [21]. They do not depend on the muon total momentum
j and give the contribution only to the Lamb shift. The contributions to the coefficients Ayp
and Byp arise in the first and second orders of perturbation theory. Numerical values of the
terms in expression (3), which are presented in the analytical form, are quoted in the table
for the definiteness with the accuracy 0.01 peV. The fine structure interval (3) in the energy
spectrum of electronic hydrogen is considered for a long time as a basic test of quantum
electrodynamics [15,22,23].

The leading-order vacuum polarization potential which gives the contribution to the coeffi-
cient Ayp, is presented by the Feynman diagrams in Fig. 1. The one-loop vacuum polarization
effects lead to the modification of both the Coulomb interaction and the muon spin-orbit in-
teraction in expressions (1), (2) [12,13]:

a [ Za
AVip(r) = 3. /p(s)ds (_7) o 2mesr “
1
fs Ot(Za) i 2my my —2mesr
ARl = 12rm3r? pls)ds |1+ msy 2\ 1+ ma e “"e (1 + 2mesr) (Lo ),
1
1

(5)
where the spectral function p(s) = v/s2 — 1(2s> +1)/s*, m, is the electron mass. Averaging
the potential (2) over the wave functions of the 2 P-state

1
26
we obtain the following contribution to the interval (3) (see Fig. 1, a):
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Fine structure of P-wave energy levels in muonic 5He ion

Contribution to the fine Numerical value, | Reference,
splitting AE™ ueV equation
Contribution of order (Za)*
3(Za)* 2
pZa) (), 2 145563.82 [4,13], (3)
32ms3 ma
Muon AMM contribution
3( 7o)t
p(Za) () m 330.32 [4,13], (3)
16my ma
Contribution of order (Za)® 19.94 [15,20], (3)
Contribution of order (Za)%m1/ma —0.45 [15,201, (3)

Contribution of order a(Za)*
in the first-order PT (AVA,) 131.67 (4,131, (7)

Contribution of one-loop muon VP
in the first-order PT (AVi%p) 0.01 [4,13], (7)

Contribution of order a(Za)*
in the second-order PT

(AVE - G- AVE) 143.96 (10)
Contribution of order a(Zca)®
a(Za)bu? w(Za)?* 1
1 = -0.56 1,16,17
32mm? S *5 [1.16.17]

VP contribution in the second-
order PT of order o(Za)*

(AVS -G - AV 0.21 (20)
VP contribution from 1+ interaction
of order a?(Za)* (AVE_yvp) 0.18 (13)

VP contribution from 1+ interaction
of order o(Za)* (AVijoop’vﬁ 0.79 a7

VP contribution in the second-
order PT of order o?(Za)*

(AVip_yp - G- AVF) 0.02 (18)

VP Contribution in the second-
order PT of order o?(Za)*

(AVSpop.vp - G- AVT) 2.08 19)
Nuclear structure correction
in 1v interaction -11.76 (22)

Nuclear structure correction
in the second-order PT 0.45 (24), (25)

Summary contribution 146180.68
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a b

Fig. 1. One-loop vacuum polarization contributions to the fine and hyperfine structure. The dashed line
corresponds to the Coulomb interaction. The wave line corresponds to the fine or hyperfine interaction.
G is the reduced Coulomb Green’s function

Although the integral in Eq. (7) can be calculated analytically, we present here for simplicity
only its numerical value.

Higher order corrections a?(Za)* entering in the a,, are taken into account in this ex-
pression as well as the recoil effects. The same order contribution a(Za)* can be obtained
in the second-order perturbation theory (see Fig.1,b). In this case the energy spectrum is
determined by the reduced Coulomb Green’s function [13,24]:

2 /
Gop(r,r') = _(Za) <inn'> exp <—Z+Z > g(z,2"), (8)

362222 \ 4m 2

g(z,2") = 2423 43623 20 + 362222 4+ 2428 + 36223 +362222 4492322 —

- 3z<z> —12e*<(24 2« + z<)z> - 3z<z> + 122<z> [-2C + Fi(z2<« —Inzc —Inzs],
)

where z. = min (z,2’), 2> = max (z,2’), C = 0.577216. .. is the Euler constant, z = Wr.
Using Eqgs. (8) and (9), we transform the correction of order a(Z a)4 to the fine structure in
the second-order perturbation theory as follows:

a(Za)*p? 2m1
AES = 22U P 1 4oq, 1 (1 ddes
2 34567rm1m2 + @ + + au mao %
o0 o0 Oodx/ - I
x | p(s)ds [ dx exp p x') =143.96 peV. (10)
1 0 0

Note that the coordinate integration in (10) can be done analytically. Let us consider the
two-loop vacuum polarization contributions in the one-photon interaction shown in Fig.2.
They give the corrections to the fine splitting of P-levels of order a?(Za)*.

In order to obtain the particle-interaction operator for the amplitude, corresponding to the
diagram in Fig. 2, a, it is necessary to make the substitution

i_}g/dsx/s 1(2s* +1) (11
k2 3m s4(k? + 4m2s?)

1
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a b

c

Fig. 2. Effects of two-loop electron vacuum polarization in the one-photon interaction

two times in the photon propagator. In the coordinate representation, the interaction operator
has the form [25-27]

Za |1+ 2a 1+a
AVE == 2 K
ve-ve(r) r3 [ 4m? 2mims

(LUl)X

x (— / dg/ o d” €2(1 + 2mefr) e 2T _ p2(1 4+ 2menr) e 2], (12)

Averaging (12) over the wave functions (6), we obtain the following correction to the inter-
val (3):
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3a2(Za)* [1+2 1 . 1
sop =P [ 2] g e
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0
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The two-loop vacuum polarization operator is needed to find the 1-interaction operator shown
in Fig.2,b, c. The modification of the photon propagator in this case has the form [1]
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The two-loop vacuum polarization potential and the correction to the fine structure (2P3/,—2P /5)
are the following:

2703 [1+42a 1+a,
A‘/210013\113( ) |: E . X

3m2y3 4m% 2mims

2mer 2mer
0/1_02 P (‘m) <1+ﬁ) (Loy), (16)

AEF =L

a?(Za)t [1—}—2@” 1—|—au} "

127r2 4m? 2mims

/ d [ (1 4 2me )] (1 4 2me ) 0.78 peV
X ax ex —X ] —X = U. .
1 - v2 P W= o2 W= o2 a
17

Two-loop vacuum polarization contributions in the second-order perturbation theory shown
in Fig.3 have the same order o?(Za)*. For their calculation it is necessary to employ
relations (2), (4), (5), and (8), and the modified Coulomb potential by the two-loop vacuum
polarization [9, 11]:

oo

2 Tpmdy [ 2
Vo) = (&) [ ote)ae / O L e L T

& "
1

1
2Za 2 flv 2mer
AVv2ﬂoop,VP = / 1— eXP (_m> . (19)
0

a b c

Fig. 3. Effects of two-loop electron vacuum polarization in the second-order perturbation theory. The
dashed line corresponds to the Coulomb interaction. The wave line corresponds to the fine or hyperfine
interaction. G is the reduced Coulomb Green’s function
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The amplitude in Fig. 3, a gives the following correction of order a?(Za)* to the fine splitting:

3.2 4 7 T
api _ He?(Za) [14—% . 1+2au} /p(g)df/p(n)dnx
1 1

129672 | 2myme 4m?

7 omet\1 [ da’ 9monz’
Me x MeNT
x/dxexp[—a:(l—i— Wﬂ/ﬁ(l—i— W )x
0 0

2me
X exp [—:c’ (1 + ”;V"ﬂ g(z,2') = 0.28 peV. (20)

We integrate (20) analytically over coordinates z, =’ and numerically over parameters &, 7.
Two other contributions from the amplitudes in Fig. 3, b, c have a similar integral structure.
Their numerical values are included in the table.

There exists the correction to the fine splitting due to the nuclear structure. In 1v
interaction it is related with the charge form factor of the « particle. The fine structure
potential (2) is obtained in the point nuclear approximation. To generalize (2) to the case of
the nucleus of the finite size, we can use the following potential in momentum representation:

Za ik X plo; 2my my
AV (k :—W—iF 1+ =—+2 1+ — 1. 21
V00 = - 5 BRI gy [ 20 g, (10 20)]

Using in (21) the dipole parameterization for the Dirac form factor F (k?) with the parameter
Ao = V12/r,, we can express the contribution of the nuclear structure to the fine splitting
in the form

5 6
fs 1% (ZOt)
A = 32m3A2

{1 N 2m; +2a, (1 n %)} <—6+ 20%) =—11.76 peV. (22)

ma2 2 a

Numerical value of (22) is obtained using the charge radius of « particle 7, = 1.681(4) fm [28].
One part of the nuclear structure correction in the second-order PT 2(AV™ . G - AVS) is
determined by the potential (2) and

Z
AVE(r) = S (Rar +2) e, 23)

which also is obtained by means of the dipole parameterization for the charge form factor of
the « particle in the Coulomb part of the potential. As a result, we find the fine structure
contribution in the form

5u5(Za) [ 2 2. W 290w
At = Za) {1 + +2a“(1 + %)] (—1n— + 1) — _0.07 peV.
’ 2

~ 16m2A3 2 5  Aa 10A,
(24)
Second part of the nuclear structure correction in second-order PT 2(AV®.G AV is related
with the potentials (2) and (21). Performing analytical integration over particle coordinates,

we arrive at the following result:

9ub(Za)7 2my mi\]? oW . W AW

AES, = 1 2a,(1+ — l——In—— —— ) =0.52 peV.

250 = dmihg | e o T, 3Aa  Aa 3, He
(25)
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The sum of the results (24) and (25) is presented in the table. The total result for the fine
splitting AE' in (u3He)" is presented here as well. It takes into consideration the numerous
earlier performed calculations discussed in the review article [1] and new corrections obtained
in this work.

2. SUMMARY AND CONCLUSION

In the present study we have calculated QED effects in the fine structure of the P-wave
energy levels in muonic helium ion (u3He)*. We have considered the electron vacuum
polarization contributions of orders a®, b, recoil corrections, relativistic effects of order
ab and the nuclear structure corrections. The total numerical value of the fine splitting is
presented in the table. In this table we give the references to other papers also devoted to the
investigation of the fine structure of P-wave levels in the hydrogenic atoms.

Let us summarize the basic points of the calculation performed above.

1. Special attention in our investigation has been concentrated on the vacuum polarization
effects. For this purpose we obtain the terms of the interaction operator in muonic helium
ion which contain the one-loop and two-loop vacuum polarization corrections.

2. In each order in o we have taken into account recoil effects in the terms proportional
to the ratio my /ma.

3. The calculation of the nuclear structure corrections to the fine structure interval is
performed on the basis of the dipole parameterization for the a-particle charge form factor.

The theoretical error of the obtained results is determined by the contributions of higher
order and amounts up to 1075, Previously, the fine splitting in the ion of muonic helium
was studied in [4]. Considering the numerical results obtained in [4] for different transitions
(25—2P), we find that the fine splitting interval is equal to AE®™ = (146.2 & 0.6) meV.
Extracting the leading-order nuclear structure correction proportional to 72, we can present
the result of our work AE™ = 146.193 — 4.2124 - r2 = (146.1814+0.001) meV which agrees
with and refines the previous calculation performed in [4] via taking into account higher
order effects. It can be considered as a reliable estimate of the fine structure interval for
the P-wave levels in muonic helium ion (u3He)*. In order to present here the transition
frequencies between 2P- and 2S5-states, we need the value of the Lamb shift obtained in [25].
Our calculation of the Wichmann—Kroll correction in [25] contains the error as noted in [29].
New value of the Wichmann—Kroll correction is equal to AEWK(2P—28) = —0.0199 meV.
Then corresponding energy intervals in the fine structure of muonic helium ion (u3He)T are
AFE(2P 5251 /2) = 1381.561 meV and AE(2P5/5,—255) = 1527.742 meV. A measure-
ment of (2P—25) transition frequencies with the 50 ppm precision combined with the present
theoretical prediction and the result of [25] will lead to the determination of the %He radius
to a relative accuracy 3 - 1074,
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