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MULTIQUBIT TELEPORTATION ALGORITHM
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A variant of teleportation algorithm is suggested. It is based on using multiqubit states. Particularly,
it allows the teleportation manager to create a proper entangled state between A and B and, consequently,
to control the result of the teleportation between A and B. The problem of quantum secret sharing is
considered in the framework of the suggested approach.
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INTRODUCTION

Rapid development of nanoelectronics stimulates the investigation of quantum algo-
rithms. At present, some algorithms are created (e.g., Shor factorization, Grover database
search [1], etc.). Teleportation suggested by Bennett and Brassard [2] is one of the most
important algorithms. There are some versions of main teleportation scheme: one-bit tele-
portation, dense coding, entanglement swapping (see, e.g., [3, 4]). For teleportation over
three-qubit states, we recall the HilleryÄBuzekÄBerthiaume [5] protocol, which is the splitting
and reconstruction of quantum information over the GreenbergerÄHorneÄZeilinger (GHZ)
state by local quantum operations and classical communication (LOCC). The protocol can
be modiˇed into a teleportation protocol over a general three-qubit state in the compound
system 123, as presented in [6, 7]. The modiˇed protocol is described as follows: Let i, j,
and k be distinct in 1, 2, 3. (i) Make a one-qubit orthogonal measurement on the system i.
(ii) Prepare an arbitrary one-qubit state, and then make a two-qubit orthogonal measurement
on the one qubit and the system j. (iii) On the system k, apply a proper unitary operation
depending on the three-bit classical information of the two above measurement outcomes.

In the present paper we suggest new variants of the teleportation protocol over N -qubit
states. Particularly, for N = 3, we assume that three persons (A, B, M ) are involved in the
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scheme. M is a manager who wants to make a teleporting of a qubit |D〉 = α|0〉+β|1〉 (with
unknown α, β) to A or B, using one quantum channel (one entangled state). Moreover, we
want that M would choose the recipient (A or B) only at the ˇnal stage of the algorithm. It is
the ˇrst version of our protocol. The second version is related with another possibility given
by our scheme. Namely, it allows M to control the result of the teleportation of a qubit from
A to B by creation of proper entangled state of A and B. This state is used for conventional
two-qubit teleportation of a qubit from A to B (note that A and B do not know the type
of this entangled state and, consequently, cannot predict the result of the teleportation, the
manager predetermines the result).

A version of quantum secret sharing based on the generalization of the suggested telepor-
tation scheme for many-qubit case is described. A problem of a creation of classical secret
key in the framework of our approach is also discussed.

1. ALGORITHM

Initially there are |GHZ〉 state (GreenbergerÄHorneÄZeilinger): |GHZ〉 = 2−1/2(|000〉 +
|111〉 of qubits A, B, M . We assume that A and B can do two-qubit operations. As for M , he
can do operation with qubits M and D. All persons are connected by classical communication
channel.

The algorithm is as follows. The initial state can be represented in the following form:

|ABMD〉 = |GHZ〉 ⊗ (α|0〉 + β|1〉) =

= (|Φ+
MD〉 ⊗ (α|0A0B〉 + β|1A1B〉) + |Φ−

MD〉 ⊗ (α|0A0B〉 − β|1A1B〉)+
+ |Ψ+

MD〉 ⊗ (β|0A0B〉 + α|1A1B〉) + |Ψ−
MD〉 ⊗ (β|0A0B〉 − α|1A1B〉),

where |Φ±
MD〉, |Ψ±

MD〉 is the Bell basis:

|Φ±
MD〉 = 2−1/2(|0M0D〉 ± |1M1D〉), |Ψ±

MD〉 = 2−1/2(|0M1D〉 ± |1M0D〉).

Then, M makes a measurement in the Bell basis. There are four possible results. M informs
(by classical channel) A and B about the two-qubit operation G they should do. After that
the teleportation is ˇnished. As for the mentioned operations, they are as follows. Consider
the situation when M decided to create the proper qubit for A.

If the measurement result is |Φ+
MD〉, then the corresponding operation G is CNOT. For

the result |Φ−
MD〉 : g11 = g22 = g43 = 1. g34 = −1 (we list nonzero terms). For the

result |Ψ+
MD〉 : g14 = g22 = g31 = g43 = 1. For the result |Ψ−

MD〉 : g31 = g22 = g43 =
1. g14 = −1. One can see that in such a way the teleportation of qubit D from M to A
is made. For the case of teleportation from M to B an evident change in ˇnal two-qubit
operation should be made. Thus, the sender determines who is the recipient of the qubit at
the ˇnal stage only.

The suggested scheme can easily be modiˇed to obtain a proper entangled state (determined
by the manager) of qubits A and B. It allows the manager to control the result of the
teleportation of a qubit |F 〉 from A to B. It is well known that one can use different entangled
states to make a teleportation. The most frequently used are |CAT〉 = 21/2(|00〉 + |11〉)
and |EPR〉 = 21/2(|01〉 + |10〉) states. The type of unitary one-qubit operator used by B



Multiqubit Teleportation Algorithm and Teleportation Manager 769

to complete the teleportation depends on the type of the entangled state in question. For
instance, let A and B be able to use two above-mentioned entangled states, and they believe
that they have |CAT〉 state and make the corresponding operations. However, the type of the
entangled state is predetermined by the manager who can change the state in accordance with
the scheme described above. In this situation the result of the teleportation would be another,
and it is the manager who knows the result. Moreover, he can control this result by choosing
the entangled state of A and B. Let us consider the example in more detail. Let the manager
(M ) be able to replace |CAT〉 by |EPR〉 or not change the state. In the second case B gets
the qubit |F 〉. But if the manager makes a replacement, the result is another. Namely, in
accordance with the conventional teleportation procedure after the measurement of two-qubit
state |AF 〉 in Bell basis M gets one of four results (the ˇrst column) and informs B about
the proper one-qubit operator (the second column), B applies the operator and obtains the
following result (the third column):

Φ+ I NOT|F 〉
Φ− σ3 −NOT|F 〉
Ψ+ σ1 NOT|F 〉
Ψ− −iσ2 NOT|F 〉

,

where σj , j = 1, 2, 3 is the corresponding Pauli matrix. One can see that B really gets
NOT|F 〉. Note that A and B do not know the result of the teleportation. The manager only
knows what is the result: NOT|F 〉 or |F 〉.

If initially A and B plan to use |EPR〉 state and the manager can replace (or does not
replace) it by |CAT〉, the result is absolutely analogous. Namely, in the case of replacement,
the above table has the following form:

Φ+ σ1 NOT|F 〉
Φ− iσ2 −NOT|F 〉
Ψ+ I NOT|F 〉
Ψ− σ3 NOT|F 〉

.

2. 2n + 1-QUBIT CASE

It is not difˇcult to generalize the suggested algorithm to 2n + 1-qubit case. Namely, the
starting point is the following entangled state of qubits A1, B1, A2, B2, . . . , An, Bn, M :

|A1, B1, . . . , An, Bn, M〉 = |(2n + 1)CAT〉 = (|00 . . . 0〉 + |11 . . . 1〉)/
√

2.

Using the procedure described above, one can obtain the corresponding entangled state be-
tween qubits Ai, Bi, i = 1, 2, . . . n. Namely, let i = 1 (for simplicity). The starting state is

(|A1, B1, . . . , An, Bn, M〉 ⊗ (α |00〉 + β |11〉), (|α|2 + |β|2 = 1).

The manager M makes a measurement in the basis |Φ±
MDF 〉, |Ψ

±
MDF 〉:

|Φ±
MDF 〉 = 2−1/2(|0M0D0F 〉 ± |1M1D1F 〉), |Ψ±

MDF 〉 = 2−1/2(|0M1D1F 〉 ± |1M0D0F 〉).



770 Blinova I. V., Popov I. Yu.

If the result is Φ+
MDF , then one has the state (α, 0 . . . 0, β)T (16(n − 1)−vector). To

obtain the proper state of A1B1, α |0A10B1〉 + β |1A11B1〉) ⊗ β |10 . . .0〉), it is necessary
to multiply the vector by 16(n − 1) × 16(n − 1) matrix GΦ+ with the following elements:
gii = 1, i �= 12n − 11, 16(n − 1), g12n−11,12n−11 = g16(n−1),16(n−1) = 0, g12n−11,16(n−1) =
g16(n−1),12n−11 = 1, gij = 0 in other cases.

If the measurement shows another result, the matrix changes. We write down below the
list of the results of the manager measurements, the corresponding state vector and the proper
matrix G.

For Φ−
MDF one has the state vector (α, 0 . . . 0,−β)T and the matrix GΦ− with the fol-

lowing elements: gii = 1, i �= 12n − 11, 16(n − 1), g12n−11,12n−11 = g16(n−1),16(n−1) =
0, g12n−11,16(n−1) = −1, g16(n−1),12n−11 = 1, gij = 0 in other cases.

For Ψ+
MDF one has the state vector (β, 0 . . . 0, α)T and the matrix GΨ+ with the following

elements: gii = 1, i �= 1, 12n − 11, 16(n − 1), g12n−11,12n−11 = g1,1 = g16(n−1),16(n−1) =
0, g12n−11,1 = g1,16(n−1) = g16(n−1),12n−11 = 1, gij = 0 in other cases.

For Ψ−
MDF one has the state vector (β, 0 . . . 0,−α)T and the matrix GΨ− with the follow-

ing elements: gii = 1, i �= 1, 12n−11, 16(n−1), g12n−11,12n−11 = g1,1 = g16(n−1),16(n−1) =
0, g12n−11,1 = 1, g1,16(n−1) = −1, g16(n−1),12n−11 = 1, gij = 0 in other cases.

The manager informs A1, B1 about the type of matrix G by classical channel. They apply
the matrix to the vector and obtain the proper entangled state.

Simple modiˇcation of the procedure allows us to obtain proper entangled state of qubits
Ai, Bi for each i. No-cloning theorem does not allow us to make a teleportation of unknown
two-qubit state (i.e., for arbitrary α, β) to all pairs Ai, Bi simultaneously. But if we deal
with a known basic vector (e.g., CAT or EPR), it is possible, and it is the manager who
predetermines the recipients and the types of the entangled states. In this situation the
procedure of choosing of matrix G for obtaining the proper state is conventional. We choose
new orthogonal basis, which contains our vector as an element. Then, one constructs unitary
matrix which transforms the initial basic vector to the proper one (tensor product of proper
two-qubit states for each pair). Transformation to the original basis gives us the unitary
matrix we need.

Of course, the participants can determine what pair (Ai, Bi) has received the entangled
state for the next teleportation, but they do not know what state is needed (CAT or EPR). As
for the eavesdropper, he cannot determine even the recipients.

This scheme can be used for quantum secret sharing. Namely, let a secret be shared
between some quantum states (in our case Å B1, . . . , Bn). Authorized set of states is such
a set that someone holding all of these shares can exactly reconstruct the original secret [8].
Note that unauthorized set is such that someone holding just these shares can acquire no
information at all about the secret quantum state (i.e., the density matrix of an unauthorized
set is the same for all encoded states). For a generic state split up into a number of shares,
most sets will be neither authorized nor unauthorized (only for perfect quantum sharing
scheme each set is either authorized or unauthorized one). Using the suggested scheme, the
manager can create the proper two-qubit states in selected pairs Ai, Bi. Then, Ai makes a
teleportation of standard initial state to Bi, and Bi receives the proper state if he was among
manager selected recipients (or another state otherwise); i.e., the manager predetermines the
results of these teleportations. In such a way the manager creates the authorized set of states
(among B1, . . . , Bn). The manager is the only person who knows the authorized set.
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As a variant, this scheme is a way of creating a classical secret sequence. It is interesting
that although Ai and Bi create this sequence, they do not know the result. Moreover, the
classical secret key (sequence) is coded by the entangled states of Ai, Bi (i.e., the information
is well protected due to no-cloning theorem) and appears as a classical key at the last stage
only (after the last teleportation).
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