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It is known that dissipative chaos might satisfy scaling invariance. We discuss this statement from
the point of view of quantum-classical transition for a model of anharmonic driven dissipative oscillator
with time-modulated parameters. We apply the scaling ideology to study the ranges of chaos in quantum
and semiclassical dynamics. Chaotic dynamics is analyzed numerically within the framework of both
the Poincaré section in classical description and the Poincaré section of a single trajectory in quantum
description. We concentrate on analysis of nontrivial regimes for which the system has chaotic behavior
in quantum treatment, while the dynamics is not chaotic in classical description.

ˆ§¢¥¸É´μ, ÎÉμ ¤¨¸¸¨¶ É¨¢´Ò° Ì μ¸ ³μ¦¥É ¶·μÖ¢²ÖÉÓ ¸¢μ°¸É¢  ³ ¸ÏÉ ¡´μ° ¨´¢ ·¨ ´É´μ¸É¨. �Éμ
¶μ²μ¦¥´¨¥ ¨¸¸²¥¤Ê¥É¸Ö ¸ ÉμÎ±¨ §·¥´¨Ö ±¢ ´Éμ¢μ-±² ¸¸¨Î¥¸±μ£μ ¶¥·¥Ìμ¤  ¤²Ö ³μ¤¥²¨  ´£ ·³μ´¨-
Î¥¸±μ£μ μ¸Í¨²²ÖÉμ·  ¸ § ¢¨¸ÖÐ¨³¨ μÉ ¢·¥³¥´¨ ¶ · ³¥É· ³¨. Œ ¸ÏÉ ¡´ Ö ¨´¢ ·¨ ´É´μ¸ÉÓ É ±¦¥
¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö ´ Ìμ¦¤¥´¨Ö · §²¨Î´ÒÌ μ¡² ¸É¥° Ì μ¸  ¸¨¸É¥³Ò. • μÉ¨Î¥¸± Ö ¤¨´ ³¨±  ¨¸¸²¥-
¤Ê¥É¸Ö Î¨¸²¥´´μ ¢ · ³± Ì ¸¥±Í¨¨ �Ê ´± ·¥ ¶·¨ ¥£μ ±² ¸¸¨Î¥¸±μ³ μ¶¨¸ ´¨¨ ¨ ¸¥±Í¨¨ �Ê ´± ·¥
¤²Ö μ¤´μ° ±¢ ´Éμ¢μ° É· ¥±Éμ·¨¨ Å ¶·¨ ±¢ ´Éμ¢μ³ μ¶¨¸ ´¨¨. �¸μ¡μ ¨¸¸²¥¤ÊÕÉ¸Ö ´¥É·¨¢¨ ²Ó´Ò¥
·¥¦¨³Ò, ±μ£¤  ¸¨¸É¥³  ¨³¥¥É Ì μ¸ ¶·¨ ±¢ ´Éμ¢μ³ μ¶¨¸ ´¨¨, μ¤´ ±μ ¶·¨ ±² ¸¸¨Î¥¸±μ³ μ¶¨¸ ´¨¨
Ì μ¸ μÉ¸ÊÉ¸É¢Ê¥É.
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INTRODUCTION

The problem of quantum chaos has attracted considerable attention from many points
of physics, including quantum optics and quantum computation. Particularly, it is evident
that chaotic dynamics of the system should destroy entanglement between states but there
are some works in this area that show even improvement of entanglement for some speciˇc
cases [1,2]. It was also shown that sub-Poissonian statistics of oscillatory numbers is improved
for the model of dissipative anharmonic oscillator in chaotic regime [3]. Quantum chaos is
also interesting for investigating quantum-classical correspondence [4] which is fundamental
problem in quantum mechanics. Recently, it was shown in [5] that chaos is induced by
quantum effects on the case of a Dufˇng oscillator.

In this paper, we continue the discussion of chaotic dynamics for the dissipative anhar-
monic oscillator with time-dependent amplitude of driving force following the papers [3, 6].
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We concentrate on the scaling invariance properties of the system in the chaotic regime on
the one hand, and investigate scenarios to develop chaotic regime from the regular one due
to quantum effects on the other hand. It is known that quantum chaos is usually treated
as a quantized classical chaotic system. We mention here the counterargument considering
the situation when dynamics of the system is regular in the semiclassical treatment, while in
quantum one it is chaotic for the certain range of the parameters. For numerical analysis we
use the quantum state diffusion method [7] and as an indicator of quantum chaotic dynamics
we used Poincaré section based on single quantum trajectory [8].

1. MODEL OF THE SYSTEM

We treat dissipation and decoherence microscopically using a master equation which is
solved numerically in the framework of QSD approach [8]. The model is a periodically driven
anharmonic oscillator for which the evolution of reduced density matrix is governed by the
master equation:

dρ

dt
=

−i

�
[H0 + Hint, ρ] +

∑
i=1,2

(
LiρL+

i − 1
2
L+

i Liρ − 1
2
ρL+

i Li

)
.

In the interaction picture the Hamiltonian has the following formulation:

H0 = �Δa+a,

Hint = �χ(a+a)2 + �((f0 + f1 exp (−iδt))a+ + (f0 + f1 exp (−iδt))∗a).
(1)

Here Δ = ω0 −ω is the detuning; δ = ω0 −ω1 is the difference between driving frequencies,
which works as modulation frequency; a and a+ are boson annihilation and creation operators;
Li are the Lindblad operators,

L1 =
√

(N + 1)γa, L2 =
√

Nγa+, (2)

γ is the spontaneous decay rate of the dissipation process and N denotes the mean number of
quanta of a heat bath. The couplings with two driving forces are given by Rabi frequencies
f0 and f1, χ is the strength of anharmonicity. Here we focus on the pure quantum effects
and assume N = 0. In the classical limit the corresponding equation of motion for the
dimensionless amplitude is

dα

dt
= −γ

2
α − i(Δ + χ(1 + 2|α|2))α − i(f0 + f1 exp (−δt)). (3)

This equation is invariant for the scaling transformation of complex amplitude α = λα if
the other parameters transforms like: Δ → Δ′ = Δ + χ(1 − 1/λ2), χ → χ′ = χ/λ2,
f → f ′ = λf , γ → γ′ = γ. This scaling property leads to symmetry of strange attractor, they
have the same form in the phase space and differ only by scale. Strictly speaking, scaling
invariance is not valid in quantum limit.
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2. RESULTS

At ˇrst, we illustrate scaling invariance of chaotic dynamics of dissipative time-modulated
anharmonic oscillator (DAO). As has been shown in [9], the system has chaotic dynamics
when f1 � f0 and δ � γ. The Poincaré sections obtained by recording (x, p) at time intervals
of 2π/δ for this case are shown in Fig. 1 in the form of strange attractors for two sets of
scaled parameters. Here DAO is discussed in the vicinity of classically chaotic behavior if the
parameters are tuned near the chaotic range, the transformation to regular dynamics might be
realized. Indeed, for the considered parameters the system dynamics continues to be chaotic
till f1/γ = 4.9, while chaotic dynamics became regular when f1/γ = 4.8.

We test quantum dynamics through Poincaré section of single QSD trajectory which is
plotted in Fig. 2, a. It is evident that the system behavior is regular. Indeed, as we see in
Fig. 2, a, the stochastic points in phase space are distributed regularly near two ranges. Calcu-
lations show that the Poincaré section of the system for the same parameters in semiclassical
treatment also consists of two points in contrast to Fig. 1. Now, the scaling invariance of
the semiclassical Eq. (3) is used to get the chaotic behavior ranges. The Poincaré section
in Fig. 2, c displays chaotic dynamics of the system for the scaling parameter λ = 2. As is
seen from unlikeness of the sections in Figs. 2, a and c the scaling invariance is violated and
the quantum-classical correspondence is lost due to quantum noise effects. It is interesting
that the shape of Poincaré section in Fig. 2, c qualitatively coincides with Poincaré sections
from Figs. 1, a and b, which indicates that the quantum chaos in classically regular case is
similar to classical chaos in chaotic range of parameters. We can conclude that in quantum
limit system dynamics continues to be chaotic although its classical dynamics is regular. It
is connected to quantum basic concept of uncertainty principle. In spite of the ideology that
chaos is mainly classical concept, it exists in quantum system, while the same system in
classical limit is regular. So using scaling invariance, we found the system parameters when
dynamics continues to be chaotic in quantum treatment.

Fig. 1. The Poincaré section for the following parameters: Δ/γ = −15, χ/γ = 2, f0/γ = 5.8,

f1/γ = 4.9, δ/γ = 3 (a); for the scaled λ = 2 parameters (b). The Poincaré sections are generated for
time evaluation 5000 force periods
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Fig. 2. The Poincaré section calculated on the basis of a single trajectory for the following parameters:
Δ/γ = −15, χ/γ = 2, f0/γ = 5.8, f1/γ = 4.8, δ/γ = 3 (a); the excitation number for the same

parameters (b). Panels c and d correspond to scaled λ = 2 parameters. The Poincaré sections are

generated for time evaluation 5000 force periods
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