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Using the neutron scattering lengths b determined experimentally for a majority of isotopes in last
decades, one can in principle extract systematic information on some nuclear properties of elements.
A signiˇcant ®scatter¯ of experimental values of the (related to b) nuclear radius R around the ®classical¯
dependence R = r0A

1/3, where A is the mass number, is intriguing and requires a special attention.
In this work, on extending the use of known formulas of the theory of neutron scattering on nucleus
represented by a rectangular radial symmetry potential well (or barrier), we have determined the depths
V0 of the potential well and for many isotopes the position of the bound-state energy level Eb in the
well. The ®scatter¯ mentioned above can be in part attributed to the four types of the s-type wave
functions of slow neutron interacting with nucleus, which appear in this model. In several cases the
bound-state energy level is close to the Fermi EF level of the free-nucleon model of nuclear matter of
the constant density, independent of A.

ˆ¸¶μ²Ó§ÊÖ ¤²¨´Ò · ¸¸¥Ö´¨Ö ´¥°É·μ´μ¢ b, §  ¶μ¸²¥¤´¨¥ ¤¥¸ÖÉ¨²¥É¨Ö μ¶·¥¤¥²¥´´Ò¥ Ô±¸¶¥·¨³¥´-
É ²Ó´μ ¤²Ö ¡μ²ÓÏ¨´¸É¢  ¨§μÉμ¶μ¢, ¢ ¶·¨´Í¨¶¥, ³μ¦´μ ¨§¢²¥± ÉÓ ¸¨¸É¥³ É¨Î¥¸±ÊÕ ¨´Ëμ·³ Í¨Õ
μ ´¥±μÉμ·ÒÌ ¸¢μ°¸É¢ Ì Ô²¥³¥´Éμ¢. ‡´ Î¨É¥²Ó´Ò° ®· §¡·μ¸¯ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ §´ Î¥´¨° · ¤¨Ê-
¸μ¢ Ö¤¥· R (¸¢Ö§ ´´ÒÌ ¸ b) ¢μ±·Ê£ ®±² ¸¸¨Î¥¸±μ°¯ § ¢¨¸¨³μ¸É¨ R = r0A

1/3, £¤¥ A Å ³ ¸¸μ¢μ¥
Î¨¸²μ, μ§ ¤ Î¨¢ ¥É ¨ É·¥¡Ê¥É ¸¶¥Í¨ ²Ó´μ£μ ¨¸¸²¥¤μ¢ ´¨Ö. ‚ ¶·¥¤¸É ¢²¥´´μ° · ¡μÉ¥ ¸ Í¥²ÓÕ · ¸Ï¨-
·¨ÉÓ ¶·¨³¥´¨³μ¸ÉÓ ¨§¢¥¸É´ÒÌ Ëμ·³Ê² É¥μ·¨¨ · ¸¸¥Ö´¨Ö ´¥°É·μ´μ¢ ´  Ö¤· Ì, ±μÉμ·μ¥ μ¶¨¸Ò¢ ¥É¸Ö
· ¤¨ ²Ó´μ-¸¨³³¥É·¨Î´Ò³ ¶μÉ¥´Í¨ ²μ³ ¶·Ö³μÊ£μ²Ó´μ° Ö³Ò (¨²¨ ¡ ·Ó¥· ), ¡Ò²¨ μ¶·¥¤¥²¥´Ò £²Ê-
¡¨´Ò V0 ¶μÉ¥´Í¨ ²Ó´μ° ¸É¥´Ò,   ¤²Ö ³´μ¦¥¸É¢  ¨§μÉμ¶μ¢ Å ¶μ²μ¦¥´¨¥ Ê·μ¢´Ö Ô´¥·£¨¨ ¸¢Ö§ ´´μ£μ
¸μ¸ÉμÖ´¨Ö Eb. “¶μ³Ö´ÊÉÒ° ¢ÒÏ¥ ®· §¡·μ¸¯ ³μ¦¥É ¡ÒÉÓ Î ¸É¨Î´μ μ¡ÑÖ¸´¥´ Î¥ÉÒ·Ó³Ö É¨¶ ³¨ ¢μ²-
´μ¢ÒÌ ËÊ´±Í¨° s-É¨¶ , ±μÉμ·Ò¥ ¶μÖ¢²ÖÕÉ¸Ö ¢ ³μ¤¥²¨ ¨ μ¶¨¸Ò¢ ÕÉ ¢§ ¨³μ¤¥°¸É¢¨¥ ³¥¤²¥´´ÒÌ
´¥°É·μ´μ¢ ¸ Ö¤·μ³. ‚ ´¥±μÉμ·ÒÌ ¸²ÊÎ ÖÌ Ê·μ¢¥´Ó Ô´¥·£¨¨ ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö μ± §Ò¢ ¥É¸Ö ¡²¨§-
±¨³ ± Ê·μ¢´Õ ”¥·³¨ EF ³μ¤¥²¨ ¸¢μ¡μ¤´ÒÌ ´Ê±²μ´μ¢, μ¶¨¸Ò¢ ÕÐ¥° Ö¤¥·´ÊÕ ³ É¥·¨Õ ¶μ¸ÉμÖ´´μ°
¶²μÉ´μ¸É¨, ¨ ´¥ § ¢¨¸¨É μÉ A.

PACS: 28.20.Cz

INTRODUCTION

Five decades of neutron experiments have resulted in determining the neutron scattering
lengths b for about 250 isotopes. They have been collected in the Dianoux and Lander
®Neutron Data Booklet¯ [1]. Let us remind essential notions.
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The scattering length depends in general on the orientation of the neutron spin 1/2 with
respect to the nucleus spin S, so we have two scattering lengths: b↑↑ ≡ b+, b↑↓ ≡ b−. In
practice one often deals with the coherent scattering length bC :

bC =
S + 1
2S + 1

b+ +
S

2S + 1
b−. (1)

In case of a spinless nucleus S = 0 one returns to single scattering length b and then one
can write b = b+ = bC . In this study we shall be mainly discussing the spinless nuclei,
but for completeness we shall include the remaining ones, covering them by their coherent
representation bC . Generally, it is understood that b = bZ,A.

The present-day theory of nucleus is still somewhat heuristic and uncoherent. The way
of thinking about nucleus is Å which model is better for a given purpose? Criterions of
acceptance of physical ideas in this ˇeld cannot be therefore considered ˇrm or ˇnal. There
is still a space for experimenting with models, when trying to cover the wealth of new
experimental data. Even if one has at disposal the state-of-art description in the terms of
the optical potential model, such as neutronÄnucleus strong scattering radius R′, the bound
level resonance energy Eb, gamma and neutron widths Γγb and Γnb [2], neutron separation
energies Sn [7], one may still be interested in the parameters of the simple-minded radial-
symmetry rectangular potential well for nuclei, for the notion of the depth of such a potential
well (in some cases the height of a potential barrier) is intuitively clear and acceptable. This
is why we have attempted in this paper to try to fully exploit the idea of s-scattering and
old radial-rectangular-potential model of nucleus, in order to systematize and interpret the
experimentally determined collection of neutron scattering lengths b [1].

Very roughly, the nuclear radius parameters R, determined by the high-energy electron
diffraction, grow with the mass number as A1/3, and in this sense they may be treated as
the radii of nuclei of ˇxed nucleon density. A better representation follows from the optical
models of the nuclear theory, where certain oscillations in the radius vs. A plot re
ect
the nuclear orbital wave functions. It is displayed in the well-known plot of Mughabghab
et al. [3], see also [1], showing the ®spin-independent potential scattering¯ radius R′ vs. A.
There is a lot of bizarre scatter in these experimental data, which do not ˇt the theoretical
curve.

Neutron scattering lengths b, shown in Fig. 1, depend on the mass number A and the
charge number Z of nuclei even more erratically than the radius parameters. The parameters
b and R are of different nature, although they are intimately related to each other by the
matching conditions for the neutron wave function at the potential boundary. In this work
we shall examine this relation in order to discover a possible regularity in the b vs. (Z, A)
dependence.

We believe that it is worthwhile to analyze the problem of this scatter within a reasonable
and transparent model, with a special emphasis on the matter of depth of nuclear potential
wells. As the density of the nuclear matter determined from diffraction data is known to
be almost constant in all nuclei, one is often inclined to think that on adding nucleon to set
another isotope one is increasing mainly the radius of potential well, while its depth remains
constant. The collection of the scattering length data offers an opportunity to verify it. Our
main purpose was to determine, within the rectangular radial-symmetry potential-well model
of nucleus, the depths V0 of such a well (or the height of potential barrier) for relevant
isotopes. On analyzing the scattering lengths of about two hundred nuclei, we have found
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Fig. 1. Scattering lengths b (bC in case S �= 0) of isotopes as a function of the mass number A according

to [1], see also the table

that the depth V0 does change vs. A signiˇcantly and there is certain regularity in its behavior.
Besides, in cases bZ,A > RA (where RA Å radius of nucleus (Z, A)) we have arrived at an
estimation of the bound-state energy-level positions Eb in deep potential wells and in many
cases found its interesting coincidence with the Fermi level of the free nucleon model of
nuclear matter.

A ground for this study comes from the averaging property of slow neutrons. They
do not see the rich structure of the optical (or true) potential well of nucleus, but only its
®average¯ depth, because the neutron wavelength is larger than the nucleus radius R by
orders of magnitude. It is the depth of the true potential of nucleus seen by slow neutrons,
for it is determined from the experimental scattering length b. Such a purpose justiˇes using
the simple model of rectangular radial-symmetry nuclear potential. It needs just two nuclear
parameters R and V0 and offers the necessary simplicity and transparency.

We believe that such a derivation of the potential depth (barrier height) V0 directly from
the neutron scattering data is enlightening. It provides information which is both interesting
and convincing. The derivation of the bound-state energy levels EB for elements exhibiting
deep potential well, given here, is perhaps more intuitive, but interesting too. The main
purpose of the paper is to compare and systematize the V0 = VZ,A data for practically all
isotopes, basing on the unifying ground of this model. It is old enough, but so far it has not
been fully exploited for the purpose of such a global comparison.

1. OUTLINE OF THE THEORY OF ELASTIC s-SCATTERING

In this study we try to exploit in full the old idea of the s-scattering of neutron on the
nucleus represented by the radial-symmetry rectangular potential well (or in some cases a
rectangular radial-symmetry barrier) to systematize the data on neutron scattering lengths.
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Quantum theory of the elastic slow-neutron scattering has been introduced long ago and
it has been presented in several textbooks on nuclear physics. In the present contribution we
shall shortly recall its results according to T.Mayer-Kuckuk [4], with occasional intercepts
from P. J. Siemens and A. S. Jensen [5].

Basic notions of the theory are phase shifts δl and scattering amplitudes fl for the orbital
momentum quantum number l, interrelated as follows:

fl =
1
k

exp (iδl) sin δl, (2)

where k = 2π/λ is the wavevector of the incoming neutron plane wave of the kinetic energy
E = �

2k2/2m. In case of the s-scattering (l = 0) and neutron long wavelength, k → 0, on
neglecting the complex factor (as related rather to absorption), the neutron scattering length is

b = −f0. (3)

For the study of slow-neutron scattering a good model of nucleus is the radial rectangular
potential well of the depth V0, and of the radius

RA = r0A
1/3, (4)

where we take as the single-nucleon radius r0 = 1.3 fm [5]. A is the mass number of a
nucleus, A = n+p, while Z = p is its charge number. On considering the equation of motion
for the neutron of mass mn (= 939.57 MeV/c2) in the ˇeld of nuclear forces of nucleus of
the mass mA, one arrives at the reduced mass m:

1
m

=
1

mn
+

1
mA

=
A

A + 1
, (5)

in the units mn.
The Schréodinger equation for the s-type wave function (l = 0) u(r)/r of neutron in the

radial symmetry potential ˇeld V (r) of the nucleus is

d2u

dr2
+

2m

�2
(E − V (r))u = 0. (6)

On assuming the ®attractive¯ rectangular potential well of the radius R = RA and the depth
V (0) = V0 ≡ VZ,A < 0 (here we differ from the sign convention of the MayerÄKuckuk
book), one arrives under the conditions boundary u(0) = u(∞) = 0 at the following equation
relating the potential depth V0, the wavevector k → 0 (thus E → 0), and the phase shift
δ0 [4]:

δ0 = −kRA + arctan
[

k

ki
tan(kiRA)

]
, (7)

where

ki =

√
2m

�2
(−VZ,A + E) −−−→

k→0

√
−2m

�2
VZ,A (8)

is the wavevector of the neutron wave function u(r) within the well (inner wave function)),
being proportional to sin (kir). On requesting again k → 0 in Eq. (7) we obtain that δ0 is a
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small quantity (it is of the order 10−4 for k = 10−10 m), so sin (δ0) = δ0 and we have for
the scattering length

b = RA − 1
ki

tan (kiRA). (9)

This equation can be rewritten in the form

1 − b

RA
=

tan x

x
, (10)

where

x =

√
−2m

�2
VZ,ARA = kiRA. (11)

In case of repulsive potential barrier of the height V (0) > 0 one formally puts in the formula
VZ,A → −VZ,A. This results in the appearance of function tanh (ix) = i tan (x) and the ˇnal
result is again Eq. (10), but now b < RA.

Let us add by passing that, only assuming x small and b < 0 (shallow potential well, see
below), one obtains the formula such as in the Born approximation for the rectangular radial
potential well [4]:

b = bZ,A =
RAx2

3
=

2m

3�2
VZ,AR3

A. (12)

2. PROBLEMS WITH DETERMINATION OF THE POTENTIAL DEPTH VZ,A

Knowing from experiment the value of scattering length b, one can immediately calculate
from Eq. (10) one of its roots x (see Fig. 2), and then the depth of radial potential well
V0 ≡ VZ,A:

|V0| =
�

2

2m

x2

R2
A

= 12.26
x2

A2/3

A

1 + A
MeV, (13)

where the sign is to be assigned to V0 depending on the value of b. In principle the value and
sign of the scattering length b provides via this model not only the depth (or height in case
of barrier) of the potential, but also basic qualitative physical features of the well. Namely,
the construction of Eq. (10) allows three possibilities for the LHS, corresponding to three
essentially different potential wells [4], as shown in Fig. 2:

a) LHS > 1 shallow potential well, no neutron bound states, bZ,A < 0, V0 < 0, yellow
stripe.

b) 1 > LHS > 0, purely repulsive potential barrier, RA > bZ,A > 0, V0 > 0, violet stripe.
c) LHS < 0, deep potential well with V0 � 0, allowing the existence of neutron bound

state Eb, green stripe. The inequality bZ,A > RA means the existence of the bound state.
Plots in the RHS of Fig. 21 show the function tan (x) /x in the subsequent n1 domains,

[(n1 − 1/2)π < x < (n1 + 1/2)π], n1 = 0, 1, 2, 3, 4. Inserts show qualitatively the form of
the function u(r) within the well for n1 = 1 and 2. As an example, the scattering lengths of

1The colored version of the table and ˇgures is only available at http://www.jinr.ru/publish/ . In the present
printed version the yellow color appears as white, green as light grey, and violet as dark grey. Å Note of editor.
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Fig. 2. Graphical representation of three possible types of rectangular radial-symmetry potential wells

(barriers) Å a guide to the table. Colors show three domains of solutions of Eq. (9), depending on the
ratio of neutron scattering length b (see the table) to the ®classic¯ nucleon radius R given by Eq. (4).

Yellow Å shallow well, V0 < 0, b < 0; violet Å potential barrier, V0 > 0, 0 < b < R; green Å deep
well, V0 < 0, b > R, and there is a bound energy state in the well, Eb < 0. Inserts show qualitatively

for the deep well the form of the inner function u(r) for n1 = 1 (single oscillation) and n1 = 2 (two

oscillations); for n1 = 3 and 4 there are 3 and 4 oscillations, subsequently

three nuclei are represented in this ˇgure by points. The so calculated x roots of Eq. (10) give
via Eq. (13) the potential well depths V0 (heights of the barrier in case of violet strip data).
One should mention here that for several isotopes this assignment depends critically on the
chosen value of the ®nucleon radius¯ parameter r0 in Eq. (4), while there is some arbitrariness
here, compare the r0 values in [4] and [5].

A summary of the potential depth (barrier) data V0 = VZ,A and bound-state energy levels Eb (in
MeV), evaluated within the rectangular radial-symmetry model of nucleus, using the experimental
slow-neutron s-scattering lengths [1]. Colors Å as in Fig. 2. Notation: Z, A Å charge and mass
numbers of nucleus, S Å its spin, bC Å (coherent) scattering length bZ,A, n1 and n2 Å domain
indices of the solutions of Eqs. (9) and (17), respectively, EF Å Fermi level of the nuclear matter,
Eq. (14). Last column Å the (EF , Eb) coincidence index, see Eq. (18). The V0 and Eb ˇgures are to
be trusted to approximately three digits. n1 gives the number of oscillations of the scattered neutron
wave function within the potential well, see Fig. 2

Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

1 1 H 0.5 Ä3.742312 0 Ä47.173

1 2 1 6.66746 1 Ä35.656 1 Ä0.915 Ä0.231

1 3 0.5 4.79227 1 Ä28.293 1 Ä1.897 Ä0.415
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

2 3 He 0.5 5.747 1 Ä26.305 1 Ä1.210 Ä0.444

2 4 0 3.263 1 Ä30.199 1 Ä5.542 Ä0.454

3 6 Li 1 2.01 1 57.357

3 7 1.5 Ä2.222 0 Ä4.937

4 9 Be 1.5 7.791 2 Ä73.213 2 Ä0.554 0.609

5 10 B 3 Ä0.24 0 Ä0.677

5 11 1.5 6.654 2 Ä64.105 2 Ä0.933 0.399

6 12 C 0 6.653514 2 Ä60.268 2 Ä0.950 0.314

6 13 0.5 6.199 2 Ä57.528 2 Ä1.193 0.247

7 14 N 1 9.372 2 Ä52.457 2 Ä0.388 0.153

7 15 0.5 6.443 2 Ä51.866 2 Ä1.104 0.124

8 16 O 0 5.8055 2 Ä50.623 2 Ä1.573 0.086

8 17 2.5 5.65 2 Ä48.983 2 Ä1.770 0.045

8 18 0 5.847 2 Ä46.832 2 Ä1.611 0.001

9 19 F 0.5 5.65412 2 Ä45.653 2 Ä1.858 Ä0.030

10 20 Ne 0 4.6316 2 Ä48.322 2 Ä4.345 Ä0.026

10 21 1.5 6.6619 2 Ä41.247 2 Ä1.109 Ä0.111

10 22 0 3.871 2 Ä57.358 2 Ä13.051 Ä0.019

11 23 Na 1.5 3.632 1 16.176

12 24 Mg 0 5.4918 2 Ä40.097 2 Ä2.367 Ä0.165

12 25 2.5 3.6214 1 16.206

12 26 0 4.8915 2 Ä41.063 2 Ä4.228 Ä0.184

13 27 Al. 2.5 3.4495 1 17.590

14 28 Si 0 4.1066 2 Ä50.312 2 Ä12.562 Ä0.164

14 29 0.5 4.71 2 Ä40.172 2 Ä5.780 Ä0.238

14 30 0 4.588 2 Ä41.598 2 Ä6.998 Ä0.234

15 31 P 0.5 5.131 2 Ä36.610 2 Ä3.945 Ä0.277

16 32 S 0 2.8042 1 20.645

16 33 1.5 4.7419 2 Ä38.860 2 Ä6.501 Ä0.283

16 34 0 3.483 1 16.574

16 36 0 3.01 1 18.657

17 35 Cl 1.5 11.709 3 Ä74.037 3 Ä0.250 0.634

17 37 1.5 3.086 1 18.111

18 36 Ar 0 24.97 3 Ä71.772 2 Ä0.038 0.588

18 38 0 3.353 1 15.785

18 40 0 1.7 1 20.393



914 Czachor A., Pe�czkowski P.

Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

19 39 K 1.5 3.792 1 14.242

19 40 4 3.11 1 17.372

19 41 1.5 2.698 1 18.370

20 40 Ca 0 4.785 2 Ä36.931 2 Ä7.939 Ä0.358

20 42 0 3.361 1 16.049

20 43 3.5 Ä1.569 0 Ä0.747

20 44 0 1.426 1 19.420

20 46 0 3.5521 1 14.741

20 48 0 0.399 1 18.959

21 45 Sc 3.5 12.11 3 Ä62.322 3 Ä0.242 0.375

22 46 Ti 0 4.725 1 9.359

22 47 2.5 3.537 1 14.679

22 48 0 Ä5.862 0 Ä1.411

22 49 3.5 0.985 1 18.380

22 50 0 5.881 3 Ä64.063 3 Ä3.672 0.337

23 50 V 6 7.66 3 Ä59.831 3 Ä1.052 0.302

23 51 3.5 Ä0.4022 0 Ä0.207

24 50 Cr 0 Ä4.505 0 Ä1.217

24 52 0 4.91415 1 8.631

24 53 1.5 Ä4.203 0 Ä1.121

24 54 0 4.551 1 10.024

25 55 Mn 2.5 Ä3.75018 0 Ä1.025

26 54 Fe 0 4.21 1 11.453

26 56 0 10.12 3 Ä54.218 3 Ä0.429 0.191

26 57 0.5 2.31 1 15.611

26 58 0 1.57 1 16.062

27 59 Co 3.5 2.492 1 15.078

28 58 Ni 0 14.41 3 Ä52.232 3 Ä0.160 0.153

28 60 0 2.81 1 14.527

28 61 1.5 7.606 3 Ä52.794 3 Ä1.233 0.142

28 62 0 Ä8.72 0 Ä1.325

28 64 0 Ä0.377 0 Ä0.156

29 63 Cu 1.5 6.47713 3 Ä54.189 3 Ä2.793 0.138

29 65 1.5 10.2042 3 Ä49.096 3 Ä0.441 0.077

30 64 Zn 0 5.234 1 7.582

30 66 0 5.985 3 Ä55.744 3 Ä5.017 0.123
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

30 67 2.5 7.588 3 Ä49.838 3 Ä1.337 0.074

30 68 0 6.043 3 Ä54.636 3 Ä4.927 0.101

30 70 0 6.91 3 Ä49.834 3 Ä2.203 0.055

31 69 Ga 1.5 8.04316 3 Ä48.422 3 Ä1.035 0.049

31 71 1.5 6.17011 3 Ä52.758 3 Ä4.564 0.067

32 70 Ge 0 10.01 3 Ä46.823 3 Ä0.483 0.026

32 72 0 8.511 3 Ä46.738 3 Ä0.873 0.016

32 73 4.5 5.024 1 8.185

32 74 0 7.581 3 Ä46.932 3 Ä1.460 0.007

32 76 0 8.215 3 Ä45.422 3 Ä1.045 Ä0.017

33 75 As 1.5 6.581 3 Ä49.180 3 Ä3.208 0.018

34 74 Se 0 0.833 1 13.981

34 76 0 12.21 3 Ä43.832 3 Ä0.269 Ä0.035

34 77 8.258 3 Ä45.013 3 Ä1.032 Ä0.026

34 78 0 8.249 3 Ä44.662 3 Ä1.046 Ä0.034

34 80 0 7.483 3 Ä44.981 3 Ä1.674 Ä0.041

34 82 0 6.348 3 Ä48.707 3 Ä4.789 Ä0.027

35 79 Br 1.5 6.797 3 Ä47.074 3 Ä2.818 Ä0.020

35 81 1.5 6.787 3 Ä46.534 3 Ä2.946 Ä0.035

36 78 Kr 0

36 80 0

36 82 0

36 83 4.5

36 84 0

36 86 0 8.0726 3 Ä42.253 3 Ä1.243 Ä0.092

37 85 Rb 2.5 7.071 3 Ä44.450 3 Ä2.442 Ä0.070

37 87 2.5 7.2712 3 Ä43.358 3 Ä2.141 Ä0.087

38 84 Sr 0 5.02 1 8.096

38 86 0 5.685 1 6.401

38 87 4.5 7.417 3 Ä43.018 3 Ä1.918 Ä0.090

38 88 0 7.166 3 Ä43.379 3 Ä2.364 Ä0.092

39 89 Y 0.5 7.752 3 Ä41.846 3 Ä1.559 Ä0.108

40 90 Zr 0 6.51 3 Ä45.999 3 Ä4.702 Ä0.086

40 91 2.5 8.81 3 Ä40.129 3 Ä0.887 Ä0.131

40 92 0 7.52 3 Ä41.495 3 Ä1.896 Ä0.123

40 94 0 8.32 3 Ä39.776 3 Ä1.167 Ä0.145



916 Czachor A., Pe�czkowski P.

Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

40 96 0 5.51 1 6.784

41 93 Nb 4.5 7.0543 3 Ä42.559 3 Ä2.813 Ä0.120

42 92 Mo 0 6.938 3 Ä43.335 3 Ä3.571 Ä0.120

42 94 0 6.827 3 Ä43.336 3 Ä3.496 Ä0.118

42 95 2.5 6.937 3 Ä42.619 3 Ä3.250 Ä0.128

42 96 0 6.226 3 Ä48.195 3 Ä7.803 Ä0.106

42 97 2.5 7.268 3 Ä40.990 3 Ä2.473 Ä0.147

42 98 0 6.607 3 Ä44.077 3 Ä4.941 Ä0.133

42 100 0 6.757 3 Ä42.738 3 Ä4.307 Ä0.149

43 99 Tc 4.5 6.83 3 Ä42.447 3 Ä3.897 Ä0.146

44 96 Ru 0

44 98 0

44 99 3

44 100 0

44 101 2.5

44 102 0

44 104 0

45 100 Rh 0.5 5.904 1 5.925

46 102 Pd 0 7.77 3 Ä38.721 3 Ä1.784 Ä0.182

46 104 0 7.77 3 Ä38.314 3 Ä1.826 Ä0.192

46 105 2.5 5.53 1 6.698

46 106 0 6.44 3 Ä45.012 3 Ä7.249 Ä0.164

46 108 0 4.13 1 9.071

46 110 0 7.77 3 Ä37.186 3 Ä1.956 Ä0.220

47 107 Ag 0.5 7.55511 3 Ä38.235 3 Ä2.230 Ä0.203

47 109 0.5 4.16511 1 8.987

48 106 Cd 0 5.02 1 7.750

48 108 0 5.3124 1 7.133

48 110 0 5.788 1 6.143

48 111 0.5 6.478 1 4.918

48 112 0 6.346 1 5.123

48 113 0.5 Ä8.01 0 Ä0.796

48 114 0 7.485 3 Ä37.284 3 Ä2.593 Ä0.232

48 116 0 6.269 1 5.248

49 113 In 4.5 5.396 1 6.912

49 115 4.5 4.003 1 8.915
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

50 112 Sn 0 6.01 1 5.709

50 114 0 6.03 1 5.670

50 115 0.5 6.01 1 5.706

50 116 0 6.101 1 5.539

50 117 0.5 6.598 1 4.739

50 118 0 6.234 1 5.306

50 119 0.5 6.283 1 5.224

50 120 0 6.674 3 Ä41.803 3 Ä6.887 Ä0.227

50 122 0 5.933 1 5.833

50 124 0 6.153 1 5.442

51 121 Sb 2.5 5.716 1 6.238

51 123 3.5 5.387 1 6.818

52 120 Te 0 5.35 1 6.920

52 122 0 3.82 1 8.787

52 123 0.5 Ä0.0525 0 Ä0.012

52 124 0 7.951 3 Ä34.577 3 Ä2.075 Ä0.280

52 125 0.5 5.018 1 7.380

52 126 0 5.557 1 6.490

52 128 0 5.888 1 5.901

52 130 0 6.017 1 5.662

53 127 I 2.5 5.282 1 6.940

54 124 Xe 0

54 126 0

54 128 0

54 129 0.5

54 130 0

54 131 1.5

54 132 0

54 134 0

54 136 0

55 133 Cs 3.5

56 130 Ba 0 Ä3.66 0 Ä0.481

56 132 0 7.83 3 Ä33.857 3 Ä2.555 Ä0.307

56 134 0 5.71 1 3.435

56 135 1.5 4.661 1 7.593

56 136 0 4.908 1 7.293
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

56 137 1.5 6.821 1 4.426

56 138 0 4.838 1 7.328

57 138 La 5 8.02 3 Ä32.665 3 Ä2.323 Ä0.328

57 139 3.5 8.244 3 Ä32.046 3 Ä1.949 Ä0.334

58 136 Ce 0 5.769 1 6.052

58 138 0 6.659 1 4.645

58 140 0 4.819 1 7.303

58 142 0 4.729 1 7.350

59 141 Pr 2.5 4.585 1 7.513

60 142 Nd 0 7.73 3 Ä33.167 3 Ä3.251 Ä0.338

60 143 3.5 14.02 4 Ä55.430 4 Ä0.216 0.223

60 144 0 2.83 1 8.451

60 145 3.5 14.02 4 Ä54.921 4 Ä0.217 0.211

60 146 0 8.72 3 Ä30.448 3 Ä1.476 Ä0.358

60 148 0 5.73 1 6.018

60 150 0 5.282 1 6.587

61 147 Pm 3.5 12.64 4 Ä54.624 4 Ä0.304 0.203

62 144 Sm 0 Ä3.04 0 Ä0.391

62 147 3.5 14.03 4 Ä54.423 4 Ä0.217 0.200

62 148 0 Ä3.04 0 Ä0.382

62 149 3.5 18.728 4 Ä53.605 4 Ä0.096 0.185

62 150 0 14.03 4 Ä53.699 4 Ä0.219 0.184

62 152 0 Ä5.06 0 Ä0.504

62 154 0 8.01 3 Ä31.174 3 Ä2.874 Ä0.373

63 151 Eu 2.5

63 153 2.5 8.2212 3 Ä30.661 3 Ä2.325 Ä0.373

64 152 Gd 0 10.03 4 Ä54.289 4 Ä0.753 0.185

64 154 0 10.03 4 Ä53.840 4 Ä0.762 0.175

64 155 1.5 13.83 4 Ä52.569 4 Ä0.232 0.159

64 156 0 6.34 1 5.085

64 157 1.5 4.02 1 7.493

64 158 0 9.02 4 Ä53.888 4 Ä1.341 0.164

64 160 0 9.155 4 Ä53.312 4 Ä1.252 0.153

65 159 Tb 1.5 7.342 4 Ä34.292 4 Ä7.240 Ä0.401

66 156 Dy 0 6.15 1 5.359

66 158 0 6.04 1 5.506
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

66 160 0 6.74 1 4.527

66 161 2.5 10.34 4 Ä52.165 4 Ä0.690 0.140

66 162 0 Ä1.45 0 Ä0.204

66 163 2.5 5.04 1 6.620

66 164 0 49.45 4 Ä49.914 3 Ä19.666 Ä0.330

67 165 Ho 3.5 8.443 4 Ä53.650 4 Ä2.189 0.140

68 162 Er 0 9.0111 4 Ä53.103 4 Ä1.392 0.145

68 164 0 7.9514 3 Ä30.680 3 Ä3.507 Ä0.398

68 166 0 10.5119 4 Ä51.070 4 Ä0.658 0.116

68 167 3.5 3.065 1 7.620

68 168 0 7.438 1 3.719

68 170 0 9.616 4 Ä50.904 4 Ä1.028 0.104

69 169 Tm 0.5 7.073 1 4.112

70 168 Yb 0 Ä4.072 0 Ä0.409

70 170 0 6.81 1 4.430

70 171 0.5 9.71 4 Ä50.637 4 Ä0.984 0.099

70 172 0 9.51 4 Ä50.641 4 Ä1.105 0.097

70 173 2.5 9.561 4 Ä50.412 4 Ä1.081 0.092

70 174 0 19.21 4 Ä48.312 4 Ä0.093 0.068

70 176 0 8.71 4 Ä51.172 4 Ä1.958 0.090

71 175 Lu 3.5 7.289 1 3.871

71 176 7 6.12 1 5.296

72 174 Hf 0 10.911 4 Ä49.376 4 Ä0.581 0.081

72 176 0 6.6118 1 4.674

72 177 3.5 0.81 1 7.800

72 178 0 5.92 1 5.519

72 179 4.5 7.4616 1 3.694

72 180 0 13.23 4 Ä47.710 4 Ä0.286 0.050

73 180 Ta 9 7.02 1 4.170

73 181 3.5 6.917 1 4.291

74 180 W 0 5.03 1 6.333

74 182 0 7.044 1 4.142

74 183 0.5 6.594 1 4.681

74 184 0 7.556 1 3.602

74 186 0 Ä0.734 0 Ä0.100

75 185 Re 2.5 9.03 4 Ä49.143 4 Ä1.659 0.051
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

75 187 2.5 9.33 4 Ä48.375 4 Ä1.369 0.041

76 184 Os 0 10.02 4 Ä48.149 4 Ä0.904 0.046

76 186 0 12.017 4 Ä46.941 4 Ä0.412 0.030

76 187 0.5 10.02 4 Ä47.670 4 Ä0.920 0.035

76 188 0 7.83 4 Ä54.203 4 Ä5.897 0.070

76 189 1.5 11.03 4 Ä46.781 4 Ä0.591 0.023

76 190 0 11.43 4 Ä46.472 4 Ä0.510 0.018

76 192 0 11.94 4 Ä46.004 4 Ä0.431 0.009

77 191 Ir 1.5

77 193 1.5

78 190 Pt 0 9.01 4 Ä48.455 4 Ä1.757 0.034

78 192 0 9.95 4 Ä46.958 4 Ä0.982 0.018

78 194 0 10.558 4 Ä46.239 4 Ä0.737 0.008

78 195 0.5 8.919 4 Ä47.839 4 Ä1.972 0.016

78 196 0 9.898 4 Ä46.416 4 Ä1.034 0.005

78 198 0 7.81 1 3.370

79 197 Au 1.5 6.261 1 5.011

80 196 Hg 0 30.31 4 Ä44.397 3 Ä17.589 Ä0.406

80 198 0

80 199 0.5 16.94 4 Ä44.291 4 Ä0.136 Ä0.022

80 200 0

80 201 1.5 11.00243 4 Ä44.993 4 Ä0.628 Ä0.018

80 202 0

80 204 0

81 203 Tl 0.5 8.518 4 Ä48.311 4 Ä3.109 0.001

81 205 0.5 8.877 4 Ä46.852 4 Ä2.242 Ä0.012

82 204 Pb 0 10.89378 4 Ä44.624 4 Ä0.666 Ä0.027

82 206 0 9.22178 4 Ä45.956 4 Ä1.708 Ä0.020

82 207 0.5 9.28616 4 Ä45.718 4 Ä1.641 Ä0.024

82 208 0 9.4943 4 Ä45.266 4 Ä1.428 Ä0.029

83 209 Bi 4.5 8.5322 4 Ä47.682 4 Ä3.283 Ä0.017

84 Po

85 At

86 Rn

87 Fr

88 226 Ra 0 10.01 4 Ä42.519 4 Ä1.157 Ä0.084
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Z A Symbol S bC n1 V0 n2 Eb
−V0 + Eb − EF

EF

89 Ac

89 Ac

90 232 Th 0 10.313 4 Ä41.576 4 Ä1.006 Ä0.102

91 231 Pa 1.5 9.13 4 Ä43.523 4 Ä2.276 Ä0.087

92 233 U 2.5 10.12 4 Ä41.650 4 Ä1.128 Ä0.103

92 234 0 12.43 4 Ä40.360 4 Ä0.419 Ä0.116

92 235 3.5 10.503 4 Ä41.102 4 Ä0.922 Ä0.110

92 238 0 8.4077 4 Ä46.792 4 Ä5.474 Ä0.085

93 237 Np. 2.5 10.551 4 Ä40.855 4 Ä0.909 Ä0.115

94 239 Pu 0.5 7.71 1 3.452

94 240 0 3.51 1 5.961

94 242 0 8.11 1 3.122

95 243 Am 2.5 8.32 1 2.967

96 244 Cm 0 9.53 4 Ä41.733 4 Ä1.810 Ä0.116

96 246 0 9.32 4 Ä41.737 4 Ä2.190 Ä0.124

96 248 0 7.72 1 3.441

This process of determining the V0 has its shortcomings. Due to the periodic nature of
the function tan x, there is an arbitrariness in choosing such a root of Eq. (10), which is
acceptable from the physical point of view. Taking it formally, we have different x roots in
each n1 domain, n1 = 1, 2, 3, 4 and each one of them results via Eq. (10) in different V0. One
needs an independent criterion to choose the one.

Following the nucleon Fermi gas model, one can generally argue that the depth of the
potential well V0 for heavier nuclei is no less than about 50 MeV [5]. This is our main
criterion for a reasonable choice of the n1 domain.

It says by the way that the x → 0 limit of Eq. (10), leading to the Born approximation
Eq. (12), is not quite realistic Å it can occur only in the domain n1 = 0 and usually provides
the depth V0 of the order of a few MeV only. It follows that the case a) Å the ®yellow¯
shallow-well case Å is difˇcult to discuss in terms of the Fermi energy EF . Here one should
consider the value V0 evaluated assuming n1 = 0 merely as a quantitative indication, which is
related to the scattering phenomenon, but provides no direct information on the true potential
well of the nucleus in question and is not directly related to the nucleon density.

We have assumed that a reasonable choice for each nucleus with bound states (green ˇeld
data) should be the lowest x root leading to the potential depth Ä VZ,A > EF

∼= 45 MeV. The
potential depth data V0 = VZ,A have been collected in the table. As one can see, the majority
of cases are in the green ˇeld: the scattering length b > 0 exceeds the nucleon radius RA,
i.e., the potential well is attractive and displays the bound-state level. The domain assignment
of these deep-well (green color) nuclei, b > RA, is shown in Fig. 3.

One can see that the nuclei which by their b values belong to the deep-well class (green)
should be within this model further attributed to four different n1 branches, shown in Fig. 3,
which is an interesting element of systematization. On comparing the deˇnitions of x and ki
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Fig. 3. Potential well depths V0 = VZ,A for deep wells, green data. They could have been assigned
to 4 domains of possible solutions of Eq. (10): from left to right there are branches n1 = 1, 2, 3, 4.

Formally, the depth range for all is [−73(Be), −26(He)] MeV, but for majority of the nuclei there is
−65 < VZ,A < −35 MeV. The S �= 0 isotopes are included as darker green points

we can see that ki = x/RA. One ˇnds that in all cases there occurs (n1 − 1/2)π/RA < ki <
(n1 + 1/2)π/RA, where the values of n1 = 1, 2, 3, 4 give the number of oscillations of the
s-type wave function ≈ sin (kir) within the rectangular potential well of the radius RA. It
follows each isotope belongs within this model to one of the n1 classes. Let us remind that
by construction there is a matching of the inner and outer parts of wave function at the point
RA [4]. The outer part declines exponentially with growing r.

However, in several cases we had to accept as the best choice the potential depths V0

different signiˇcantly from the criterion value of about Ä50 MeV. Besides, there are many
nuclei of the barrier type, 0 < b < RA (violet) and about 10 shallow-well nuclei displayed in
the table in yellow ˇeld, b < 0.

3. DETERMINATION OF THE BOUND-STATE ENERGY Eb Å
THE DATA OF THE GREEN STRIPE

As mentioned above, to ˇx the representative depths V0 for nuclei, one has to use some
information following from other sources. The Fermi energy EF for the nuclear matter in
the free nucleon Fermi gas model is one of them [4]:

EF =
1

2mn
(3π2)1/3

�
2d2/3

n , (14)

where the nucleon density in the nucleus is

dn =
A

4/3πR3
A

=
1

4/3πr3
0

, (15)
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where the single-nucleon radius r0 = 1.3 fm [5]. Following it, one now generally accepts the
Fermi energy for nuclear matter to be about 45 MeV. In most deep-well cases the calculated
depth of the well exceeds it (on absolute value), as expected.

Quantum mechanics says that three-dimensional potential well has the bound-state energy
levels, if it is deep enough. In case of isotropic neutron scattering, the levels of interest
belong to the s-type states. Using the green data, one obtains the equation for the bound-state
energy level Eb in the potential well. The evaluation can be found in textbooks, e.g., in
the ®Quantum Mechanics¯ of Landau and Lifshitz [6], or as a slightly extended (to arbitrary
A, via the mass parameter m, Eq. (5)) calculation for the radial-rectangular-well model of
deuteron, in the Kuckuk book [4]:

cotan
[( m

h2
(|VZ,A + Eb|)R2

A

)1/2
]

= −
(

Eb

|VZ,A + Eb|

)
1/2. (16)

With the notation r = Eb/VZ,A and x given by Eq. (12), we have the following equation
for r:

x =
1√

1 − r

{
−arctan

[√
r

1 − r

]
+ n2π

}
, n2 = 1, 2, . . . , (17)

where the labels n2 need not be such as the labels n1 introduced above.
One can look for solutions r graphically, Fig. 4. To avoid unphysical negative x, we have

to take n2 equal to 1 or more.

Fig. 4. Example of graphical determination of the pa-

rameter r = Eb/V0. Horizontal line corresponds to the

value of x = 8.27 for the isotope 104Pd see the table.
There are two lines representing the LHS of Eq. (17) for

n2 = 2 and n2 = 3. The crossing of the n2 = 3 line

with the x line gives the solution: r = 0.0476, i.e.,
Eb = 1.826 MeV

Several values of n2 had to be tried to obtain for the Eb the value being a real number,
representing the energy level in the well, VZ,A < Eb < 0. In most cases there is only one real
and reasonable solution. It has been found that usually there is n1 = n2. It is not the case
when three elements are characterized by exceptionally high values of the scattering length:
36Ar, 164Dy, 196Hg.

In principle one cannot identify the EB with the neutron separation energy, which in the
Fermi-gas model of nucleus is known to be close to the Fermi level [5]. Still we have found
that the following approximate equality often holds:

−VZ,A + EbZ,A
∼= EF . (18)

Having no better clues, we have sometimes treated it as a qualitative criterion for the
green data on how to assign a given (A, Z) nucleus to right (n1, n2) class Å choose the
smallest numbers (n1, n2) allowing one to approximately fulˇll this equation.
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The nucleus parameters VZ,A derived here and shown in the table are essential character-
istics of nuclei. We present also the numbers Eb ≡ EbZ,A for all nuclei exhibiting the deep
potential well, see green ˇeld data. These numbers show no systematic features and 
uctuate
considerably vs. A, as shown in Fig. 5.

In the table the last column gives an index of coincidence between the Eb and the EF ,
(−VZ,A + EbZ,A −EF )/EF , following from Eq. (18). One can see that for about 30 isotopes
the coincidence is no worse than 2%, while for most of them it is about 10%. However, for
some isotopes of He, Be, B, Cl, Ar, Ca, Sc, Ti, V, Ba, La, Nd, Sm, Eu, Gd, Tb, Dy, Hg
there is no such a coincidence at all.

The above considerations should be treated with some restraint, though, for there is some
uncertainty in attributing the so derived value Eb to a single bound-state s-type energy level.
Rather, one should sometimes think of an effective bound-state level related to a few s-type
states in the nucleus.

One should remember that at the root of the above estimation there lies the assumption
of a constant density of nuclear matter, resulting in the monotonic dependence of the well
radius on the mass number A, see Eq. (4). As far as one can trust the experimental data on
scattering lengths, we can say that these 
uctuations in the values of VZ,A would be smaller
if the nuclear densities were not quite ˇxed for all nuclei Å if they were allowed to take on
a part of variation in the scattering lengths vs. A.

In this context one should recall that the nucleon radius r0 in Eq. (4) is not a physical
constant. It comes as a summary of many high-energy diffraction experiments and its value
changed considerably over the last decades [4, 5, 7]. In principle one could try to determine
it for each isotope separately from the experimental scattering-length data via the radial
rectangular potential model. On relying on the model of radial rectangular well, one could

Fig. 5. The bound-state energy-level data Eb vs. A for the deep-well isotopes. The S �= 0 isotopes
are included as darker green points. For the majority there is Eb > −5 MeV, but no clear trends are

visible in this plot
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Fig. 6. Graphical representation of the potential well depths in MeV vs A, for the isotopes of Ne,

as evaluated from the experimental neutron scattering lengths. The position and numerical value of
the bound-state energy level in the well are marked with the blue color. The ®classic¯ Fermi level

EF = 45 MeV is shown with a dashed line, and the difference Eb − V0 as blue points. The S �= 0

isotope is indicated. n1 = n2 = 2 for all isotopes of Ne

gain thus from the scattering data a new information on the density of nuclear matter. This
work will possibly be continued.

In Fig. 6 we show as an example the typical histogram of the potential well depths for the
isotopes of Ne. As in this case n1 = 2, there are just two oscillations in the wave function in
the well region (0, RA), for all isotopes of Ne. Such histograms for all isotopes reported in
the DianouxÄLander booklet [1] are displayed in the IAE Report [8].

4. SHALLOW POTENTIAL WELL Å NO BOUND STATES Å
YELLOW STRIPE DATA

The case of negative scattering length, bC < 0, leads us immediately to the yellow stripe
in Fig. 2. As, in order to set up a tractable form of the model, the energy of neutrons had
been assumed very small, it means that when using Eq. (10) we have to limit ourselves to the
n1 = 0 domain, and the evaluated depths of the well are to be small. Indeed, yellow V0's are
most often (on the absolute value) of the order of 1 MeV or less.

5. THE BARRIER ISOTOPES Å VIOLET STRIPE DATA

Let us refer to the case of rectangular radial-symmetry barrier (rather than well), violet
data. Almost a half of the nuclei belong to the barrier class, 0 < bZ,A < RA. Having in
mind that the nucleonÄnucleon forces are mostly attractive, the very fact of existence of the
repulsive-barrier nuclei deserves attention Å at ˇrst glance they should not exist.

We cannot see here any link between the ideas of the Fermi free-nucleon gas and
the barrier height value. Let us only mention some evident features shown in the table
and in Fig. 7:
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Fig. 7. The barrier heights V0 vs. A, violet ˇeld data. The S �= 0 elements are shown as darker points.

One observes here a systematic although erratic decline for growing A and A-gaps, see text

1. On excluding the 6Li nucleus, which escapes a systematic treatment, one observes that
the height of the barrier, somewhat erratically but systematically, declines vs. A about 5 times:
from about 20 MeV for A = 30 to about 5 MeV at A = 240.

2. There are at least two broad gaps in the spectrum of the barrier displaying nuclei:
7 < A < 22 and 196 < A < 237.

3. All isotopes of the elements Na, Al, K, Rh, In, Sn, Ce, Pr, Lu, Pu belong to the barrier
class: 0 < bZ,A < RA.

4. Statistically the S = 0 and S > 0 nuclei show a similar behavior vs. A.

SUMMARY

The main reason for undertaking this effort of determining the depths V0 of potential
wells for nuclei was our hope that within the radial rectangular potential model one can
discover a source of erraticity of the observed neutron scattering lengths b vs. A. Partially, it
comes true Å one arrives here at the task of determining the roots of expressions involving
trigonometric functions, and in principle there is a variety of discrete roots showing there.

For most of the isotopes there is bC = bZ,A > RA (green ˇeld data) and in such cases the
depth parameters V0 ≡ VZ,A can be attributed to 4 branches of the V0 vs. A plots in Fig. 3,
corresponding to the roots of Eq. (10) in the domains: n1 = 1, 2, 3, 4, . . ., see Fig. 2. We
have therefore found that the erraticity in scattering lengths b can be in part related to the
boundary conditions of wave functions in the rectangular potential well, resulting in the n1

oscillations of the s-type wave function of scattered neutron in the range (0, RA). It should be
emphasized that the scale of this erraticity could within this model diminish, if one decided
to allow for a variation of the nucleon density in nuclei.

Once the depth V0 has been established, in case of the deep potential well one can look
for the position of the bound-state energy level Eb. Equation (16) is similar to Eq. (10), so
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again one has to choose a domain of solution Å the n2 domain. One arrives at the Eb values
of a few MeV. Basically, they show no systematic trends, see Fig. 5, but seem often be related
to the EF value of the Fermi-gas model of nucleus, see Eq. (18) and discussion therein. We
have to note that we can see no clear correlation between the Eb values evaluated here and
those evaluated by Aleksejev et al. within the optical potential model [2], or with the Yamada
and Matumoto results [7]. Our potential depths V0 = VZ,A are representative solely of the
slow-neutron-scattering capabilities of the nuclei.

The depth values V0 of the yellow strip are indeed small, so these shallow-well nuclei
can often be treated in terms of the Born approximation for the scattering length. We have
to remark that the Fermi free-nucleon gas model with EF = 45 MeV is not compatible with
the idea of shallow potential.

In case of small positive b < RA, violet ˇeld, one has to think of the repulsive potential
barrier, not attractive potential. The barrier height parameter V0 declines vs. A, but no hint
explaining the repulsive character of the nucleus follows from this behavior, as yet.

Final conclusions:
1. Using the experimental neutron scattering lengths collected in [1], the depths of potential

wells within the rectangular radial potential well model (heights of potential barriers) have
been estimated for the majority of isotopes. In a few cases the so estimated potential depth
exceeds signiˇcantly the commonly accepted estimate about 50 MeV.

2. We have found that the isotopes can be attributed to different branches n1 = 1, 2, 3, 4
of the s-wave-function-type solutions of the wave equation for the neutron-nucleus scattering
problem. This partly explains the erraticity of the experimental scattering length values. Each
n1 number gives the number of oscillations of the neutron wave function in the range (0, RA).

3. For isotopes having deep potential well, one often ˇnds a slight coincidence between the
evaluated bound-state energy level and the Fermi level of the free-nucleon model of nuclear
matter.
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