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These lectures, intended mainly for undergraduates, contain a very short introduction to perturbative
QCD. We introduce the QCD Lagrangian, outline how QCD is quantized and renormalized, and as an
example describe the calculation of the elastic two-gluon scattering. We then discuss the physics behind
the parton model of hadron collisions, with the important issues of the infrared safety and factorization.
We end with a short description of how different hadronic ˇnal states are searched for and studied at
hadron colliders.
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1. INTRODUCTION: WHO NEEDS QCD?

The coming decade in the high-energy physics will undoubtedly be dominated by new
results from the Large Hadron Collider at CERN. It has a very broad research program, but its
focus is placed on study of the dynamics of the electroweak symmetry breaking and on search
for possible manifestations of physics beyond the Standard Model. With all this attention
towards New Physics, a student might ask a legitimate question: Who now needs the old
good perturbative QCD, with its laws known since decades?

There are several answers to this question. First, it is the LHC itself. A collision at
the LHC starts and often ends with the strong interaction. Although the information the
LHC detectors are trying to decipher might be in the electroweak/New Physics domain, their
experimental signatures are convoluted with the QCD processes. A ˇrm knowledge of the
partonic distributions and understanding how the scattered quarks and gluons materialize
as hadrons is an important ingredient of any New Physics process calculation at hadronic
colliders.
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In addition, all these potentially interesting processes are immersed into the huge back-
ground of pure QCD processes. It is indispensable to have a good understanding of the rates
and properties of these processes to be able to efˇciently discriminate between them and the
rare interesting events. In short, without the expertise in QCD one would be unable to make
discovery claims at the LHC.

In addition to this ®pragmatic¯ purpose, the QCD remains interesting on its own. It serves
as a prototypical YangÄMills theory, where several different theoretical approaches can be
tested in experiment in various kinematical situations. In addition to the huge unresolved
problem of conˇnement, which is a truly nonperturbative effect, there are many other hot
issues such as how far nonperturbative effects penetrate into the perturbative domain, the
origin of the mathematical structures one ˇnds in multiparticle amplitudes, properties of the
theory in the limit of large number of colors, etc.

All that shows that the QCD, and speciˇcally the perturbative QCD, remains one of the
cornerstones of theoretical high-energy physics in the LHC era.

In these lectures, no attempts are made to appropriately cite every important result in
QCD. Instead, we give two general references to an annotated resource letter of the QCD
literature [1] and to a very detailed lecture course [2].

2. THE QCD LAGRANGIAN AND QUANTIZATION

2.1. Gauge Principle. In quantum chromodynamics (QCD), strong interactions are
described as non-Abelian gauge interactions. Therefore, before going to the QCD Lagrangian,
it is useful to brie�y review the gauge principle on its own with a much simpler example of
quantum electrodynamics, QED.

The basic idea is that if you start with a quantum ˇeld theory of free matter ˇelds and
promote a global symmetry to the local one, then you automatically get interaction between
the matter ˇelds which is carried by spin-1 bosons. Consider the free Dirac ˇeld described
by the Lagrangian:

L = iψ̄∂μγμψ − mψ̄ψ. (1)

By construction, it possesses the global U(1) symmetry: ψ(x) → exp (iα)ψ(x), α = const.
This symmetry re�ects the fact that the overall phase of the ˇeld is not observable and can
be rotated as we wish without any consequences for theory.

Now we want to impose a stronger requirement that the observables be independent of
the arbitrary phase rotation at each spatial point, i.e., with α(x) = eΓ(x). The Lagrangian (1)
is not invariant under such transformations due to the presence of a derivative which acts on
the phase α(x) as well. However, we could think of a ®minimal modiˇcation¯ of the theory:

LQED = iψ̄Dμγμψ − mψ̄ψ − 1
4
FμνFμν , Dμ ≡ ∂μ − ieAμ(x). (2)

Here the usual derivative ∂μ is replaced by another operator Dμ, a derivative plus shift,
which is called the ®extended derivative¯, or covariant derivative. This ®shift¯ is not ˇxed
but changes in accord with the phase transformation of the matter ˇeld:

ψ(x) → eieΓ(x) ψ(x), Aμ(x) → Aμ(x) − ∂μΓ(x). (3)
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It is straightforward to check that the Lagrangian (2) is now invariant under the gauge
transformations (3). Aμ(x) is then promoted to the dynamic ˇeld and needs its kinetic term
∝ FμνFμν , with Fμν = ∂μAν(x)−∂νAμ(x). The resulting Lagrangian (2) deˇnes the theory
called quantum electrodynamics (at the classical level so far), and it reproduces the Maxwell
equations for the electromagnetic ˇeld.

2.2. QCD as a Gauge Theory. The key starting point of the whole construction was
the presence of an internal degree of freedom (the phase of a complex ˇeld), which was
associated with a global transformation. One can generalize this approach by postulating
matter ˇelds with other internal degrees of freedom. This is precisely the origin of color in
QCD. One postulates that the fundamental strongly interacting matter ˇelds called quarks can
be represented by points in a complex three-dimensional color space; the basis vectors in this
space ψi, i = 1, 2, 3, are called ®red¯, ®green¯ and ®blue¯ quarks.

The quark ˇelds thus realize the fundamental representation of the SU(3) group. Com-
posite objects made of quarks and antiquarks transform as various higher representations of
the color group. Among them, color singlets (combinations which are left-invariant under
the entire SU(3) group) appear as well. It is with these objects that we identify the physical
hadrons we observe in our world. To demonstrate that color is conˇned and only color singlet
states can have ˇnite energy is a big unresolved problem in QCD.

In order to associate the color with a gauge interaction, we assume that the SU(3)
transformations of the quark ˇelds are local:

ψi(x) → Uij(x)ψj(x), Uij(x) = exp [−igtaijθ
a(x)], a = 1, . . . , 8

with 8 generators ta satisfying the commutation rules [ta, tb] = ifabctc. The derivative must
again be replaced by the covariant derivative, Dμ = ∂μ − igAμ(x), with g being the strong
interaction coupling and the ®shift¯ given by the gluon ˇeld Aμ(x) = Aa

μ(x) · ta.
The (classical) QCD Lagrangian is

LQCD = iψ̄iD
μ
ijγμψj − mψ̄iψi −

1
2

Tr FμνFμν .

Since the SU(3) group is non-Abelian, the QCD is a non-Abelian gauge theory. Its key
feature is that the ˇeld strength of the gluon ˇeld

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν ]

is not gauge-invariant on its own and carries a color charge as well, in contrast to QED. The
FμνFμν is gauge-invariant, but it contains cubic and quartic terms in the gluon ˇeld, which
means that gluons are self-interacting so that there is no superposition principle at work. All
these complications are consequences of the non-Abelian nature of the theory and have a
profound effect on its structure.

2.3. Quantization of QCD. Quantizing QCD, we get quarks and gluons as quantum par-
ticles. However, quantization of non-Abelian gauge theories involves several subtle features.
Some of them are common to all gauge theories. For example, the photon ˇeld Aμ(x) in
QED possesses too many degrees of freedom, some of them being unphysical, which creates
obstacles in quantizing the theory. The problem is solved by introducing a gauge-ˇxing term
Lgf in the Lagrangian, which explicitly violates the gauge symmetry but makes the quantiza-
tion possible. Several gauge-ˇxing procedures can be implemented, but the ˇnal results must
not depend on this choice.
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Quantization of a non-Abelian gauge theory poses extra problems. Due to direct self-
coupling of the gauge bosons, the unphysical degrees of freedom can appear in loops. In
principle, with a cleverly chosen gauge ˇxing function (e.g., in axial gauges), the effect of
unphysical degrees of freedom disappears at the expense of breaking Lorentz invariance of the
intermediate calculations. If one prefers a covariant gauge, the effect of unphysical degrees
of freedom is compensated by auxiliary complex scalar ˇelds with Fermi statistics called the
FaddeevÄPopov ghosts. It must be stressed that these ghosts are not put by hand; it is just
a clever way to rewrite the gauge-ˇxing restriction placed onto the gauge ˇeld degrees of
freedom in the functional integral.

2.4. An Example of QCD Process. Once the quantization procedure outlined in the
previous paragraphs is completed, one can generate a list of Feynman rules for the propagation
and interaction of the quark, gluon and ghost ˇelds, which allow for calculation of the QCD
processes. However, even the simplest QCD processes can become almost intractable for
manual calculations unless an appropriate way of calculation is chosen.

Just to give an example, consider the elastic scattering of two gluons in the color-singlet
state. The amplitude in the Feynman gauge takes the form

M = (Ms + Mt + Mu + M4)μνμ′ν′
e1μe2νe∗3μ′e∗4ν′ ,

Mμνμ′ν′

s = GsC
μσν 1

(q1 + q2)2
Cσμ′ν′

,

Mμνμ′ν′

t = GtC
μμ′σ 1

(q1 − q3)2
Cσν′ν ,

Mμνμ′ν′

u = GuCμν′σ 1
(q1 − q4)2

Cσμ′ν ,

Mμνμ′ν′

4 = Gs(gμν′
gνμ′ − gμμ′

gνν′
)+

+ Gt(gμν′
gνμ′ − gμνgμ′ν′

) + Gu(gμνgμ′ν′ − gμμ′
gνν′

),

where Gs, Gt, Gu are color factors and Cμνρ is the triple gluon vertex given by the Feynman
rules.

If one tries to calculate the cross section covariantly by squaring the amplitude and
summing over all indices, one will need to include ghosts �owing through the squared diagram.
As a result, straightforward covariant calculation of this process will include thousands of
separate terms!

Instead, you can calculate the amplitude itself for physical polarizations of the initial and
ˇnal gluons M(λ1λ2 → λ3λ4), λi = ±1. In this case ghosts are not needed, and the helicity
amplitude takes a simple form:

M(λ1λ2 → λ3λ4) = 3παsδ
ab δa′b′ 1

tu

⎧⎨
⎩

s2 for ++ → ++, −− → −−,
u2 for +− → +−, −+ → −+,
t2 for +− → −+, −+ → + − .

(4)

Here αs ≡ g2/4π, the strong interaction analog of the ˇne structure constant. The cross
section can be immediately obtained.
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The calculation of helicity amplitudes is dramatically simpler than the covariant squaring;
however, the result (4) hints at further simpliˇcation. Indeed, the total helicity conservation
can be observed: λ1 + λ2 = λ3 + λ4. This is not a coincidence, but a particular case of a
general result which holds for any tree-level multigluon scattering: the maximally and almost
maximally helicity violating (MHV) amplitudes are zero. In the present case MHV amplitudes
are ++ → −−, −− → ++, almost-MHV amplitudes are ++ → +−, +− → −−, etc., so
that what remains are the total helicity conserving amplitudes.

This example gives just the ˇrst feeling of various nontrivial properties that QCD helicity
amplitudes can have. There exists the whole machinery of how to effectively use these
properties to calculate multileg and multiloop amplitudes. Note that such calculations are
not just of academic interest; they are the backbone of any pQCD calculation of high-energy
hadronic processes.

3. RENORMALIZATION OF QCD

When calculating diagrams beyond the tree level, one encounters integrals over loop
momenta which are UV-divergent. This problem is cured by the renormalization of the theory.
In very general words, the essence of renormalization consists in the following observation.
Although we start from a Lagrangian that is written in terms of ®bare ˇelds¯ and contains
some ®bare masses¯ and ®bare charges¯, the physical meaning should be assigned not to them
but to their renormalized counterparts. The bare ˇelds and parameters are represented as the
physical counterparts times renormalization constants (ψ0 = Zψψ, m0 = Zmm, etc.), and all
the divergences are absorbed into the ˇnite number of different Z's. The loop corrections
might look divergent if expressed in terms of bare couplings, but they become ˇnite when
expressed in terms of physically observable masses and charges.

Of course, all the calculations at each step must be performed with mathematically well-
deˇned ˇnite quantities. Technically, this is achieved by the regularization procedure. First,
we modify the integrals to make them ˇnite (e.g., by a momentum cut-off Λ). All Z's are
now ˇnite but will be divergent if Λ → ∞. The observables are then calculated at ˇnite Λ
and expressed in terms of physical masses and couplings. All the divergent terms must then
cancel, and the limit Λ → ∞ can be safely taken. Note that although several regularization
procedures exist (dimensional, PauliÄVillars, lattice, etc.), all of them eventually lead to the
same result.

Renormalization of QCD is accompanied by a very remarkable phenomenon of dimen-
sional transmutation: although the bare Lagrangian (in the massless limit) contains no di-
mensional parameter, such a parameter appears after renormalization. This parameter, ΛQCD,
actually ˇxes the scale at which nonperturbative effects come into full swing. This phenom-
enon is illustrated by the expression

αbare
s = Zi

(
Λ
μ

)
αs

(
μ

ΛQCD

)
,

with the following argumentation.
• Regularization involves a cut-off parameter Λ with dimension of energy.
• But dimensionless Z's cannot depend on a dimensional parameter alone. Therefore, a

renormalization scale μ appears.
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• But the ®bare¯ ˇelds and couplings do not know about μ; so, μ-dependence must cancel
exactly between Z's and the physical coupling αs(μ).

• But the dimensionless coupling αs(μ) cannot depend on μ alone. Therefore, another
quantity, ΛQCD, emerges.

So, after renormalization we are left with αs(μ/ΛQCD) which depends on an (arbitrary)
renormalization scale μ and the ®boundary condition parameter¯ ΛQCD. Note that indepen-
dence of the ®bare¯ quantities and physical observables from renormalization scale μ leads to
a very powerful technique called the renormalization group.

The prototypical example of the application of this technique to QCD is the calcula-
tion of how αs actually changes with the renormalization scale μ. If Zg, Zq , ZA are the
renormalization constants for the coupling constant g, quark and gluon ˇelds, respectively,
then

αbare
s =

Z2
g

Z2
q Z2

A

αs,
Z2

g

Z2
q Z2

A

= 1 − αs
β0

4π
log

(
Λ2

μ2

)
+ O(α2

s).

An explicit calculation gives the β0 = 11 − (2/3)nF , where nF is the number of active
�avors. Since αbare

s is μ-independent, we get

0 =
d log αbare

s

d log μ2
=

β0

4π
αs +

d log αs

d log μ2
,

which gives the QCD beta function:

dαs

d log μ2
≡ β(αs) = − β0

4π
α2

s < 0.

The solution of this equation

αs =
4π

β0 log

(
μ2

Λ2
QCD

)

decreases with μ growth. The theory is therefore asymptotically free, which has a profound
effect on the applicability of the perturbative approach to QCD. Indeed, it states that although
strong interactions are perturbatively intractable at small energies, they become tractable when
the energies are large so that αs � 1. Experience shows that perturbative calculations give a
reasonable description of hadronic scattering when the energies and momenta transfers exceed
several GeV.

4. PARTON MODEL

4.1. Naive Parton Model. Although the proton at rest is conveniently visualized as if
built of three quarks which have some dynamically generated constituent mass and are held
together by gluonic forces, a wealth of experimental data in the 60sÄ70s led physicists to a
drastically different view on the ultrarelativistic proton. Namely, such a proton can be best
thought of as if made of many pointlike and almost collinear partons, which �y together and
share among them the full charge and momentum of the proton.
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An important feature of this picture is that due to relativistic time dilatation the ®internal
life¯ of these partons (how they split, merge or rescatter) can be thought of as frozen in the
ˇrst approximation. Then, a hard collision of two ultrarelativistic protons can be described
according to the following scheme:

hadrons → partons → hard QCD process → hadronization.

The cross section of this scattering can then be factorized at the level of probabilities, not just
amplitudes:

σpp→A+...(s) =
∑
ij

1∫
0

dx1 dx2 fi(x1) fj(x2)σij→A(x1x2s). (5)

Here fi(x), i = q, q̄, g, are partonic distribution functions (PDFs) which give the probability
density to ˇnd in the proton a parton i with momentum fraction x, while σij→A is the partonic
scattering cross section.

This is the naive parton model. Its key feature, which follows from the qualitative
picture just presented, is the universality (process-independence) of PDFs. This makes the
whole approach very attractive for the analysis of hadronic collisions: one just needs to
determine experimentally the proton PDFs in one experiment (for example, in the deep-
inelastic scattering, DIS, of an electron off the proton, which gives a clean access to the
proton PDFs) and then use them in all subsequence calculations.

4.2. Infrared Stability. The problem with the naive parton model just described is that it
does not survive the radiative corrections. The key issue that enters the game is the infrared
stability.

Consider an observable that describes production of n partons: On(k1, k2, . . . ). The
IR stability consists in the requirement that in the collinear limit (k1||k2) and in the soft
limit (k1 → 0) this observable approach On−1(k1 + k2, . . . ). ®Good observables¯ should be
IR-stable: they should be insensitive to the emission of very large wavelength gluons or to
collinear splitting.

A good example of the IR-stable quantity is given by the e+e− annihilation into hadrons.
In the ˇrst order, it proceeds via creation of the s-channel virtual photon which then decays
into a qq̄ pair. The differential cross section of e+e− → qq̄ production at ˇxed angles is
well-behaved. One can now calculate production of more complicated states, like qq̄g, and
observe that this cross section is divergent in both the soft and collinear limit. However, at
the same order of perturbation theory, one also has the loop correction to the qq̄ production.
This correction also contains the same two divergences but it has the opposite sign. As a
result, when all α2

s corrections to the cross section are taken into account, both divergences
cancel, and the resulting expression is IR-stable.

Unfortunately, the naive parton model is not IR-stable. This can be checked by the
following calculations. Consider again DIS and calculate the next-order correction to the
γ∗p → X cross section:

σp(s) =
∫

dx f(x) [σ(0)
q (xs) + σ(1)

q (xs) + . . . ], (6)

where σ
(1)
q (xs) is the full (real + virtual) correction. Here x is the proton's momentum fraction

carried by the struck quark. The virtual correction accounts for emission and reabsorption
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of a virtual gluon by this quark, while the real correction takes into account the possibility
that the struck quark emits a gluon reducing its momemtum fraction from x to zx just before
collision with the photon. The expression for σ(1) reads

σ(1)(xs) =
CF αs

2π

∫
dk2

⊥
k2
⊥

1∫
0

dz
1 + z2

1 − z

(
σ(0)(zxs) − σ(0)(xs)

)
=

=
αs

2π

∫
dk2

⊥
k2
⊥

1∫
0

dz P+(z)σ(0)(zxs), (7)

where

P (z) = CF
1 + z2

1 − z
,

∫
dz P+(z)g(z) ≡

∫
dz P (z)[g(z)− g(1)].

The k2
⊥ integration in (7) goes from 0 to ∼ Q2 (photon's virtuality) since for k2

⊥ > Q2,
partonic cross section strongly decreases. We see that the soft singularities z → 1 in the real
and virtual contributions cancel, while the collinear singularity (k2

⊥ → 0 at ˇnite z) persists.
This proves that the naive parton model is not IR-stable.

4.3. Updating the Parton Picture. The persistent collinear singularity calls upon a
redeˇnition of the partonic picture. It turns out that this singularity can be factorized from
the scattering process. The technical procedure here is very reminiscent of renormalization.
We ˇrst regularize the transverse momentum integral by a small but ˇnite λ:

Q2∫
0

dk2
⊥

k2
⊥

→
Q2∫

λ2

dk2
⊥

k2
⊥

= log
Q2

λ2
= log

Q2

μ2
F

+ log
μ2

F

λ2
,

with some factorization scale μF . Denoting the two logarithms as L1 and L2, we schemati-
cally represent the cross section as

1 + αsL = 1 + αsL1 + αsL2 = (1 + αsL1)(1 + αsL2) + O(α2
s).

This trick allows us to absorb the ®bad¯ log (containing λ2 → 0) into the deˇnition of the
partonic densities. The cross section (6) is then represented as the integral of the factorization
scale-dependent PDF f(x; μF ) and partonic cross section σ(xs; μF ), where

f(x; μF ) = f(x) +
αs

2π
log

μ2
F

λ2

∫
dz

z
P+f(x/z),

σ(xs; μF ) = σ(0)(xs) +
αs

2π
log

Q2

μ2
F

∫
dzP+σ(0)(xzs).

(8)

Note that the collinear divergence is now fully absorbed into the deˇnition of f(x; μF ).
Both f(x; μF ) and σ(xs; μF ) must be taken/calculated at the same μF , which is in principle
arbitrary, but it is convenient to choose μ2

F ≈ Q2.
This exercise offers a novel interpretation of the partonic densities. PDFs now include all

partonic splittings with transverse momenta up to μF , while partonic splittings with k⊥ > μF
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are considered as the true pQCD corrections to the cross section. One can also make an
important observation concerning PDFs: although they cannot be calculated from pQCD, one
can calculate their μF -evolution just from (8):

∂fi(x; μF )
d log μ2

F

=
αs

2π

1∫
0

dz

z
Pijfj

(x

z
; μF

)
. (9)

Here, Pij(z) are the splitting functions of parton j into parton i with momentum fraction z,
which are calculable in pQCD. Equations (8) are known as the DGLAP (DokshitzerÄGribovÄ
LipatovÄAltarelliÄParisi) equations.

Let us ˇnally stress here that the factorization of hadronic observables into ®hard¯ quan-
tities calculable in pQCD and certain (generalized) distributions is a recurring theme in QCD.
Normally, one tries to prove this factorization in the kinematical situations under study (γ∗p,
pp, diffractive DIS, etc.), but it is not always possible. Factorization breaking in certain
situations is an equally important phenomenon and it tells us something interesting about the
process.

5. FINAL STATES IN HADRONIC COLLISIONS

Let us also brie�y describe what kinds of hadronic ˇnal states in pp collisions are usually
studied and how perturbative QCD enters the corresponding analyses.

A typical hadronÄhadron collision starts with scattering of a single parton in each of the
two hadrons. Since the partonic densities are larger at small x, a typical partonÄparton collision
is much less energetic than the hadronÄhadron collision, and in addition it is dominated by
small-angle scattering. When partons try to leave the hadron, color reconnection strings arise
and then break into (light) hadrons. As a result, a typical hadronÄhadron collision leads to
production of dozens of hadrons, which more or less evenly populate a large pseudorapidity
interval. The transverse momenta pt of these hadrons are small, of the order of 0.1Ä1 GeV,
which is still not sufˇcient to safely apply perturbative QCD to calculation of such processes.

5.1. Jets. The pt-spectrum of produced particles has a long tail: once in a while particles
with large pt are also produced. Remarkably, such high-pt particles are usually not isolated
but appear in clusters with similar rapidity and azimuthal angles. Such collimated streams of
hadrons are called hadronic jets.

Jets have a clear QCD origin. When a parton with large pt is produced in a hard reaction,
it can evolve through several successive splittings into daughter partons. However, since the
collinear and soft splitting are favored, in most of the cases they do not involve any large
momentum with respect to the parent parton's direction. Thus, although a partonic shower
develops, the momentum �ow is still contained in a relatively narrow cone. Later on, when
the partons hadronize the color reconnection strings appear and break. Since they represent a
soft QCD phenomenon, they again do not introduce any large additional momentum into the
ˇnal hadrons' kinematics. As a result, the partonic shower transforms into hadronic jet with
roughly the same properties.

Good identiˇcation of jets is of paramount importance for the analysis of energetic
hadronic reactions. It is through jets that experimentalists ®see¯ the underlying hard scattering



Perturbative QCD 1101

of partons or a possible production and decay of a heavy unstable particle and can compare
their measurements with theoretical calculations. Unfortunately, jets do not always jump into
your eyes: attributing a given hadron to a jet might be ambiguous, jets can overlap, etc.
Therefore, a lot of effort by many groups is dedicated to build an efˇcient jet reconstruction
algorithm. The efˇciency of the algorithm is quantiˇed in terms of stability, infrared safety,
running time, etc.

Two generic schemes for jet reconstruction exist. In a sequential recombining algorithm,
one ˇnds pairs of hadrons which are close enough in the momentum space and recombines
them attempting to track back the splittings. This is repeated until no sufˇciently close pairs
remain, and the resulting objects highlight the jets. In a cone-type algorithm, one takes another
strategy. One starts from the cone itself, placing a circle of ˇxed radius on the rapidity-angle
diagram and trying to encompass as many energetic hadrons as possible. Although many jet
algorithms have already been suggested, there is still continuous progress of this ˇeld.

5.2. Diffraction. A different type of ˇnal state in energetic hadronic reaction is given
by a diffractive scattering, which is characterized by large rapidity gaps (intervals in the
rapidity devoid of hadronic activity). In brief, hadronic diffraction is a generalization of
elastic scattering, when the proton survives the collision (or is excited to a low-mass system),
but loses a small fraction of its momentum. This momentum is carried away by a dynamical
QCD object, the Pomeron, which in the ˇrst approximation can be modelled by a pair of
gluons in the color-singlet state.

Dynamics of the Pomeron and diffraction in general is extremely interesting as it offers
access to another kinematical regime of QCD, the so-called Regge limit. Various theoretical
descriptions of the Pomeron have been proposed, some of them based on perturbative QCD,
other appealing to nonperturbative physics, but the applicability regions of these approaches
remain the subject of hot debates. Since diffractive reactions boast a very clean signature in
detectors, their experimental study at the LHC will have a big pay-off.
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